Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт информационных технологий и радиоэлектроники

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

« СОВРЕМЕННЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИКИ И УПРАВЛЕНИЯ»

Направление подготовки / специальность

27.04.04 Управление в технических системах

Направленность (профиль) подготовки

Управление в технических системах

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями: повышение технико-экономических показателей автоматизированных систем управления и автоматизации зависит от используемых технических средств. Сочетание технологий и производств с автоматизацией управления на основе современных технических средств является одним из главных направлений реконструкции промышленных предприятий, модернизации и развития КТС.

Задачей дисциплины является практическое освоение моделирования необходимого при проектировании и исследовании технических объектов и технологических процессов систем автоматизации и управления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Современные технические средства автоматики и управления» относится к дисциплинам части учебного плана формируемой участниками образовательных отношений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты обу	Наименование оце-	
компетенции	ответствии с индикатором	ночного средства	
(код, содержание	Индикатор достижения ком-		
компетенции)	петенции	дисциплине	
	(код, содержание индикатора		
ПК-10 –Способен	ПК-10.1. Знает современные	Знать: основные термины и	Задания рейтинг кон-
использовать со-	подходы и стандарты автома-	понятия искусственного ин-	троля.
временные техно-	тизации организации.	теллекта, методы представ-	Отчет по лаборатор-
логии обработки	ПК-10.2. Умеет применять со-	ления знаний, этапы реше-	ным работам.
информации, со-	временные технологии обра-	ния задач различными мето-	Tibini puo o runii
временные тех-	ботки информации, современ-	дами.	
нические сред-	ные технические средства	Уметь: выбрать форму пред-	
ства управления,	управления, вычислительную	ставления знаний или метод	
вычислительную	технику, технологии компью-	интеллектуального модели-	
технику, техноло-	терных сетей и телекоммуни-	рования и инструментальное	
гии компьютер-	каций при проектировании си-	средство ИИС для конкрет-	
ных сетей и теле-	стем автоматизации и управле-	ной предметной области, ре-	
коммуникаций	ния.	шать задачи и интерпретиро-	
при проектирова-	ПК-10.3. Владеет навыками	вать результаты. Владеть:	
нии систем авто-	практического использова-	навыками работы с инстру-	
матизации и	ния методов автоматизиро-	ментальными средствами мо-	
управления	ванного проектирования и	делирования предметной об-	
	программирования систем	ласти,	
	управления.		

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов

Тематический план форма обучения – очная

	Наименование тем и/или разде- лов/тем дисциплины	Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником				Я	Формы текущего контроля успеваемости, форма промежуточ-
№ π/π				Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки	Самостоятельная работа	ной аттестации (по семестрам)
1	Типовые структуры и средства систем автоматизации управления тех. объектами и тех. процессами	2	1-2	2		2		18	
2	Исполнительные устройства постоянного тока	2	3-4	1		2	1	18	
3	Исполнительные устройства переменного тока	2	5-6	2		2		18	
4	Управляемые преобразователи напряжения и частоты	2	7-8	2		2		18	рейтинг-контроль 1
5	Согласующие передаточные устройства и механизмы	2	9-10	2		2		18	
6	Контрольно-измерительные средства систем автоматизации и управления тех. объектами и тех.процессами	2	11-12	1		2	1	18	
7	Тех. Средства приема, преобра- зования и передачи измерит. И командной информации по ка- налам связи	2	13-14	2		2		18	рейтинг-контроль 2
8	Устройства связи ПК с объек- том управления	2	15-18	2		2		18	
Всего за 2 семестр:				18		18		144	зачет
Наличие в дисциплине КП/КР									
Итог	го по дисциплине			18		18		144	зачет

Содержание лекционных занятий по дисциплине

Pasden 1. Типовые структуры и средства систем автоматизации управления техническими объектами и техническими процессами.

Тема 1.1. Общие положения.

Тема 1.2. Классификация и структура современных технологических объектов управления.

- Тема 1.3. Назначение и характеристика современных АСУ ТП.
- Тема 1.4. Типовая структура автоматизированных технологических комплексов.

Раздел 2. Исполнительные устройства постоянного тока.

