Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

УТВЕРЖДАЮ

Проректор

по учебно-ме ю ической работе

А.А.Панфилов

2015r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Информационно – измерительные системы

Направление подготовки 15.04.05 Конструкторско-технологическое обеспечение машино-строительных производств

Профиль /программа подготовки Процессы механической и физико-технической обработки

Уровень высшего образования магистратура

Форма обучения очная

Семестр	Трудоемкость зач. ед,/ час.	Лекции, час.	Практич. за- нятия, час.	Лаборат. ра- боты, час.	СРС,	Форма промежуточного контроля (экз./зачет)
1	6/216	-	18	18	144	Экзамен (36ч)
Итого	6/216	-	18	18	144	

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины «Информационно – измерительные системы» направлено на достижение следующих целей ОПОП 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств»:

Код цели	Формулировка цели
Ц2	Подготовка выпускников к проектно-конструкторской деятельности, обеспечи-
	вающей создание проектов машиностроительного производства и внедрение тех-
	нологий изготовления машиностроительных изделий, с учетом внешних и внут-
	ренних требований к их производству и качеству, внедрение и эксплуатацию но-
	вых материалов, технологий, оборудования, востребованных на региональном,
	отечественном и зарубежном рынке.
Ц3	Подготовка выпускников к эффективному использованию междисциплинарных
	знаний в области фундаментальных и прикладных наук для решения исследова-
	тельских и производственных задач применительно к профессиональной деятель-
	ности; организации сервисно-эксплуатационной деятельности машиностроитель-
	ных производств.
Ц4	Подготовка выпускников к производственно-технологической деятельности при
	выполнении производственных и исследовательских проектов в профессиональной
	области, сопровождению их бизнес-процессов, осуществлению организационно-
	управленческой деятельности.

Целями освоения дисциплины (модуля) «Информационно – измерительные системы» являются:

- обучение студентов основам функционирования и эксплуатации информационноизмерительных систем (ИИС) и информационных вычислительных комплексов (ИВК);
- обучение методам анализа и синтеза ИИС (ИВК);
- изучение современных комплексов программного и инструментального обеспечения ИИС (ИВК);
- формирование у студентов навыков работы в одном из комплексов программного и инструментального обеспечения ИИС (ИВК), разработки программного и метрологического обеспечения ИИС (ИВК) с соответствующей оценкой метрологических характеристик и обработки результатов измерений;
- воспитание ответственности за продукт своих разработок.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Информационно – измерительные системы» относится к обязательным дисциплинам вариативной части (Б1.В.ОД.7).

Для успешного изучения дисциплины «Информационно – измерительные системы» студенты должны быть знакомы с основными положениями курсов «Высшая математика», «Информатика».

Из дисциплины «Высшая математика» студент должен знать:

- характеристики и математические основы анализа случайных процессов;
- векторный анализ;
- дифференциальное и интегральное исчисления функций одного и нескольких переменных;
- Из дисциплины «Информатика» студент должен знать:
- способы описания и виды алгоритмов;
- стандартные алгоритмы обработки массивов;
- алгоритмы организации итерационных вычислений с заданной точностью.

Дисциплина «Информационно – измерительные системы» является частью блока дисциплин посвященных подготовке к научно-исследовательской работе с использованием современных технологий проведения научных исследований.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

После изучения данной дисциплины студент приобретает знания, умения и опыт, соответствующие результатам ОПОП направления 15.04.05:

Р2, Р4, Р5 (расшифровка результатов обучения приводится в ОПОП направления 15.04.05).

