Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение нысшего образования

нысшего образонания «Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столстовых» (ВлГУ)

УТВЕРЖДАЮ

Проректор

по образовательной деятельности

А.А.Панфилов

2019r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

СОВРЕМЕННЫЕ МЕТОДЫ ПЕРЕРАБОТКИ ПОЛИМЕРНЫХ СИСТЕМ

Направление подготовки 18.04.01 Химическая технология

Профиль/программа подготовки <u>Химическая</u> технология переработки <u>пластических масе и компози-</u> циоппых материалов

Уровень нысшего образования академическая магистратура Форма обучения заочная

Семестр	Трудосмкость зач. ед./ акал. час.	Лектрии, час.	Практич. за- нятия, час.	Лаборат, работы, час	СРС, час.	Форма промежутотной аттествини (экз./затст)
3	5/180	6		12	135	Экзамен (27ч)
4	5/180	-	6	12	135	Экзамец (27ч), КР
Итого	10/360	6	6	24	270	Экзамен (27q) КР, Экзамен (27q)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Курс "Современные методы переработки полимерных систем" магистры изучают во 3 и 4 семестрах. Целью курса является изучение методов переработки пластмасс, способов регулирования свойств полимеров в изделиях, овладение знаниями по управлению технологическими процессами.

Программа курса предусматривает ознакомление магистров с технологическими процессами производства полимерных изделий, правильного выбора метода переработки и полимерного материала. Уделено внимание использованию реологических характеристик полимеров с целью расчета технологических процессов, вопросам управления качественными характеристиками готовой продукций и повышению производительности оборудования.

Курс базируется на знании студентами теоретических основ переработки пластмасс, оборудования заводов по переработке пластмасс, а также процессов и аппаратов химических технологий, химии и физики полимеров в др.

Все основные методы переработки пластмасс дополнительно усваиваются в ходе выполнения лабораторных работ.

Изложение теоретического материала на лекциях в дальнейшем закрепляется на технологической практике.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРУ ОПОП ВО

Дисциплина «Современные методы переработки полимерных систем» изучается в вариативной части учебного плана программы магистратуры.

Пререквизиты дисциплины: 1. Технологические и эксплуатационные свойства пластмасс и изделий из них 2. Теоретические основы переработки пластмасс 3. Технология получения пластмасс

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

Код формируемых компе- тенций	Уровень освоения компе- тенции	Планируемые результаты обучения по дисциплине характеризующие этапы формирования компетенций (показатели освоения компетенции)
1	2	(показатели освоения компетенции)
ОПК-3: готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире	Частичный	Знать: разработку мероприятий по комплексному использованию сырья, по замене дефицитных материалов и изыскание способов утилизации отходов производства, выбор систем обеспечения экологичной безопасности производства); Уметь: проводить патентных исследований с целью обеспечения патентной чистоты новых проектных решений; Владеть: оценкой экономической эффективности технологи-

ПК-3 - способностью использовать современные приборы и методики, организовывать проведение экспериментов и испытаний, проводить их обработку и анализировать их результаты	Частичный	ческих процессов, инновационно- технологических рисков при внед- рении новых технологий. Знать:- различные вариан- ты технологического процесса, ана- лиз этих вариантов, прогнозирова- ние последствий, нахождение ком- прессионных решений в условиях многокритиальности и неопреде- ленности, планирование реализации проекта Уметь: внедрять в произ- водство новые технологические
приборы и методики, организовывать проведение экспериментов и испытаний, проводить их обработку и анализировать их результа-		лиз этих вариантов, прогнозирование последствий, нахождение компрессионных решений в условиях многокритиальности и неопределенности, планирование реализации проекта Уметь: внедрять в произ-

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 10 зачетных единиц, 360 часов.

№ п/п	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			Объем учебной работы с применением интерактивных методов (в часах/%)	Формы текущего контроля успеваемости, форма промежуточной аттестации (по семестрам)	
				Лекции	Практ. занятия	Лаб. работы	CPC		
1	Раздел 1 Введение. Классификация методов переработки пластмасс	3	19				10		

2	Раздел 2 Экс- трузия	3	19	2		4	20	2/33,3%	Рейтинг- контроль №1
3	Раздел 3 - Литье под давлением термопластов - Литье под давлением реактопластов	3	20	2		4	20	2/33,3%	
4	Раздел 4 - прессование - изготовление пустотелых изделий выду- ванием	3	20	2		4	35	2/33,3%	Рейтинг- контроль №2
5	Раздел 5 - вальцевание и каландрование	3	21				50		Рейтинг- контроль №3
Всего	за 3 семестр			6		12	135	6/33,3%	Экзамен 27ч
	Раздел 6 - формование изделий из листовых термопластичных материалов; - формование изделий из армированных пластиков	4	19		2	4	70	2/33,3%	Рейтинг- контроль №1
	Раздел 7 - Ротационное формование; - специальные методы переработки пластмасс; - сварка, склеивание и механическая обработка изделий	4	20-21		4	8	92	4/33,3%	Рейтинг- контроль №2, Рейтинг- контроль №3
Всего	за 4 семестр				6	12	135	18/33,3%	Экзамен 27ч
	ние в дисци- е КП/КР				+				
	по дисциплине			6	6	24	270	6/13,6%	Экзамен (27ч), КР, экзамен (27ч)

Содержание лекционных занятий по дисциплине

Раздел 1 Введение. Классификация методов переработки пластмасс

Содержание. О задачах, стоящих перед промышленностью переработки пластмасс. Удельный вес и трудоемкость процессов переработки пластмасс. Состояние отечественной промышленности переработки пластмасс и перспективы ее развития. Роль механизации и автоматизации производственных процессов в переработке пластмасс.