- Тема 2.1. Основные уравнения.
- Tема 2.2. Xарактеристики и режимы при независимом возбуждении (U=const) и (I=const).
- Тема 2.3. Характеристики и режимы при последовательном возбуждении.
- Тема 2.4. Регулирование координат в разомкнутых структурах.

Раздел 3. Исполнительные устройства переменного тока.

- Тема 3.1. Модели асинхронного электропривода. Механические характеристики.
- *Тема 3.2.* Регулирование координат двигателя с короткозамкнутым ротором и с фазным ротором.
- Тема 3.3. Синхронный двигатель.
- Тема 3.4. Сервоприводы.
- Тема 3.5.Мотор-редукторы.

Раздел 4. Управляемые преобразователи напряжения и частоты.

Тема 4.1. Управляемые преобразователи и их компоненты для низковольтных систем электроприводов переменного тока.

Раздел 5. Согласующие передаточные устройства и механизмы.

- Тема 5.1. Согласующие устройства.
- Тема 5.2. Передаточные механизмы.
- Тема 5.3. Передаточные механизмы линейных движений.
- Тема 5.4. . Передаточные механизмы круговых движений

Раздел 6. Контрольно-измерительные средства систем автоматизации и управления техническими объектами и техническими процессами.

- Тема 6.1. Общие сведения.
- Тема 6.2. Датчики электромагнитных переменных.
- Тема 6.3. Датчики механических переменных.
- Тема 6.4. Датчики технологических переменных.
- Тема 6.5. Датчики в системах электропривода.

Раздел 7. Технические средства приема, преобразования и передачи измерительной и командной информации по каналам связи.

- Тема 7.1. Общие сведения.
- Тема 7.2. Классификация АЦП.
- Тема 7.3. Основные параметры АЦП.
- Тема 7.4. Сравнительные характеристики АЦП.
- Тема 7.5. Цифро-аналоговые преобразователи (ЦАП).

Раздел 8. Устройства связи ПК с объектом управления.

- Тема 8.1. Общие сведения.
- Тема 8.2. Интерфейсы систем автоматизации и управления. Основные понятия и определения.

Содержание лабораторных занятий по дисциплине

1. Исследование электрических исполнительных устройств технических средств автоматизации и управления.

- 2. Исследование бинарных исполнительных устройств технических средств автоматизации и управления.
- 3. Исследование способов управления исполнительных двигателей.
- 4. Исследование статических и динамических характеристик электромеханических устройств стабилизации скорости в технических средствах автоматизации и управления.
- 5. Исследование способов управления приводами.
- 6. Исследование технических средств контроля привода колебательным методом.
- 7. Выбор параметров технических средств по результатам моделирования системы с заданными техническими требованиями.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРО-МЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУ-ДЕНТОВ

5.1. Текущий контроль успеваемости (рейтинг-контроль 1, рейтинг-контроль 2, рейтинг-контроль 3).

Рейтинг-контроль 1

- 1. Зависимость экономичности технических средств от капитальных вложений.
- 2. Основные этапы проектирования КТС АСУТП.
- 3. Назначение, цели АСУТП. Устройства связи УВМ с объектом управления в АСУТП.
- 4. Отличительные признаки АСУТП.
- 5. Основные функции АСУТП.
- 6. Локальные системы контроля, регулирования и управления.
- 7. Критерии оценки ТЭ эффективности АТК.
- 8. Особенности типовой структуры СЦКР и У с многоканальными техническими средствами.

Рейтинг-контроль 2

- 9. Типовая структура централизованной АСУТП.
- 10. Особенности структур систем с прямым цифровым управлением.
- 11. АСУТП с супервизорным режимом работы УВМ.
- 12. Радиальная и магистральная структуры распределенной АСУТП.
- 13. Кольцевая структура распределенной АСУТП.
- 14. Особенности структуры ЛУВС с магистральной структурой.
- 15. Зависимость эффективности технических средств от их совершенства.
- 16. Структуры систем МУ-Д, ИД постоянного тока и синхронного двигателя.
- 17.Способы управления 2х-фазными ЭМП переменного тока: схемы, векторные диаграммы, условия получения кругового поля.
- 18. Структура производственного процесса.
- 19. Роль аналога и прототипа при проектировании АТК.
- 20. Задачи при разработке новых систем управления, оборудования и эксплуатируемых объектов.