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты обучения, согласующиеся с формируемым компетенциям ОПОП:

способность выбирать и эффективно использовать материалы, оборудование, инструменты, технологическую оснастку, средства автоматизации, контроля, диагностики, управления, алгоритмы и программы выбора и расчета параметров технологических процессов, технических и эксплуатационных характеристик машиностроительных производств, а также средства для реализации производственных и технологических процессов изготовления машиностроительной продукции (ПК-6):

знать: современные средства автоматизации, контроля, диагностики технологических процессов, формирующие алгоритмы управления технологическими системами;

уметь: использовать современные средства автоматизации, контроля, диагностики технологических процессов, при разработке алгоритмов управления технологическими системами;

владеть: современными средствами создания ИИС, обеспечивающих автоматизированный сбор и обработку информации при управлении технологическими системами;

способность организовывать работы по проектированию новых высокоэффективных машиностроительных производств и их элементов, модернизации и автоматизации действующих, по выбору технологий, инструментальных средств и средств вычислительной техники при реализации процессов проектирования, изготовления, контроля, технического диагностирования и промышленных испытаний машиностроительных изделий, поиску оптимальных решений при их создании, разработке технологий машиностроительных производств, и элементов и систем технического и аппаратно-программного обеспечения с учетом требований качества, надежности, а также сроков исполнения, безопасности жизнедеятельности и требований экологии (ПК-11):

знать: современные средства проектирования элементов и систем технического и аппаратно-программного обеспечения функционирования технологических систем с учетом требований качества, надежности, а также сроков исполнения, безопасности жизнедеятельности и требований экологии;

уметь: использовать современные средства проектирования элементов и систем технического и аппаратно-программного обеспечения функционирования технологических систем с учетом требований качества, надежности, а также сроков исполнения, безопасности жизнедеятельности и требований экологии;

владеть: навыками проектирования элементов и систем технического и аппаратнопрограммного обеспечения функционирования технологических систем с учетом требований качества, надежности, а также сроков исполнения, безопасности жизнедеятельности и требований экологии;

способность применять на практике современные методы и средства определения эксплуатационных характеристик элементов машиностроительных производств и средств программного обеспечения, сертификационных испытаний изделий, выбирать методы и

средства измерения, участвовать в организации диагностики технологических процессов, оборудования средств и систем управления машиностроительных производств (ПК-23):

знать: методы, программные и технические средства восприятия, передачи, обработки и представления измерительной информации в измерительных системах;

уметь: решать задачи проектирования информационно-измерительных систем, использовать стандартные интерфейсы для организации работы ИИС;

владеть: навыками эксплуатации современных ИИС, как элементов управления технологических процессов; обеспечивать совместимость аппаратных и программных средств ИИС; технологиями программирования на языках LabVIEW.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 6 зачетных единицы, 216 часов.

		тр	местра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах) применение							Формы текущего контроля успева- емости	
№ п/п	Раздел (тема) дисциплины	Семестр	Неделя семестра	Лекции	Практические	Лабораторные	Контрольные	CPC	кп / кр	интерактив- ных методов (в часах / %)	(по неделям семестра), форма промежуточной аттестации	
1	Раздел 1											
1.1	Информационно- измерительные си- стемы (ИИС). Назначение и ос- новные функции ИИС. Разновидно- сти структур ИИС. Информация и сиг- нал. Виды сигналов и их математиче- ское описание. Вре- менная и частотная форма представле- ния сигналов. Циф- ровая обработка сигналов.		1		2	2		16		2/50%		
1.2	Методы измерения температуры. Температурные датчики: термопреобразователи сопротивления, термоэлектрические преобразователи (термопары). Методы установки и правила подключения тер-		3		2	2		16		2/50%	Отчет по практиче- ским и лабо- раторным работам	
1.3	мопар. Методы измерения температуры. Пирометры. Тепловой (тепловизионный) неразрушающий контроль. Кварцевые термопреобразователи. ЯКР-термометры. Дилатометрические (объемные) датчики измерения температуры. Жидкостные и газовые термометры. Термоиндикаторы.		5		2	2		16		2/50%		
	Текущий кон-		5								Рейтинг-	