Классификация методов переработки пластмасс. Классификация методов изготовления изделий из реактопластов и термопластов.

Раздел2. Экструзия

Содержание. Сущность процесса экструзии термопластов. Работа экструзионного агрегата. Пластикация материала, зоны червяка. Формующая головка. Закономерности движения полимера в шнековом экструдере.

Производительность экструдера и головки. Рабочая точка экструдера. Влияние характеристик червяка и головки на производительность экструдера.

Влияние технологических параметров и реологических свойств полимера на качество изделий

Технология производства труб методом экструзии. Формирование профиля трубы, калибрование и охлаждение труб. Расчет технологических параметров процесса.

Технология производства пленки рукавным методом. Особенности экструзионного оборудования, формование рукава, ориентация и охлаждение пленки. Расчет технологических параметров процесса.

Технология производства пленки щелевым методом. Особенности формования, ориентации и охлаждения пленки.

Технология производства профильно-погонажных изделий. Нанесение пленки на подложку.

Основные тенденции развития экструзионных методов переработки пластмасс.

Раздел 3. Литье под давлением термопластов и реактопластов

Содержание Сущность литья под давлением термопластов. Цикл формования литьем под давлением, его основные стадии. Требования к пластмассам, перерабатываемым литьем под давлением.

Влияние параметров давления на качество изделий. Оформление изделия в форме. Литниковая система. Охлаждение изделия в форме. Обработка изделия. Использование отходов.

Технологические параметры режима литья под давлением. Выбор температурного режима. Изменение давления во время цикла. Рабочая диаграмма цикла. Определение оптимальных условий формования. Остаточные напряжения, возникающие в изделиях при литье: причины возникновения и возможности их устранения. Перспективные направления развития технологии литья. Повышение качества изделий за счет приложения магнитного поля, ультразвуковых, вибрационных воздействий и пр.

Литье под давлением реактопластов. Особенности оборудования и сырья. Впрыск материала, выдержка под давлением, отвердение.

Раздел 4: Прессование Изготовление пустотелых изделий выдуванием.

Содержание. Общие понятия. Требования к пластмассам, перерабатываемым литьевым и компрессионным прессованием. Технологические свойства пресспорошков. Стадии прессования: дозирование, таблетирование, предварительный подогрев, загрузка, смыкание формы, подпрессовка, выдержка под давлением, съем изделия. Влияние основных технологических параметров на процесс прессования и качество изделия. Литьевое прессование. Прессование слоистых пластиков. Прогрессивные методы прессования. Механизация и автоматизация процессов прессования.

Изготовление пустотелых изделий выдуванием. Изготовление пустотелых изделий выдуванием из трубчатых заготовок. Выдавливание трубчатой заготовки. Смыкание формы и формование изделия. Охлаждение изделия. Влияние технологических параметров на свойства изделий.

Изготовление пустотелых изделий выдуванием из литьевых заготовок. Гомогенизация и дозирование расплава. Впрыск расплава. Выдувание изделия.

Раздел 5: Вальцевание и каландрование.

Содержание Общие понятия. Основные процессы, происходящие в материале при вальцевании и каландровании. Особенности работы вальцев и каландров. Стадии процессов формования. Подготовка материала. Вальцевание, как основная подготовительная операция.

Формование на каландре. Каландровый эффект. Технология производства листовых и пленочных материалов на основе поливинилхлорида.

Раздел 6: Формование изделий из листовых термопластичных материалов.

Формование изделий из армированных пластиков.

Содержание Сущность процесса формования изделий из листовых термопластов. Области применения. Используемые листовые материалы. Основные стадии процесса формования: закрепление заготовки, нагрев, предварительная вытяжка листов, формование изделия, охлаждение изделия.

Методы формования: штампование, пневмо- и вакуумформование.

Формование изделий из армированных пластиков. Типы связующих и наполнителей, применяемых для получения армированных пластиков, требования, предъявляемые к ним.

Стеклопластики. Методы получения: контактный, напыление, намотка, сухой и мокрый. Непрерывные и периодические методы. Прочность стеклопластиков. Поверхностные явления на границе волокно-полимер. Факторы, влияющие на величину адгезионной прочности. Обработка поверхности волокнистых наполнителей с целью повышения адгезионных взаимодействий. Аппреты, их назначение и механизм действия.

Переработка прессовочных и литьевых стекловолокнистых материалов (А Γ -4B, премиксы). Применение стеклопластиков в различных областях техники.

Формование деталей из пластмасс с другими слоистыми наполнителями. Основные виды слоистых наполнителей (бумага, ткани, шпон). Используемые связующие. Гетинакс, текстолит. Основные технологические стадий процесса формования. Формование с использованием давления и без давления. Особенности технологии и области применения.

Раздел7 Ротационное формование; специальные методы переработки пластмасс;

- сварка, склеивание и механическая обработка изделий

Содержание Общие понятия. Основные процессы, происходящие в материале при формовании. Оборудование, стадии процесса.