Рейтинг-контроль 3

- 21. Роль технических средств в решении основных проблем 21 века.
- 22. Назначение и вопросы проектирования, выбора ТС.
- 23. Методология проектирования АТК (этапы, последовательности проектирования).
- 24. Где основные потери энергии в системах управления. Дать сравнение коэффициента использования по мощности различных схем управления.
- 25. Перспективы пути снижения потерь энергии в системах управления.
- 26. Классификация ТС по функциям и по отношению к системе. Техническая основа систем автоматизации

5.2. Промежуточная аттестация по итогам освоения дисциплины (зачет).

Вопросы к зачету

- 1. Электропривод ВИЛ (схема).
- 2. Нагрузочная, регулировочная, К. 3. для генераторов постоянного тока.
- 3. Зависимость экономичности технических средств от капитальных вложений.
- 4. Динамические свойства генераторов постоянного тока (передаточные функции).
- 5. Схема замещения несимметричного двухфазного ЭМП для токов прямой последовательности (полная и преобразованная); выразить параметры ОВ через параметры ОУ.
- 6. Основные этапы проектирования КТС АСУТП.
- 7. Векторная диаграмма асинхронного ЭПМ.
- 8. Условия получения кругового вращающего магнитного поля в зазоре.
- 9. Назначение, цели АСУ ТП. Устройства связи УВМ с объектом управления в АСУ ТП.
- 10. Генераторные режимы ЭМП: механические и энергетические характеристики. Практические приложения режимов.
- 11. Динамические свойства ЭМУ.
- 12. Отличительные признаки АСУ ТП.
- 13. Схема, особенности вентильно-индукторного ЭМП.
- 14. Характеристики ЭМП при якорном и полюсном управлениях в относительных единицах.
- 15. Основные функции АСУ ТП.
- 16. Нагрузки на ЭП и из приведение. Расчет Мэ в КЭМС.
- 17. Способы пуска синхронных двигателей. Динамика СД, частотные характеристики. Модель системы с синхронным двигателем.
- 18. Локальные системы контроля, регулирования и управления.
- 19. Дать схему включения конденсаторного микродвигателя.
- 20. Написать уравнение механической характеристики микродвигателя постоянного тока в относительных единицах в случаях якорного управления.
- 21. Критерии оценки ТЭ эффективности АТК.
- 22. Выбрать параметры конденсаторного ЭМП при оптимальном управлении сопротивлением Кди и емкостью.
- 23. Тип электродвигателя в приводе ВИЛ.
- 24. Особенности типовой структуры СЦКР и У с многоканальными техническими средствами.
- 25. Выбрать параметры 2х-фазного ЭМП при оптимальном управлении коэффициентом сигнала и емкостью.
- 26. Схема замещения асинхронного двигателя с полым ротором (полная и упрощенная). Энергетическая диаграмма.
- 27. Типовая структура централизованной АСУ ТП.
- 28. Выбрать параметры несимметричного конденсаторного ЭМП при оптимальном управлении коэффициентом трансформации обмоток и ёмкостью С.
- 29. Структурная схема исполнительных преобразователей переменного тока.
- 30. Особенности структур систем с прямым цифровым управлением.
- 31. Выражения для взаимных индуктивностей обмоток обобщенной машины.
- 32. Структурная схема двухканального управления ИД с независимым возбуждением.
- 33. Радиальная и магистральная структуры распределенной АСУ ТП.
- 34. Момент обобщенной машины.
- 35. Уравнение линеаризованной механической характеристики ИД при Ф=Фном=const и структурная схема.
- 36. Радиальная и магистральная структуры распределенной АСУ ТП. Индуктивные сопротивления неявнополюсных асинхронных ЭМП.
- 37. Оптимальное использование конденсаторного двигателя выбором К и С.
- 38. Кольцевая структура распределенной АСУ ТП. Условия однонаправленного электромеханического преобразования энергии на примере однофазного.