	троль						контроль №1
2	Раздел 2						
2.1	Методы измерения деформаций. Устройство датчиков сопротивления. Тарировка датчиков сопротивления. Схемы подключения тензорезисторов. Оценка погрешности измерения деформаций с помощью тензорезисторов. Оптические (оптоволоконные) сенсоры изме-	7	2	2	16	2/50%	Отчет по практиче-
2.2	рения деформаций. Методы измерения перемещений. Емкостные датчики перемещений, основные измерительные схемы. Другие области применения емкостных датчиков.	9	2	2	16	2/50%	ским и лабораторным работам
2.3	Области применения и измерительные схемы с использованием индуктивных высокочастотных датчиков.	11	2	2	16	2/50%	
	Текущий кон-	11					Рейтинг-
	троль						контроль №2
3	Раздел 3						
3.1	Основные понятия метрологии. Виды измерений. Общие сведения о погрешностях. Типы погрешностях. Типы погрешности. Причины возникновения и способы устранения. Метрологические характеристики средств измерений. Погрешности средств измерений. Погрешности косвенных измерений. Определение погрешности метода измерения. Необходимая точность вычислений. Оценка точности эксперимента и выбор необходимого числа измерений.	13	2	2	16	2/50%	Отчет по практиче- ским и лабо- раторным работам

3.2	Понятие о случай-	15	2	2	16	2/50%	
3.2	ной величине. Ве-	10	_	_	10	2/30/0	
	роятность. Досто-						
	верные и недосто-						
	верные события.						
	Понятие о функции						
	плотности и функ-						
	ции распределения.						
	Гистограмма. Поня-						
	тие о среднем зна-						
	чении и дисперсии.						
	Нормальное рас-						
	пределение. Поня-						
	тие о выборке. Вы-						
	борочные значения.						
	Доверительные ин-						
	тервалы. Критерий						
	значимости. Коэф-						
	фициент доверия.						
	Построение довери-						
	тельных интерва-						
	лов.			_			
3.3	Эмпирические фор-	17	2	2	16	2/50%	
	мулы. Метод урав-						
	новешивания по-						
	грешностей. Метод						
	наименьших квад-						
	ратов.	1.7					D v
	Текущий кон-	17					Рейтинг-
	троль						контроль №3
ИТОІ	ΓΟ		18	18	144	18/50%	Экзамен

Практические занятия

- Тема 1. Методы измерения температуры. Термопреобразователи сопротивления. (2 часа)
- Тема 2. Методы измерения температуры. Термоэлектрические преобразователи (термопары). Методы установки и правила подключения термопар. (2 часа)
- Тема 3. Методы измерения температуры. Пирометры. Тепловой (тепловизионный) неразрушающий контроль. Кварцевые термопреобразователи. ЯКР-термометры. Дилатометрические (объемные) датчики измерения температуры. Жидкостные и газовые термометры. Термоиндикаторы. (2 часа)
- Тема 4. Методы измерения деформаций. Устройство датчиков сопротивления. Тарировка датчиков сопротивления. Схемы подключения тензорезисторов. Оценка погрешности измерения деформаций с помощью тензорезисторов. (2 часа)
- Тема 5. Методы измерения перемещений. Емкостные датчики перемещений, основные измерительные схемы. (2 часа)
- Тема 6. Области применения и измерительные схемы с использованием индуктивных высокочастотных датчиков. (2 часа)
- Тема 7. Основные понятия метрологии. Виды измерений. Общие сведения о погрешностях. Типы погрешностей. Систематические погрешности. Причины возникновения и способы устранения. Метрологические характеристики средств измерений. Погрешности средств измерений. Погрешности косвенных измерений. Определение погрешности метода измерения. Необходимая точность вычислений. Оценка точности эксперимента и выбор необходимого числа измерений. (2 часа)
- Тема 8. Понятие о случайной величине. Вероятность. Достоверные и недостоверные события. Понятие о функции плотности и функции распределения. Гистограмма. Понятие о среднем значении и дисперсии. Нормальное распределение. Понятие о выборке.