Специальные методы переработки пластмасс. Формование пленок поливом из раствора. Технология кино-и фотопленок.

Технология получения полимерных мембран для разделения жидких в газовых смесей. Мокрое и сухое формование.

Спекание. Формование изделий из фторопластов.

Напыление пластических масс.

Металлизация изделий. Назначение металлизация, способы нанесения металлических покрытий.

Получение изделий из мономеров (заливка). Совмещение процессов синтеза и переработки в едином технологическом цикле,

Сварка, склеивание и механическая обработка изделий. Склеивание. Особенности склеивания изделий из термо - и реактопластов. Основные типы клеев и виды клеевых соединений. Технология склеивания пластмасс между собой и с другими материалами.

Сварка. Условия сварки. Способы сварки (газовая, контактная, термоимпульсная, фрикционная, высокочастотная, ультразвуковая, инфракрасная н гамма-излучением). Механическая обработка изделий из пластмасс. Особенности механической обработки пластмасс (резка, сверление, нарезание резьб, токарная обработка, фрезерование, строгание и др). Обработка поверхности (шлифование, полирование).

Содержание практических/лабораторных занятий по дисциплине

Лабораторные занятия имеют цель приобретения практических навыков работы на оборудовании по переработки пластмасс. Лабораторные работы выполняются студентами в соответствии с графиком, составленным преподавателем. Подготовку к лабораторной работе и ее оформление студенты выполняют внеаудиторно в соответствии со стандартом университета. Выполненные работы магистры защищают, анализируя полученные результаты и теоретически их обосновывая.

Раздел2. Экструзия

Содержание: Получение изделий методом экструзии

Раздел 3. Литье под давлением термопластов и реактопластов **Содержание:** Изготовление изделий методом литья под давлением.

Раздел 4: Прессовани И зготовление пустотелых изделий выдуванием.

Содержание: Изготовление изделий методом прессования

Раздел 5: Вальцевание и каландрование .

Содержание Переработка пластмасс на валковых машинах

Раздел 6: Формование изделий из листовых термопластичных материалов. Формование изделий из армированных пластиков

Тема 6.1 Формование изделий из листовых термопластичных материалов

Содержание: Получение изделий методом вакуумформования.

Тема 6.2 Формование изделий из армированных пластиков

Содержание: Изготовление изделий из армированных пластиков методом намотки.

Раздел7 Ротационное формование; специальные методы переработки пластмасс;

- сварка, склеивание и механическая обработка изделий

Тема 6.1 Специальные методы переработки пластмасс

Содержание: Получение пленок методом мокрого формования

Тема6.2 Сварка пластмасс

Содержание: Сварка пластмасс. **Тема 6.3** Склеивание пластмасс

Содержание: Склеивание пластмасс.

Все работы многовариантные, с элементами научных исследований. Это позволяет не только закреплять полученные теоретические знания, но и развивать творческие способности магистров.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Современные методы переработки полимерных систем» используются разнообразные образовательные технологии как традиционные, так и с применением активных и интерактивных методов обучения:

- Тренинг (раздел 2,7);
- Анализ ситуаций (раздел3;4;5);
- Разбор конкретных ситуаций (раздел5;6)

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМО-СТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИ-ПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Текущий контроль осуществляется три раза за семестр (рейтинг-контроль 1, 2, 3)

No	Контролируемый раздел дисциплины	Наименование оценочного	Период
		средства	проведения
	Cen	местр 3	
2	Экструзия	Тест 1	PK 1
3	Литье под давлением термопластов	Тест 2	PK 2
	- Литье под давлением реактопластов		
4	Раздел 4	Тест3	РК 3
	- прессование		
	Раздел 5		
	- изготовление пустотелых изделий выду-		
	ванием		
	Cen	местр 4	
5	Раздел6	Тест 4	PK 1
	формование изделий из листовых термо-		
	пластичных материалов;		
	- формование изделий из армированных		
	пластиков		
6	Раздел 7	Тест 5	PK 2
	Ротационное формование;		
	- специальные методы переработки пласт-		
	масс;		
	- сварка, склеивание и		
	механическая обработка изделий		
7		КР	PK 3

РЕЙТИНГ - КОНТРОЛЬ №1 ДЛЯ 3 СЕМЕСТРА

- 1. Основные параметры червяка?
- 2. Дать определение рабочей точки экструдера?
- 3. В каких состояниях находиться полимер в зонах дозирования, плавления и загрузки?
- 4. Как достигается требуемая толщина пленки, полученной через плоско-щелевую головку?
- 5. Влияние технологических параметров на качество труб (температура расплава)?
- 6. Зоны червяка?
- 7. Ориентированные пленки находятся в равновесном или неравновесном состоянии? Почему?
- 8. Сравните способы калибрования сжатым воздухом и вакуумом?
- 9. Стадии получения пленок раздувам рукава. Особенности экструдера?
- 10. Чтобы увеличить усадку терм усадочной пленки температуру ориентации надо увеличить или уменьшить? Почему?
- 11. Причины движения материалов в зоне загрузки?
- 12. Режимы работы экструдеров?
- 13. Причины движения материалов в зоне плавления?
- 14. Признаки начала зоны дозирования?

- 15. Какие свойства и как меняются при повышении температуры ориентация пленок?
- 16. Калибрование вакуумом?

