Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

ТВЕРЖДАЮ

Проректор

по учебно-методической работе

А.А.Панфилов

« Ob »

09

2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«ТЕОРИЯ СИСТЕМ И СИСТЕМНЫЙ АНАЛИЗ»

Направление подготовки

27.04.04 Управление в технических системах

Программа подготовки

Управление и информатика в технических системах

Уровень высшего образования

Магистратура

Форма обучения

очная

Семестр	Трудоем- кость зач. ед,час.		Практич. занятий, час.	Лаборат. работ, час.	СРС, час.	Форма промежуточного контроля (экз./зачет)		
1	4/144	18	E.S 27 E.	18	108	зачет		
Итого	4/144	18		18	108	зачет		

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Теория систем и системный анализ» являются ознакомление с основными понятиями общей теории систем, методами получения математических моделей систем и типовыми моделями, использующимися в прикладном системном анализе.

2. Место дисциплины в структуре ОПОП ВО

Данная дисциплина относится к вариативной части учебного плана и является дисциплиной по выбору.

Дисциплина логически и содержательно-методически тесно связана с рядом теоретических дисциплин предшествующего периода обучения. К числу дисциплин, наиболее тесно связанных с дисциплиной «Теория систем и системный анализ», относятся «Математика», «Теория автоматического управления».

Знания, полученные в процессе освоения дисциплины «Теория систем и системный анализ», используются в дальнейшем при изучении дисциплин «Оптимальное управление», «Адаптивное управление» «Проектирование систем автоматического управления» и выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕ-ЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Теория систем и системный анализ» направлен на формирование следующей компетенции:

способностью применять современные теоретические и экспериментальные методы разработки математических моделей исследуемых объектов и процессов, относящихся к профессиональной деятельности по направлению подготовки (ПК-2);

В результате изучения дисциплины студент должен:

Знать: основные понятия общей теории систем, методы получения моделей систем, типовые виды математических моделей и технику их использования.

Уметь: получать и использовать математические и компьютерные модели.

Владеть: средствами системного анализа, в том числе аналитическими и экспериментальными методиками получения моделей, техникой их применения для решения основных типовых задач системного анализа.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часов

		Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Объем учебной	Формы те-	
№ п/п	Раздел (тема) дисциплины			Лекции	Практические занятия) Лабораторные работы	Контрольные работы	CPC	KII / KP	работы, с при- мене- нием ин- терактив- ных мето- дов (в часах / %)	кущего контроля успеваемости (по неделям семестра), форма промеж аттестации (по сем)
1	Основные определения общей теории систем и предмет ее изучения. Сущность системного анализа.	1	1-2	2				12		1/50	
2	Модель как основное средство системного анализа	1	3-4	2				12		1/50	
3	Сущность установившихся и переходных режимов - стадий функционирования систем, их основные сценарии.	1	5-6	2				12		1/50	1 рей- тинг-кон- троль
4	Сущность экспериментального подхода к получению математической модели. Сущность МНК.	1	7-8	2		4		12		3/50	
5	Представление периодических и непериодических процессов в частотной области.	1	9-10	2				12		1/50	
6	Представление дискретных процессов в частотной области.	1	11-12	2		4		12		3/50	2 рей- тинг-кон- троль
7	Понятие о качественном и количественном системном анализе.	1	13-14	2		2		12		2/50	
8	Аналитический и численный подходы к количественному анализу процессов в непрерывных и дискретных системах.	1	15-16	2		4		12		3/50	
9	Понятие об оптимизации и основные аспекты ее реализации в рамках системного анализа.	1	17-18	2		4		12		3/50	3 рей- тинг-кон- троль
	Всего			18		18		108		18/50%	зачет

Содержание дисциплины

Лекшии

Тема 1. Основные понятия и определения общей теории систем, предмет ее изучения. Сущность системного анализа.

Определение понятий «система», «элементы», «связи», «внешняя среда». Предмет изучения и особенности науки — «Общая теория систем». Сущность и значение системного анализа. Роль математики и компьютерных технологий в проведении системного анализа. Понятие «структура», примеры систем последовательного, параллельного и иерархического характера, систем с обратной связью. Сущность и примеры декомпозиции объектов и систем. Сущность и примеры агрегирования.

Тема 2. Модель как основное средство системного анализа.