Выборочные значения. Доверительные интервалы. Критерий значимости. Коэффициент доверия. Построение доверительных интервалов. (2 часа)

Тема 9. Эмпирические формулы. Метод уравновешивания погрешностей. Метод наименьших квадратов. (2 часа)

Лабораторный практикум

Лабораторный практикум является персональной аудиторной работой. Целью лабораторного практикума является приобретение практических навыков и инструментальных компетенций в области постановки и решения задач моделирования процессов машиностроения. Перед проведением лабораторных занятий студенты должны освоить требуемый теоретический материал и процедуры выполнения лабораторной работы по выданным им предварительно учебным и методическим материалам.

Темы лабораторных работ

	1 емы	лабораторных работ
№ пп	Учебно-образовательный раздел. Цели лабораторного практикума	Наименование лабораторных работ
1.	Раздел 1. Цель: Приобретение навыков создания ИИС для проведения температурных измерений нестационарных режимов.	 Создание простого виртуального прибора в среде LabVIEW. Использование структур и виртуальных подприборов для использования в виртуальных приборах более высокого уровня в среде LabVIEW. Отладка виртуального прибора в среде LabVIEW с использованием инструмента Probe.
2.	Раздел 2. Цель: Приобретение навыков создания ИИС для проведения измерений перемещений и деформаций в условиях нестационарного температурного и механического воздействий.	 Ввод аналогового сигнала с использованием DAQ системы в среде LabVIEW. Вывод аналогового сигнала с использованием DAQ системы в среде LabVIEW. Измерение частоты аналогового сигнала с использованием DAQ системы в среде LabVIEW.
3.	Раздел 3. Цель: Приобретение навыков статистической обработки результатов экспериментальных исследований с использованием ИИС.	 Измерение температуры нестационарного процесса в среде LabVIEW со статистической обработкой экспериментальных данных. Измерение деформаций при изменяющейся нагрузке в среде LabVIEW со статистической обработкой экспериментальных данных. Измерение вибрационных характеристик в среде LabVIEW со статистической обработкой экспериментальных данных.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Ориентация на тактические образовательные технологии, являющиеся конкретным способом достижения целей образования в рамках намеченной стратегической технологии. При чтении лекций используется метод проблемного изложения с использованием интерактивной формы проведения занятия. При проведении лабораторных работ используются поисковый и исследовательский методы, в том числе, case study.

Ниже приводится описание образовательных технологий, обеспечивающих достижение планируемых результатов освоения дисциплины. Специфика сочетания методов и форм организации обучения отражается в матрице (см. табл). Перечень методов обучения и форм организации обучения может быть расширен.

Методы и формы организации обучения (ФОО)

ФОО Методы	Лекции	Лабораторные работы	СРС
<i>IT</i> -методы			
Работа в команде		+	+
Case study		+	
Игра			
Методы проблемного обучения.	+		
Обучение на основе опыта	+	+	
Опережающая самостоятельная работа			+
Проектный метод			
Поисковый метод		+	+
Исследовательский метод		+	+
Другие методы			

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Вопросы для рейтинг-контроля № 1

- 1. Информационно-измерительные системы (ИИС). Назначение и основные функции ИИС
- 2. Разновидности структур ИИС. Основные характеристики ИИС и их оценка.
- 3. Информация и сигнал. Виды сигналов и их математическое описание.
- 4. Временная и частотная форма представления сигналов.
- 5. Цифровая обработка сигналов. Функциональная схема цифровой обработки сигналов.
- 6. Аналого-цифровое преобразование сигналов: дискретизация, квантование и кодирование.
- 7. Температурные измерения: кремниевые датчики.
- 8. Температурные измерения: биметаллический датчик температуры.
- 9. Температурные измерения: жидкостные и газовые термометры.
- 10. Температурные измерения: термоиндикаторы.
- 11. Температурные измерения: терморезисторы.
- 12. Температурные измерения: термоэлектрические преобразователи (термопары).
- 13. Температурные измерения: пирометры
- 14. Температурные измерения: тепловизоры.
- 15. Схема виртуального прибора для измерения температуры с помощью термопар.