РЕЙТИНГ - КОНТРОЛЬ №2 ДЛЯ 3 СЕМЕСТРА

- 1. Назовите изделия получаемые литьем под давлением?
- 2. Литье под давлением. Движение материала в формующей полости?
- 3. На чем скажется превышение температуры расплава?
- 4. Литье под давлением. Изменение температуры при заполнение формы?
- 5. Литье под давлением. Стадии. Особенности шнеков?
- 6. Литьевое прессование?
- 7. Литье под давление реактопластов?
- 8. Литье под давление термопластов?
- 9. Виды брака при получении изделий методом литья под давлением?
- 10. Для каких материалов применяются сопла открытого и закрытого типа?
- 11. Литье под давлением термопластов. Место этого метода среди других методов переработки. Сырье, оборудование. Особенности шнека?
- 12. Литье под давлением: смыкание и размыкание формы, впрыск расплава, выдержка под давлением?
- 13. Особенности изменения давления и температуры в форме при литье термопластов и реактопластов?
- 14. Литье под давлением термопластов: выдержка под давление и охлаждение формы?
- 15. Основные параметры при выборе литьевой машины?

РЕЙТИНГ - КОНТРОЛЬ З ДЛЯ З СЕМЕСТРА

- 1. Получение пленок раздувом рукава. Ориентация пленки?
- 2. Термофиксация необходима при получении обычной или термоусадочной пленки из ПЭ? Почему?
- 3. Ориентация пленок. Цель и методы ориентации?
- 4. Формирование изделий из листовых материалов. Вакуум формование?
- 5. Формирование изделий из листовых материалов. Штампование и пневмоформование?
- 6. Армированные пластики. Методы переработки?
- 7. Изготовление пустотелых изделий из трубчатых заготовок?
- 8. Виды брака при вакуум формовании?
- 9. Чем отличается процесс вальцевания от каландрования?
- 10. Изготовление пустотелых изделий выдуванием?
- 11. Получение пленок методом раздува рукава? Охлаждение пленки?
- 12. Основные области использования метода вакуум формования и вальцевания?
- 13. Изготовление изделий каландрованием?
- 14. Какие изделия получаются вакуум формованием и пневмоформованием?
- 15. Виды каландров?

РЕЙТИНГ - КОНТРОЛЬ №1 ДЛЯ 4 СЕМЕСТРА

- 1. Ротационное и центробежное формование?
- 2. Стадии процесса ротационного формования?
- 3. Изделия изготавливаемые методом ротационного формования?
- 4. Достоинства и недостатки метода?
- 5. Полимеры используемые для переработки методом ротационного формования?
- 6. Дозировка полимера методом ротационного формования?
- 7. Формование изделий?

- 8. Способы нагрева формы?
- 9. Время формования?
- 10. Особенности центробежного формования?

РЕЙТИНГ - КОНТРОЛЬ №2 ДЛЯ 4 СЕМЕСТРА

- 1. Расскажите о технологическом процессе сварки пластмасс одним из методов?
- 2. В каких физических состояниях находиться полимер (ПЭ, ПС, ПВХ и др.) до сварки, в процессе сварки, после сварки?
- 3. Что такое «химическая сварка»?
- 4. Какие материалы трудно сваривать?
- 5. Как влияет толщина клеевого слоя на прочность соединения?
- 6. Какое значение имеет вязкость клея при склеивании? Как изменить вязкость клея?
- 7. Методы нанесения металлических покрытий на пластмассы?
- 8. Достоинства и недостатки вакуумного метода металлизации?
- 9. Химические особенности металлов?
- 10. Факторы, влияющие на механическую обработку полимеров?
- 11. Примеры применения специального режущего инструмента?
- 12. От чего зависит скорость реакции?
- 13. Особенности шлифования полимерных материалов?

РЕЙТИНГ - КОНТРОЛЬ №3 ДЛЯ 4 СЕМЕСТРА

- 1. Полимерные материалы способные свариваться?
- 2. Полимерные материалы способные склеиваться?
- 3. Виды сварки?
- 4. Достоинства и недостатки контактной сварки (сварки нагретым инструментом)?
- 5. Достоинства и недостатки контактной сварки (сварки сжатым газом)?
- 6. Достоинства и недостатки контактной сварки (сварки с применением инфракрасного излучения)?
- 7. Достоинства и недостатки контактной сварки (сварки трением)?
- 8. Достоинства и недостатки контактной сварки (сварки ультразвуком)?
- 9. Необходимые условия получения прочного клеевого соединения?
- 10. Выбор клея?
- 11. Особенности склеивания термопластов?
- 11. Особенности склеивания реактопластов
- 12. Пластмассы, используемые для напыления? Способы напыления пластмасс, их достоинства и недостатки?

ТЕМЫ КУРСОВЫХ РАБОТ

Разработка технологии получения изделий из различных полимерных материалов и композиций.

В индивидуальном задании указывается материал.

- 1. Выбор материала и разработка технологии для получения конкретного изделия в том числе:
 - выбор материала;
 - выбор метода переработки;
 - виды брака.
- 2. Новые методы переработки и новые полимеры, используемые в переработке пластмасс:

- литературный обзор, указать какие полимеры появились в научно технической литературе, их свойства и оценить реальность их промышленного использования;
 - методы переработки новых полимеров.
 - 3. Модификация существующих полимеров и их переработка
- провести анализ существующих полимеров (методы переработки), указать недостатки полимеров (методов переработки), проанализировать литературные данные и предложить пути модификации исследуемых полимеров (методов переработки).