- 39. Законы электромеханики.
- 40. Особенности структуры ЛУВС с магистральной структурой.
- 41. Выражения для потокосцепления любого контура (К-го) в 8-контурной машине и равновесия напряжения.
- 42. Модуль статической жёсткости механической характеристики ИД и определяющие его величины.
- 43. Зависимость эффективности технических средств от их совершенства.
- 44. Мгновенная и суммарная мощность потребляемые К-ым контуром и всей машиной.
- 45. Ветви, шаги обмоток и коллектора и как они определяются. ЭДС обмотки
- 46. Структуры систем МУ-Д, ИД постоянного тока и синхронного двигателя
- 47. Энергия магнитного поля в S-контурной машине и её приращение за время dt.
- 48. Дать чертеж простой волновой обмотки.
- 49. Способы управления 2х-фазными ЭМП переменного тока: схемы, векторные диаграммы, условия получения кругового поля.
- 50. Нарисовать блок-схему системы управления периодическим движением, пояснить назначение блоков и дать классификацию систем на её основе.
- 51. Динамические свойства ЭМУ.
- 52. Структура производственного процесса.
- 53. Механическая мощность S-контурной машины.
- 54. Коммутация (определение) и её виды; особенность линейной коммутации.
- 55. Роль аналога и прототипа при проектировании АТК.
- 56. Метод симметричных составляющих для нессиметричных двухфазных ЭМП.
- 57. Выразить токи однофазного ЭМП методом симметричных составляющих, построить векторную диаграмму.
- 58. Задачи при разработке новых систем управления, оборудования и эксплуатируемых объектов.
- 59. Электромагнитный момент реальной машины.
- 60. Где располагаются щётки в генераторе, двигателе, тахогенераторе.
- 61. Роль технических средств в решении основных проблем 21 века.
- 62. Как влияет мощность на изменение энергии магнитного поля и создание полезной нагрузки.
- 63. Что вызывает обрыв обмотки возбуждения ЭМП: доказать аналитически и сопроводить рисунком.
- 64. Назначение и вопросы проектирования, выбора ТС. Уравнения для индуктивности и мгновенного момента в машине с одной обмоткой.
- 65. Передаточные функции ИД по входному управляющему напряжению и по нагрузке.
- 66. Методология проектирования АТК (этапы, последовательности проектирования).
- 67. Выражение для среднего момента в машине с одной обмоткой.
- 68. ЭДС проводника и фазы в машинах переменного тока: q=1; y=τ.
- 69. Где основные потери энергии в системах управления. Дать сравнение коэффициента использования по мощности различных схем управления.
- 70. Сформулируйте законы электромеханики.
- 71. Назовите принцип углового измерения с помощью индукционных микромашин.
- 72. Перспективы пути снижения потерь энергии в системах управления.
- 73. Схема магнитной цепи двигателей постоянного тока и основное её уравнение.
- 74. МДС фазы статора.
- 75. Классификация ТС по функциям и по отношению к системе. Техническая основа систем автоматизации.
- 76. Порядок расчета МДС зазора, спинки якоря и зубцов.
- 77. МДС трехфазных обмоток.
- 78. Под системы интегрированных систем управления и автоматизации.

4.3. Самостоятельная работа обучающегося.

В плане самостоятельной работы студентами выполняются приведенные задания для самостоятельной работы.

- 1. Какие основные классы технологических процессов в системе промышленного производства?
- 2. Какие технические средства входят в состав АТК?
- 3. Какие задачи решает технологический контроллер или промышленный компьютер в системах автоматизации и управления?
- 4. В чем заключается принцип унификации технических средств систем автоматизации и управления?
- 5. Как называются единицы измерения магнитного потока, индукции, индуктивности, напряженности, магнитной проводимости в систем СИ?
- 6. Чем отличаются начальная, основная и безгистерезисная кривые намагничивания?
- 7. Что такое кривая возврата?
- 8. Что такое коэффициент переключения и как он определяется?
- 9. Изобразите статические характеристики бесконтактных магнитных реле, которые соответствуют характеристикам электромагнитных реле с нормально разомкнутым контактом, а также характеристики двухпозиционного поляризованного реле?
- 10. Как определяется тяговое усилие электромагнитного механизма постоянного тока?
- 11. Каковы назначение и классификация электромагнитных муфт?
- 12. Назовите основные группы датчиков?
- 13. Расскажите о физических принципах действия датчиков?
- 14. Расскажите о назначении датчиков скорости (частоты вращения), угла поворота, положения (перемещения).
- 15. Расскажите о средствах измерения температуры и давления.
- 16. Назовите основные характеристики датчиков скорости (частоты вращения), датчиков угла поворота, положения (перемещения).
- 17. Назовите основные характеристики датчиков температуры и давления?
- 18. Назовите основные характеристики оптоволоконных датчиков?