Вопросы для рейтинг-контроля № 2

- 1. Измерение деформаций: тензорезисторы.
- 2. Измерение деформаций: мостовая схема подключения тензорезисторов.
- 3. Измерение деформаций: потенциометрическая схема подключения тензорезисторов.
- 4. Измерение температурных деформаций: схема подключения тензорезисторов.

- 5. Индуктивные датчики: принцип действия, области применения.
- 6. Емкостные датчики: принцип действия, область применения.
- 7. Использование емкостных датчиков для измерения перемещений.
- 8. Использование емкостных датчиков для измерения толщин.
- 9. Использование емкостных датчиков для измерения влажности сыпучих материалов.
- 10. Использование емкостных датчиков для измерения уровня жидкости.
- 11. Использование емкостных датчиков для измерения перемещений.
- 12. Использование емкостных датчиков для измерения вибраций.
- 13. Использование емкостных датчиков для измерения углов поворота.
- 14. Схема виртуального прибора для измерения деформаций с помощью тензорезисторов.
- 15. Процесс тарировки тензорезисторов.

Вопросы для рейтинг-контроля № 3

- 1. Поясните различие между прямыми и косвенными измерениями? В каких случаях прибегают к косвенным измерениям? Дайте пример косвенных измерений
- 2. .Дайте определения абсолютной и относительной погрешностей. Что называется предельной абсолютной и предельной относительной погрешностями измерения?
- 3. Дайте определения систематической и случайной погрешностей измерения. Что является источниками возникновения указанных типов погрешностей?
- 4. Дайте классификацию систематических погрешностей, исходя из причин их появления. Приведите примеры методических, инструментальных, субъективных погрешностей измерения из области экспериментальных исследований.
- 5. Каковы принципы учета (оценки и определения) систематических и случайных погрешностей? Что называется «поправкой» (применительно к учету систематических погрешностей)?
- 6. Схемные методы коррекции систематических погрешностей.
- 7. Что такое динамические погрешности измерений? Когда они проявляются? Каковы причины их возникновения?
- 8. Что называется чувствительностью и вариацией показаний измерительного прибора?
- 9. Что называется основной погрешностью измерительного прибора? Каковы принципы суммирования погрешностей отдельных блоков сложных измерительных средств в следующих случаях: когда блоки обладают независимыми друг от друга погрешностями; когда погрешности отдельных блоков имеют взаимную корреляционную связь.
- 10. Как определяют погрешность искомой величины при косвенном измерении последней?
- 11. Понятие о случайной величине. Вероятность. Понятие о функции плотности и функции распределения.
- 12. Случайные сигналы. Спектральные и корреляционные характеристики сигналов.
- 13. Дайте понятие выборки.
- 14. Что называется статистической функцией распределения?
- 15. Что такое гистограмма?
- 16. Дайте определение выборочного среднего значения случайной величины.
- 17. Что такое выборочная дисперсия, и как она определяется?
- 18. Что является средним значением выборочной дисперсии?
- 19. Что используют для оценки стандартного отклонения средней выборочной величины?
- 20. Что такое доверительные интервалы, и как они определяются?
- 21. С какой целью определяются доверительные интервалы?
- 22. Что такое критерий значимости?

- 23. Дайте определение коэффициенту доверия.
- 24. Как строятся доверительные интервалы?
- 25. Что называется доверительной вероятностью (надежностью)?
- 26. Какая оценка параметра называется состоятельной?
- 27. Какая оценка параметра называется несмещенной?
- 28. Какие критерии используют для отбрасывания резко выделяющихся результатов испытаний?
- 29. Построение моделей методом уравновешивания погрешностей.
- 30. В чем заключается принцип наименьших квадратов, используемый при обработке результатов экспериментальных исследований?