САМОСТОЯТЕЛЬНАЯ РАБОТА:

Самостоятельная работа студентов проводится в соответствии с тематическим планом курса. Программой предусматривается систематическое изучение теоретического материала по конспектам лекций и учебным пособиям, подготовку к лабораторным работам, проведение расчетов по программам для ЭВМ, с которыми бакалавры могут ознакомиться на занятиях и проконсультироваться у преподавателя. Для самостоятельной работы магистров видается перечень вопросов по каждой теме с указанием источников информации - основной и дополнительной литературы. Контроль самостоятельной работы осуществляется при сдаче отчетов по лабораторным работам, сдаче контрольных работ и КР, сдаче зачета и экзамена.

Вопросы для СРС для 3 семестра

- 1. Что входит в состав пластмассы помимо полимера?
- 2. Что обозначают термины: адгезия, когезия?
- 3. Назовите методы определения остаточных напряжений в изделиях?
- 4. Роль механизации и автоматизации производственных процессов в переработке пластмасс?
- 5. Как выбирают технологические параметры литья под давлением?
- 6. Назовите причины брака литьевых изделий и способы их устранения?
- 7. Что понимают под изотермическим, адиабатическим и политропическим режимами работы червячного экструдера?
- 8. Каковы основные геометрические параметры червяка?
- 9. На чем основан выбор основных технологических параметров процесса экструзии?
- 10. Ротационное и центробежное формование?
- 11. Стадии процесса ротационного формования?
- 12. Изделия изготавливаемые методом ротационного формования?
- 13. Достоинства и недостатки метода?
- 14. Полимеры используемые для переработки методом ротационного формования?
- 15. Дозировка полимера методом ротационного формования?
- 16. Формование изделий?
- 17. Способы нагрева формы?
- 18. Время формования?
- 19. Особенности центробежного формования?
- 20. Назначение вальцев и каландров?
- 21. Почему на каландрах трудно получать тонкие пленки и толстые листы?
- 22. Что такое каландровый эффект?
- 23. Как достигается смешение при вальцевании?
- 24. Как движется композиция в зазоре между валками?
- 25. Изготовление пустотелых изделий из трубчатых заготовок.
- 26. Получение пленок методом раздува рукава.
- 27. Ориентация пленок. Цель и методы ориентации.

- 28. Ротационное формование.
- 29. Изготовление пустотелых изделий выдуванием.
- 30. Основные технологические параметры процесса прессования.
- 31. Формование изделий из листовых материалов. Пневмоформование и штампование.
- 32. Получение пленок методом раздува рукава.
- 33. Формование изделий из листовых материалов. Вакуум формование.
- 34. Изготовление изделий каландрованием.
- 35. Прессование. Композиции, стадии прессования, давление прессования.
- 36. Компрессионное прессование.
- 37. Получение комбинированных пленочных материалов.

Вопросы для СРС для 4 семестра

- 1. Чем определяется продолжительность формования изделия?
- 2. Как уменьшить разнотолщинность в изделиях, получаемых термоформованием?
- 3. Какие технологические параметры термоформования вы знаете? Как они определяются?
- 4. Расскажите о технологическом процессе сварки пластмасс одним из методов?
- 5. В каких физических состояниях находиться полимер (ПЭ, ПС, ПВХ и др.) до сварки, в процессе сварки, после сварки?
- 6. Что такое «химическая сварка»?
- 7. Какие материалы трудно сваривать?
- 8. Как влияет толщина клеевого слоя на прочность соединения?
- 9. Какое значение имеет вязкость клея при склеивании? Как изменить вязкость клея?
- 10. Чем объяснить анизотропию свойств стеклопластика?
- 11. Как влияет концентрация связующего на плотность изделия и соотношение связующеенаполнитель?
- 12. Как влияет толщина изделия на технологический процесс его изготовления?
- 13. Какие достоинства и недостатки имеет метод контактного формования?
- 14. Приведите примеры химических реакций в процессе изготовления изделий из армированных пластиков?
- 15. Назовите основные технологические характеристики связующего и наполнителя, определяющие скорость и качество пропитки?
- 16. Что такое стеклопластики?
- 17. Методы нанесения металлических покрытий на пластмассы?
- 18. Достоинства и недостатки вакуумного метода металлизации?
- 19. Химические особенности металлов?
- 20. Факторы, влияющие на механическую обработку полимеров?
- 21. Примеры применения специального режущего инструмента?
- 22. Особенности шлифования полимерных материалов?
- 23. Полимерные материалы способные свариваться?
- 24. Полимерные материалы способные склеиваться?
- 25. Виды сварки?
- 26. Достоинства и недостатки контактной сварки (сварки нагретым инструментом)?
- 27. Достоинства и недостатки контактной сварки (сварки сжатым газом)?
- 28. Достоинства и недостатки контактной сварки (сварки с применением инфракрасного излучения)?
- 29. Достоинства и недостатки контактной сварки (сварки трением)?

- 30. Достоинства и недостатки контактной сварки (сварки ультразвуком)?
- 31. Необходимые условия получения прочного клеевого соединения?
- 32. Выбор клея?
- 33. Особенности склеивания термопластов?
- 34. Особенности склеивания реактопластов
- 35. Пластмассы, используемые для напыления?
- 36. Способы напыления пластмасс, их достоинства и недостатки?
- 37. Армированные пластики. Сырье, методы получения, свойства.