Сущность и основные разновидности моделей, используемых в системном анализе, в том числе графическая, математическая и компьютерная модели. Понятие об абсолютной и относительной погрешности. Понятие об адекватности модели.

Тема 3. Сущность установившихся и переходных режимов, их типовые сценарии.

Понятие о динамике поведения систем и возможность выделения переходных и установившихся стадий функционирования. Эволюционное и революционное развитие. Монотонные, апериодические и колебательные процессы. Установившиеся режимы постоянства, колебательного характера и детерминированного хаоса.

Тема 4. Сущность экспериментального подхода к получению математической модели.

Система типа «черный ящик» и проблема ее идентификации. Получение математической модели в виде функциональной зависимости по экспериментальным данным, понятие об интерполяции, экстраполяции, аппроксимации и сглаживании экспериментальных данных. Методика определения параметров модели в виде функциональной зависимости на основе метода наименьших квадратов.

Тема 5. Представление периодических и непериодических процессов в частотной области.

Представление непрерывных периодических процессов в частотной области с использованием рядов Фурье. Определение спектров и их графическое представление. Спектральное представление непериодических процессов.

Тема 6. Представление дискретных процессов в частотной области.

Определение спектра дискретного процесса с помощью дискретного преобразования Фурье, его основные свойства. Теорема Котельникова-Шеннона-Найквиста. Практическая реализация вычислений для определения спектров.

Тема 7. Понятие о качественном и количественном анализе. Устойчивость как пример качественной характеристики системы.

Определение понятия «устойчивость», его прикладное значение. Иллюстрация поведения устойчивой системы на диаграмме «вход – выход». Условия устойчивости линейной непрерывной динамической системы.

Тема 8. Аналитический и численный подходы к количественному анализу процессов в непрерывных и дискретных системах.

Сущность аналитического подхода к расчету процессов в непрерывной динамической системе, расчет для линейной системы операторным методом. Сущность численного подхода к расчету процессов в непрерывной динамической системе и его компьютерная реализация. Сущность аналитического подхода к расчету процессов в дискретной системе и расчет с использованием разностного уравнения в рекуррентной форме записи.

Тема 9. Понятие об оптимизации и основные аспекты ее реализации в рамках системного анализа.

Сущность оптимизации и ее значение в системном анализе. Оценка эффективности и модель оптимизации системы. Роль ограничений в модели оптимизации. Основные подходы к поиску оптимальных решений.

Лабораторные работы

Лабораторная работа №1. Экспериментальное определение статических характеристик с использованием метода наименьших квадратов.

Лабораторная работа № 2. Экспериментальное определение динамических характеристик с использованием переходной характеристики и частотной характеристики.

Лабораторная работа № 3. Расчет переходных процессов в дискретной динамической системе с использованием разностного уравнения в форме рекуррентного соотношения.

Лабораторная работа № 4. Поиск оптимальных значений варьируемых параметров системы при заданном показателе качества.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Изучение дисциплины «**Теория систем и системный анализ**» предполагает не только запоминание и понимание, но и анализ, синтез, рефлексию, формирует универсальные умения и навыки, являющиеся основой становления специалиста-профессионала.

Для реализации компетентностного подхода планируется интегрировать в учебный процесс интерактивные образовательные технологии, включая информационные и коммуникационные технологии (ИКТ), при осуществлении различных видов учебной работы:

- учебную дискуссию;
- электронные средства обучения (слайд-лекции, компьютерные тесты);
- дистанционные (сетевые) технологии.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕ-МОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕ-НИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕ-НИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для текущего контроля успеваемости студентов предусмотрено три рейтинг-контроля, проводимых согласно принятому в университете графику.

Для *самостоятельной работы* студентам предоставляется список тем для самостоятельного изучения.