Вопросы к экзамену

- 1. Информационно-измерительные системы (ИИС). Назначение и основные функции ИИС
- 2. Разновидности структур ИИС. Основные характеристики ИИС и их оценка.
- 3. Информация и сигнал. Виды сигналов и их математическое описание.
- 4. Временная и частотная форма представления сигналов.
- 5. Цифровая обработка сигналов. Функциональная схема цифровой обработки сигналов.
- 6. Аналого-цифровое преобразование сигналов: дискретизация, квантование и кодирование.
- 7. Температурные измерения: кремниевые датчики.
- 8. Температурные измерения: биметаллический датчик температуры.
- 9. Температурные измерения: жидкостные и газовые термометры.
- 10. Температурные измерения: термоиндикаторы.
- 11. Температурные измерения: терморезисторы.
- 12. Температурные измерения: термоэлектрические преобразователи (термопары).
- 13. Температурные измерения: пирометры
- 14. Температурные измерения: тепловизоры.
- 15. Схема виртуального прибора для измерения температуры с помощью термопар.
- 16. Измерение деформаций: тензорезисторы.
- 17. Измерение деформаций: мостовая схема подключения тензорезисторов.
- 18. Измерение деформаций: потенциометрическая схема подключения тензорезисторов.
- 19. Измерение температурных деформаций: схема подключения тензорезисторов.
- 20. Индуктивные датчики: принцип действия, области применения.
- 21. Емкостные датчики: принцип действия, область применения.
- 22. Использование емкостных датчиков для измерения перемещений.
- 23. Использование емкостных датчиков для измерения толщин.
- 24. Использование емкостных датчиков для измерения влажности сыпучих материалов.
- 25. Использование емкостных датчиков для измерения уровня жидкости.
- 26. Использование емкостных датчиков для измерения перемещений.
- 27. Использование емкостных датчиков для измерения вибраций.
- 28. Использование емкостных датчиков для измерения углов поворота.
- 29. Схема виртуального прибора для измерения деформаций с помощью тензорезисторов.
- 30. Процесс тарировки тензорезисторов.
- 31. Поясните различие между прямыми и косвенными измерениями? В каких случаях прибегают к косвенным измерениям? Дайте пример косвенных измерений
- 32. Дайте определения абсолютной и относительной погрешностей. Что называется предельной абсолютной и предельной относительной погрешностями измерения?

- 33. Дайте определения систематической и случайной погрешностей измерения. Что является источниками возникновения указанных типов погрешностей?
- 34. Дайте классификацию систематических погрешностей, исходя из причин их появления. Приведите примеры методических, инструментальных, субъективных погрешностей измерения из области экспериментальных исследований.
- 35. Каковы принципы учета (оценки и определения) систематических и случайных погрешностей? Что называется «поправкой» (применительно к учету систематических погрешностей)?
- 36. Схемные методы коррекции систематических погрешностей.
- 37. Что такое динамические погрешности измерений? Когда они проявляются? Каковы причины их возникновения?
- 38. Что называется чувствительностью и вариацией показаний измерительного прибора?
- 39. Что называется основной погрешностью измерительного прибора? Каковы принципы суммирования погрешностей отдельных блоков сложных измерительных средств в следующих случаях: когда блоки обладают независимыми друг от друга погрешностями; когда погрешности отдельных блоков имеют взаимную корреляционную связь.
- 40. Как определяют погрешность искомой величины при косвенном измерении последней?
- 41. Понятие о случайной величине. Вероятность. Понятие о функции плотности и функции распределения.
- 42. Случайные сигналы. Спектральные и корреляционные характеристики сигналов.
- 43. Дайте понятие выборки.
- 44. Что называется статистической функцией распределения?
- 45. Что такое гистограмма?
- 46. Дайте определение выборочного среднего значения случайной величины.
- 47. Что такое выборочная дисперсия, и как она определяется?
- 48. Что является средним значением выборочной дисперсии?
- 49. Что используют для оценки стандартного отклонения средней выборочной величины?
- 50. Что такое доверительные интервалы, и как они определяются?
- 51. С какой целью определяются доверительные интервалы?
- 52. Что такое критерий значимости?
- 53. Дайте определение коэффициенту доверия.
- 54. Как строятся доверительные интервалы?
- 55. Что называется доверительной вероятностью (надежностью)?
- 56. Какая оценка параметра называется состоятельной?
- 57. Какая оценка параметра называется несмещенной?
- 58. Какие критерии используют для отбрасывания резко выделяющихся результатов испытаний?
- 59. Построение моделей методом уравновешивания погрешностей.
- 60. В чем заключается принцип наименьших квадратов, используемый при обработке результатов экспериментальных исследований?