ВОПРОСЫ К ЭКЗАМЕНУ ДЛЯ З СЕМЕСТРА

- 1. Экструзия. Изделия, сырье, оборудование. Назначение, параметры и зоны червяка.
- 2. Выбор технологических параметров при литье под давлением термопластов.
- 3. Определение времени выдержки под давлением и давления прессования при компрессионном прессовании.
- 4. Литье под давлением термопластов. Место этого метода среди других методов переработки. Сырье, оборудование. Набор дозы. Особенности шнека.
 - 5. Производительность экструдера. Рабочая точка экструдера.
 - 6. Закономерности движения полимера в шнековом экструдере. Зона дозирования.
 - 7. Литье под давлением реактопластов.
- 8. Литье под давлением термопластов. Влияние технологических параметров на качество изделий.
 - 9. Влияние технологических параметров на качество.
 - 10. Литье под давлением: смыкание формы, впрыск расплава, выдержка под давлением.
 - 11. Технология производства труб методом экструзии
 - 12. Закономерности движения полимера в шнековом экструдере. Зоны загрузки и сжатия.
- 13. Особенности изменения давления и температуры в форме при литье термопластов и реактопластов.
 - 14. Производство листов, кабельной изоляции и профильно-погонажных изделий.
 - 15. Сравнительный анализ методов переработки пластмасс.
- 16. Влияние технологических параметров на качество изделий, изготовляемых литьем под давлением.
 - 17. Литьевое прессование.
 - 18. Изменение давления и температуры в литьевой форме в процессе формования изделия.
- 19. Получение пленок щелевым методом. Нанесение полимерных пленок на подложку методом экструзии.
 - 20. Литье под давлением термопластов: выдержка под давлением и охлаждение.
 - 21. Производительность экструдера.
 - 22. Влияние технологических параметров на качество труб, изготовляемых экструзией.

ВОПРОСЫ К ЭКЗАМЕНУ ДЛЯ 4 СЕМЕСТРА

- 1. Что включает технология переработки пластмасс?
- 2. Что входит в состав пластмассы помимо полимера?

- 3. На какие виды делятся пластмассы?
- 4. Что обозначают термины: адгезия, когезия?
- 5. Назовите методы определения остаточных напряжений в изделиях?
- 6. Роль механизации и автоматизации производственных процессов в переработке пластмасс?
- 7. Классификация методов изготовления изделий из термопластов?
- 8. Дайте характеристику цикла формования изделия литьем под давлением. Выполните расчет примерного цикла литья под давлением?
- 9. С какой целью выполняется операция выдержки под давлением в литьевой форме при литье термопластов? Выполняется ли эта операция при литье реактопластов?
- 10. Объясните, почему масса изделия, как правило, увеличивается с повышением температуры литья термопластов?
- 11. Как зависит прочность изделия в местах спаев и расположения литника от режима литья?
- 12. От каких факторов зависит время охлаждения изделия в форме? Как рассчитать время охлаждения?
- 13. Как зависит усадка изделия от сырья и технологических параметров процесса литья под давлением?
- 14. Объясните причины падения давления в форме в ходе процесса литья под давлением. Каким должно быть остаточное давление и почему?
- 15. Как выбирают технологические параметры литья под давлением?
- 16. Назовите причины брака литьевых изделий и способы их устранения?
- 17. Как приводиться в движение цилиндр, шнек, форма, выталкиватель?
- 18. Какие зоны различают по длине цилиндра и червяка червячного экструдера? Каковы их функции?
- 19. Что понимают под изотермическим, адиабатическим и политропическим режимами работы червячного экструдера?
- 20. Каковы основные геометрические параметры червяка?
- 21. Какие факторы, и каким образом, влияют на положение рабочей точки экструзии и производительность экструдера?
- 22. На чем основан выбор основных технологических параметров процесса экструзии?
- 23. Ротационное и центробежное формование?
- 24. Стадии процесса ротационного формования?
- 25. Изделия изготавливаемые методом ротационного формования?
- 26. Достоинства и недостатки метода?
- 27. Полимеры используемые для переработки методом ротационного формования?
- 28. Дозировка полимера методом ротационного формования?
- 29. Формование изделий?
- 30. Способы нагрева формы?
- 31. Время формования?
- 32. Особенности центробежного формования?
- 33. Назначение вальцев и каландров?
- 34. Почему на каландрах трудно получать тонкие пленки и толстые листы?
- 35. Как регулируется толщина пленки листа?
- 36. Что такое каландровый эффект?
- 37. Что влияет на глубину затекания композиции при пропитке тканей, дублировании, ламинирование?