Фонд оценочных материалов (Φ OM) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИ-ПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год изда- ния	КНИГООБЕСПЕЧЕННОСТЬ			
вид издания, издательство	ши	Наличие в электронной библиотеке ВлГУ (дата обращения)			
1	2	3			
Основная литература					
Современные средства автоматизации [Электронный ресурс] / О.И. Николайчук - М.: СОЛОН-ПРЕСС, 2009 ISBN 978-5-905554-17-9	2019	http://www.studentlibrary.ru/book/ISBN59 80032878.html			

2.Моделирование систем и процессов: Учебное пособие / Н.Г. Чикуров М.: ИЦ РИОР: НИЦ Инфра-М, 2013 398 с.: ISBN 978-5-369-01167-6	2013	http://znanium.com/ http://www.studentlibrary.ru/book/ISBN97			
ства систем управления. Промышленные сети и контроллеры [Электронный ресурс] / Кангин В.В М. : БИНОМ, 2020		<u>85947749083.html</u>			
Дополнительная литература					
1. Электрические машины, электропривод и системы интеллектуального управления элетротех.комплексами /А.Е.Поляков, А.В.Чесноков, Е.М.Филимонова - М.: Форум,ИНФРА-М, 2015 224 с.: ISBN 978-5-00091-071-9,	2015	http://znnium.com/			
Автоматизация технологических процессов и производств [Электронный ресурс]: Учебник /А.Г. Схиртладзе, А.В. Федотов, В.Г. Хомченко М.: Абрис, 2019.	2019	http://www.studentlibrary.ru/book/ISBN97 85437200735.html			
Компьютерное управление технологическим процессом, экспериментом, оборудованием [Электронный ресурс] / Денисенко В.В М.: Горячая линия - Телеком, 2013.	2013	http://www.studentlibrary.ru/book/ISBN97 85991200608.html			

6.2. Периодические издания

- 1. Журнал «Информационные технологии». ISBN: 978-5-482-01401-1.
- 2. Журнал «Силовая электроника» режим доступа: http://power-e.ru.

6.3. Интернет-ресурсы

- 1. http://www.exponenta.ru/
- 2. http://matlab.exponenta.ru/index.php
- 3. http://elibrary.ru, Научная электронная библиотека.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий лабораторного типа, курсового проектирования, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лабораторные занятия проводятся в аудиториях кафедры ВТиСУ 117-3, 118-3.

Перечень используемого лицензионного программного обеспечения: MATLAB; MATHCAD, VISIO; Word.

Рабочую программу составил д.т.н., профессор А.И.Копейкин
Рецензент (представитель работодателя): начальник лаборатории ЗАО «Автоматика» В.М. Дерябин
Программа рассмотрена и одобрена на заседании кафедры ВТ и СУ
Протокол № от
Заведующий кафедройВ.Н. Ланцов
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии Направления «Управление в технических системах (бакалавриат)»
Протокол №от
Председатель комиссииА.Б.Градусов

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 20 🚀	_/20учебный года	
Протокол заседания кафедры №	_ от 31.08. 2021 года	
Заведующий кафедрой		К.В.Куликов
Рабочая программа одобрена на 20 <i>22</i>	/ 20 <u></u>	
Протокол заседания кафедры № _/৴	_ от <i>13.06.22</i> года	
Заведующий кафедрой		К.В.Куликов
	,	
Рабочая программа одобрена на 20	_ / 20 учебный года	
Протокол заседания кафедры №	от года	
Заведующий кафедрой		К.В.Куликов
	ì	
Рабочая программа одобрена на 20	_/ 20 учебный года	
Протокол заседания кафедры №	от года	
Заведующий кафедрой		К.В.Куликов