ТЕМЫ, ВЫНОСИМЫЕ НА САМОСТОЯТЕЛЬНУЮ ПРОРАБОТКУ

- Тема №1. Примеры типовых структур систем различной природы.
- Тема № 2. Анализ примеров получения математической модели различных систем. Решение задач по получению моделей аналитическим путем.
- Тема № 3. Примеры установившихся и переходных режимов различных систем.
- Тема № 4. Получение математической модели экспериментальным путем. Аппроксимация и сглаживание экспериментальных данных с использованием метода наименьших квадратов.
- Тема № 5. Представление процессов в частотной области. Техника получения спектров периодических и непериодических процессов. Вывод и построение спектров простейших процессов.
- **Тема № 6.** Представление дискретных процессов в частотной области. Определение и основные свойства дискретного преобразования Фурье. Примеры спектров дискретных процессов.
- Тема № 7. Понятие о качественном и количественном анализе.
- **Тема №8.** Сущность аналитического и численного подхода к отысканию переходных процессов в непрерывных и дискретных динамических системах. Техника проведения расчетов.
- Тема № 9. Основные понятия об оптимизации. Аналитический и численных подходы к отыска-

нию экстремума целевой функции. Сущность линейного программирования и оптимизационные задачи на графах.

ВОПРОСЫ

к рейтинг-контролю знаний студентов

Рейтинг-контроль №1

- 1. Определение понятия «система».
- 2. Сущность и значение системного анализа, постановка задачи синтеза.
- 3. Роль математики и компьютерных технологий в проведении СА.
- 4. Модель как основное средство СА, основные требования, предъявляемые к ней.
- 5. Сущность основных разновидностей моделей, используемых в СА:
 - Графическая
 - Математическая
 - Компьютерная
- 6. Понятие декомпозиции и агрегирования.
- 7. Основные типовые структуры систем.
- 8. Сущность установившихся и переходных режимов (стадий функционирования) систем.
- 9. Типовые сценарии установившихся режимов функционирования систем.
- 10. Типовые сценарии переходных режимов функционирования систем.

Рейтинг-контроль №2

- 1. Сущность абсолютной и относительной погрешности.
- 2. Понятие об адекватности модели.
- 3. Сущность аналитического подхода к получению математической модели системы.
- 4. Сущность экспериментального подхода к получению модели.
- 5. Постановка задачи о получении математической модели в виде функциональной зависимости по экспериментальным данным, понятие об интерполяции, экстраполяции, аппроксимации и сглаживания экспериментальных данных.
- 6. Методика определения параметров модели в виде функциональной зависимости на основе МНК.
- 7. Математическая модель в виде процесса, сущность непрерывных и дискретных процессов.
- 8. Представление непрерывных периодических процессов в частотной области, определение и графическое представление спектров периодических процессов.
- 9. Спектральное представление непериодических процессов.
- 10. Представление дискретных процессов в частотной области. Теорема Котельникова-Шеннона-Найквиста.

Рейтинг-контроль № 3

- 1. Понятие о качественном и количественном СА.
- 2. Устойчивость как пример качественной характеристики динамической системы определение понятие устойчивости и его иллюстрация в виде процессов на входе и выходе системы.
- 3. Исследование устойчивости линейной непрерывной динамической системы.
- 4. Исследование устойчивости линейной дискретной динамической системы.
- 5. Понятие об управляемости и достижимости.
- 6. Сущность аналитического подхода к количественному анализу процессов в непрерывных динамических системах.

- 7. Сущность численного подхода к количественному анализу процессов в непрерывных динамических системах расчетные соотношения методом Эйлера, влияние шага решения на точность моделирования.
- 8. Сущность численного подхода к количественному анализу процессов в дискретных динамических системах.
- 9. Понятие об оптимизации и ее значение в СА.
- 10. Сущность задач математического программирования.
- 11. Сущность задач динамического программирования и примеры таких задач.

Вопросы к зачету по курсу «Теория систем и системный анализ»