- 38. Как достигается смешение при вальцевании?
- 39. Как движется композиция в зазоре между валками?
- 40. Чем определяется продолжительность формования изделия?
- 41. Как уменьшить разнотолщинность в изделиях, получаемых термоформованием?
- 42. Какие технологические параметры термоформования вы знаете? Как они определяются?
- 43. Расскажите о технологическом процессе сварки пластмасс одним из методов?
- 44. В каких физических состояниях находиться полимер (ПЭ, ПС, ПВХ и др.) до сварки, в процессе сварки, после сварки?
- 45. Что такое «химическая сварка»?
- 46. Какие материалы трудно сваривать?
- 47. Как влияет толщина клеевого слоя на прочность соединения?
- 48. Какое значение имеет вязкость клея при склеивании? Как изменить вязкость клея?
- 49. Как рассчитать давление прессования? Как регулируется давление прессования на прессе?
- 50. Назовите параметры процесса таблетирования. Как они выбираются, рассчитываются?
- 51. Рассчитайте цикл прессования изделия?
- 52. Чем объяснить анизотропию свойств стеклопластика?
- 53. Как влияет концентрация связующего на плотность изделия и соотношение связующее-наполнитель?
- 54. Как влияет толщина изделия на технологический процесс его изготовления?
- 55. Какие достоинства и недостатки имеет метод контактного формования?
- 56. Приведите примеры химических реакций в процессе изготовления изделий из армированных пластиков?
- 57. Назовите основные технологические характеристики связующего и наполнителя, определяющие скорость и качество пропитки?
- 58. Что такое стеклопластики?
- 59. Методы нанесения металлических покрытий на пластмассы?
- 60. Достоинства и недостатки вакуумного метода металлизации?
- 61. Химические особенности металлов?
- 62. Факторы, влияющие на механическую обработку полимеров?
- 63. Примеры применения специального режущего инструмента?
- 64. От чего зависит скорость реакции?
- 65. Особенности шлифования полимерных материалов?
- 66. Полимерные материалы способные свариваться?
- 67. Полимерные материалы способные склеиваться?
- 68. Виды сварки?
- 69. Достоинства и недостатки контактной сварки (сварки нагретым инструментом)?
- 70. Достоинства и недостатки контактной сварки (сварки сжатым газом)?
- 71. Достоинства и недостатки контактной сварки (сварки с применением инфракрасного излучения)?
- 72. Достоинства и недостатки контактной сварки (сварки трением)?
- 73. Достоинства и недостатки контактной сварки (сварки ультразвуком)?
- 74. Необходимые условия получения прочного клеевого соединения?
- 75. Выбор клея?
- 76. Особенности склеивания термопластов?

- 77. Особенности склеивания реактопластов
- 78. Пластмассы, используемые для напыления?
- 79. Способы напыления пластмасс, их достоинства и недостатки?
- 80. Изготовление пустотелых изделий из трубчатых заготовок.
- 81. Получение пленок методом раздува рукава.
- 82. Ориентация пленок. Цель и методы ориентации.
- 83. Ротационное формование.
- 84. Изготовление пустотелых изделий выдуванием.
- 85. Основные технологические параметры процесса прессования.
- 86. Формование изделий из листовых материалов. Пневмоформование и штампование.
- 87. Получение пленок методом раздува рукава.
- 88. Формование изделий из листовых материалов. Вакуум формование.
- 89. Армированные пластики. Сырье, методы получения, свойства.
- 90. Сравнительный анализ методов переработки пластмасс.
- 91. Изготовление изделий каландрованием.
- 92. Прессование. Композиции, стадии прессования, давление прессования.
- 93. Компрессионное прессование.
- 94. Получение комбинированных пленочных материалов.
- 95. Экструзия. Изделия, сырье, оборудование. Назначение, параметры и зоны червяка.
- 96. Выбор технологических параметров при литье под давлением термопластов.
- 97. Определение времени выдержки под давлением и давления прессования при компрессионном прессовании.
- 98. Литье под давлением термопластов. Место этого метода среди других методов переработки. Сырье, оборудование. Набор дозы. Особенности шнека.
 - 99. Производительность экструдера. Рабочая точка экструдера.
 - 100. Закономерности движения полимера в шнековом экструдере. Зона дозирования.
 - 101. Основные технологические параметры процесса прессования.
 - 102. Формование изделий из листовых материалов. Пневмоформование и штампование.
 - 103. Литье под давлением реактопластов.
- 104. Литье под давлением термопластов. Влияние технологических параметров на качество изделий.
 - 105. Влияние технологических параметров на качество.
- 106. Литье под давлением: смыкание формы, впрыск расплава, выдержка под давлением.
 - 107. Технология производства труб методом экструзии
 - 108. Формование изделий из листовых материалов. Вакуум формование.
- 109. Закономерности движения полимера в шнековом экструдере. Зоны загрузки и сжатия.
- 110. Особенности изменения давления и температуры в форме при литье термопластов и реактопластов.

- 111. Производство листов, кабельной изоляции и профильно-погонажных изделий.
- 112. Сравнительный анализ методов переработки пластмасс.
- 113. Получение пленок щелевым методом. Нанесение полимерных пленок на подложку методом экструзии.
 - 114. Прессование. Композиции, стадии прессования, давление прессования.
 - 115. Компрессионное прессование.
 - 116. Получение комбинированных пленочных материалов.

Планирование самостоятельной работы студентов по дисциплине «Современные методы переработки полимерных систем» для направления 18.04.01. «Химическая технология». Усвоение курса «Современные методы переработки полимерных систем» обеспечивается систематической самостоятельной работой студентов в соответствии с тематическим планом.

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Книгообеспеченность

Наименование литературы: автор, название, издательство	Год	КНИГООБЕ	СПЕЧЕННОСТЬ
		Количество экземпляров изданий в библиотеке ВлГУ в соответствии с ФГОС ВО	Наличие в элек- тронной библио- теке ВлГУ
1	2	3	4
Основная литерат	гура		
1. Современные методы переработки полимерных материалов. Экструзия. Литье под давлением: учебное пособие / Ю. Т. Панов, Л. А. Чижова, Е. В. Ермолаева; Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых (ВлГУ). — Владимир: Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича и Столетовых (ВлГУ), 2013. — 128 с.: ил., табл. — Имеется электронная версия. — Библиогр.: с. 127-128.	2013	50	
2. Основы технологии переработки пластических масс: учебное пособие для химико-технологических специальностей вузов / В. Г. Бортников. — Ленинград: Химия, 1983. — 303 с.: ил. — Библиогр.: с. 287-289. —	1983	45	
3. Производство изделий из пластических масс: учебное пособие для вузов: в 3 т. / В. Г. Бортников. — Казань: Дом печати, 2001-2004. Т. 2: Технология переработки пластических масс. — 399 с.	2004	17	
4.Современные методы переработки полимерных материалов. Переработка реактопластов: учебное пособие / Ю. Т. Панов, Л. А. Чижова, Е. В. Ермолаева; — Владимир: (ВлГУ),2014. — 143 с., табл.	2014	59	

Дополнительная лит	ература		
1. Технические свойства полимерных материалов: учебно-справочное пособие / В. К. Крыжановский [и др.]; под общ. ред. В. К. Крыжановского .— Изд. 2-е, испр. и доп. — Санкт-Петербург: Профессия, 2005.— 247 с.: ил., табл. — (Справочник) .— Библиогр.: с. 187-188 .— ISBN 5-93913-093-3	2005	20	
2. Каменев, Ефим Израилевич. Применение пластических масс: справочник / Е. И. Каменев, Г. Д. Мясников, М. П. Платонов. — Ленинград: Химия, 1985. — 448 с.: табл. — Библиогр.: с. 288.	1985	2	http://e.lib.vlsu.ru:8 0/handle/12345678 9/879
3. Калинчев, Эрик Леонидович. Свойства и переработка термопластов: справочное пособие / Э. Л. Калинчев, М. Б. Саковцева. — Ленинград: Химия, 1983. — 287 с.: ил., табл., граф. — Библиогр.: с. 283-285.	1983	4	
4. Панов, Юрий Терентьевич. Научные основы создания пенопластов второго поколения: монография / Ю. Т. Панов; Владимирский государственный университет (ВлГУ). — Владимир: Владимирский государственный университет (ВлГУ), 2003. — 174 с.: ил. — Библиогр.: с. 151-174. — ISBN 5-89368-379	2003	9	
5. Раувендааль, Крис. Экструзия полимеров: [экструзионное оборудование, анализ процесса, практические приложения]: пер. с англ. яз. 4-го изд / К. Раувендааль. — Санкт-Петербург: Профессия, 2006. — 762 с.	2006	4	http://e.lib.vlsu.ru:8 0/handle/12345678 9/875

7.2. Периодические издания

- 1.Изв. вузов Химия и хим технология Иваново ISSN (PRINT): 0579-2991. Импакт-фактор (РИНЦ): 0,238
- 2. Бутлеровские сообщения, Казань ISSN (PRINT): 0579-2991. Импакт-фактор (РИНЦ): 0,428

7.3. Интернет-ресурсы

1. http://www.studentlibrary.ru/book/ISBN9785788213606.html

Технология литья [Электронный ресурс] : учебное пособие / В.Г. Кузнецов, Ф.А. Гарифуллин, Г.С. Дьяконов. - Казань : Издательство КНИТУ, 2012

2. http://www.studentlibrary.ru/book/ISBN9785953207454.html

Практикум по технологии переработки и испытаниям полимеров и композиционных материалов А. Н. Садова, В. Г. Бортников, А. Е. Заикин и др. - М.: КолосС, 2011

3. http://www.studentlibrary.ru/book/ISBN9785953206266.html

Принципы управления качеством полимерной продукции [Электронный ресурс] / Садова А.Н. - М.: КолосС, - (Учебники и учеб. пособия для студентов высш. учеб. заведений).2009

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теоретический курс:

- 1. Мультимедийные средства.
- 2. Слайды-лекции.

Лабораторный практикум:

1. Лабораторный практикум проводиться в специализированных лабораториях № 125-1, 159-4

Перечень лицензионного программного обеспечения: Windows 7; Microsoft Open License 62857078; MS Office 2010 Microsoft Open License 65902316

Рабочую программу составил д.т.н., проф. Панов Ю.Т. Рецензент (ы) директор ООО НПП «Технолог» Е.Ю. Рубцова Программа рассмотрена и одобрена на заседании кафедры «Химические т нологии» от <u>Д СВ 19</u> года, протокол № <u>Д</u> Ю.Т. Панов Заведующий кафедрой Рабочая программа рассмотрена и одобрена на заседании учебно-методичес комиссии направления протокол № 1 от 2.09 192 года. Председатель комиссии Ю.Т. Панов

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на		учебный год
Протокол заседания кафедры №	OT	года
Заведующий кафедрой		
Рабочая программа одобрена на		учебный год
Протокол заседания кафедры №	OT	года
Заведующий кафедрой		
Рабочая программа одобрена на		учебный год
Протокол заседания кафедры №	OT	года
Заведующий кафедрой		
Рабочая программа одобрена на		учебный год
Протокол заседания кафедры №	OT	года
Заведующий кафедрой		