- 1. Определение понятия «система».
- 2. Сущность и значение системного анализа, постановка задачи синтеза.
- 3. Роль математики и компьютерных технологий в проведении СА.
- 4. Модель как основное средство СА, основные требования, предъявляемые к ней
- 5. Сущность основных разновидностей моделей, используемых в СА:
 - Графическая
 - Математическая
 - Компьютерная
- 6. Понятие декомпозиции и агрегирования.
- 7. Основные типовые структуры систем
- 8. Сущность установившихся и переходных режимов (стадий функционирования) систем.
- 9. Типовые сценарии установившихся режимов функционирования систем.
- 10. Типовые сценарии переходных режимов функционирования систем.
- 11. Сущность абсолютной и относительной погрешности.
- 12. Понятие об адекватности модели.
- 13. Сущность аналитического подхода к получению математической модели системы.
- 14. Сущность экспериментального подхода к получению модели.
- 15. Постановка задачи о получении математической модели в виде функциональной зависимости по экспериментальным данным, понятие об интерполяции, экстраполяции, аппроксимации и сглаживания экспериментальных данных.
- 16. Методика определения параметров модели в виде функциональной зависимости на основе МНК.
- 17. Математическая модель в виде процесса, сущность непрерывных и дискретных процессов.
- 18. Представление непрерывных периодических процессов в частотной области, определение и графическое представление спектров периодических процессов.
- 19. Спектральное представление непериодических процессов.
- 20. Представление дискретных процессов в частотной области. Теорема Котельникова-Шеннона-Найквиста.
- 21. Практическая реализация вычислений для определения спектров.
- 22. Понятие о качественном и количественном СА.
- 23. Устойчивость как пример качественной характеристики динамической системы определение понятие устойчивости и его иллюстрация в виде процессов на входе и выходе системы.
- 24. Исследование устойчивости линейной непрерывной динамической системы
- 25. Исследование устойчивости линейной дискретной динамической системы.
- 26. Понятие об управляемости и достижимости.
- 27. Сущность аналитического подхода к количественному анализу процессов в непрерывных динамических системах.

- 28. Сущность численного подхода к количественному анализу процессов в непрерывных динамических системах расчетные соотношения методом Эйлера, влияние шага решения на точность моделирования.
- 29. Сущность численного подхода к количественному анализу процессов в дискретных динамических системах.
- 30. Понятие об оптимизации и ее значение в СА.
- 31. Сущность задач математического программирования.
- 32. Сущность задач динамического программирования и примеры таких задач.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕ-НИЕ ДИСЦИПЛИНЫ

а) основная литература:

- 1.Основы теории *систем* и *системного анализа* [Электронный ресурс] : Учебное пособие для вузов / Качала В.В. 2-е изд., испр. М. : Горячая линия Телеком, 2012. http://www.studentlibrary.ru/book/ISBN9785991202497.html
- 2.Основы системного анализа и управления организациями. Теория и практика [Электронный ресурс] / Бочарников В.П., Бочарников И.В., Свешников С.В. М. : ДМК Пресс, 2014. http://www.studentlibrary.ru/book/ISBN9785970600672.html
- 3. Основы теории систем и системного анализа [Электронный ресурс] : Учебное пособие для вузов / Качала В.В. 2-е изд., испр. М. : Горячая линия Телеком, 2012. http://www.studentlibrary.ru/book/ISBN9785991202497.html
- б) дополнительная литература:
- 1. Основы системного анализа [Электронный ресурс] : учеб. пособие / В.Б. Алексеенко, В.А. Красавина. М. : Издательство РУДН, 2010. http://www.studentlibrary.ru/book/ISBN9785209035213.html
- 2. "Системный анализ в управлении [Электронный ресурс] : учеб. пособие / В.С. Анфилатов, А.А. Емельянов, А.А. Кукушкин; Под ред. А.А. Емельянова. М.: Финансы и статистика, 2009." http://www.studentlibrary.ru/book/ISBN527902435.html
- 3. Системный анализ: теория и практика: учеб. пособие / Крюков С.В. Ростов-на-Дону: Издательство $Ю\Phi У$, 2011. 228 с. ISBN 978-5-9275-0851-8
 - в) программное обеспечение и Интернет-ресурсы:

пакеты: MATLAB

http://elibrary.ru, Hayчная электронная библиотека; http://exponenta.ru

- г) периодические издания:
- 1. Журнал «Проблемы теории и практики управления». ISBN 0234-4505

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИ-ПЛИНЫ «Теория систем и системный анализ»

Набор слайдов:

- 1. Для чтения лекций используется мультимедийное оборудование.
- 2. Программные пакеты: МАТLAB.

лист переутверждения

РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рабочая программа одобрена на 20/6//3 Протокол заседания кафедры № 22 от	учебный год
Протокол заседания кафедры № 22 от	91.08./4 года
Заведующий кафедрой	А.Б.Градусов
Рабочая программа одобрена на 20/4//8 Протокол заседания кафедры № от	учебный год 6-9/4_года
Заведующий кафедрой	А.Б.Градусо
Рабочая программа одобрена на 20/8/19 Протокол заседания кафедры № / от	9_ учебный год // 9 /8 разго
/ Заведующий кафедрой	А.Б.Градусог