Задачи к экзамену

1. Определить среднее значение и доверительный интервал.

Результаты испытаний 10 двигателей

Номер измерения	Измеренный удельный расход топлива g_e , г/(к B т · ч)
1	254
2	254
3	255

4	255
5	256
6	256
7	257
8	258
9	258
10	259

2. В результате измерения диаметров 200 валиков из партии, изготовленной одним станком-автоматом, получены отклонения измеренных диаметров от номинала (в микрометрах).

Группированные данные представлены в виде интервального статистического ряда

(табл.). Найти среднее значение x и дисперсию σ^2 выборки.

		1 ' '		7.1						
Δ	-20,-15	-15,-10	-10,-5	-5,0	0,5	5,10	10,15	15,20	20,25	25,30
ni	7	11	15	24	49	41	26	17	7	3

3. Построить по данным таблицы гистограмму распределения отклонений диаметров

Δ	-20,-15	-15,-10	-10,-5	-5,0	0,5	5,10	10,15	15,20	20,25	25,30
n_i	7	11	15	24	49	41	26	17	7	3

4. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $N_x = f_1(n_x)$ вида:

$$N_x = a_0 + a_1 n_x + a_2 n_x^2 + a_3 n_x^3,$$

где N_x – мощность, кВт; n_x – частота вращения коленчатого вала, используя метод

уравновешивания погрешностей

N_x ,
кВт
10
19
28
36
44
51
56
60
64
65

5. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $N_x = f_1(n_x)$ вида:

$$N_x = a_0 + a_1 n_x + a_2 n_x^2 + a_3 n_x^3,$$

где N_x – мощность, кВт; n_x – частота вращения коленчатого вала, используя метод наименьших квадратов

n_x ,	N_x ,
мин ⁻¹	кВт
1000	10
1500	19
2000	28
2500	36
3000	44
3500	51
4000	56

4500	60
5000	64
5500	65

6. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $M_x = f_1(n_x)$ вида:

$$M_{x} = a_0 + a_1 n_x + a_2 n_x^2,$$

где M_x – крутящий момент, Н*м; n_x – частота вращения коленчатого вала, используя метод уравновешивания погрешностей

n_x ,	M_{x} ,
мин ⁻¹	H : \mathcal{M}
1000	95,54
1500	121,02
2000	133,76
2500	137,58
3000	140,13
3500	139,2
4000	133,76
4500	127,39
5000	122,3
5500	112,91

7. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $M_x = f_1(n_x)$ вида:

$$M_x = a_0 + a_1 n_x + a_2 n_x^2,$$

где M_x – крутящий момент, H^* м; n_x – частота вращения коленчатого вала, используя метод наименьших квадратов

n_x ,	M_{x} ,
мин ⁻¹	Н:м
1000	95,54
1500	121,02
2000	133,76
2500	137,58
3000	140,13
3500	139,2
4000	133,76
4500	127,39
5000	122,3
5500	112,91

8. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $g_{ex} = f\left(n_x\right)$ вида:

$$g_{ex} = a_0 + a_1 n_x + a_2 n_x^2,$$

где g_{ex} — удельный расход топлива, г/(кВт·ч); n_x — частота вращения коленчатого вала, используя метод уравновешивания погрешностей

n_X , мин ⁻¹	<i>gex,</i> г/(кВт·ч)
1000	420
1500	305
2000	271

2500	261
3000	252
3500	250
4000	254
4500	260
5000	283
5500	302

9. Построить эмпирическую математическую модель для внешней скоростной характеристики бензинового двигателя $g_{ex} = f(n_x)$ вида:

$$g_{ex} = a_0 + a_1 n_x + a_2 n_x^2,$$

где g_{ex} — удельный расход топлива, г/(кВт·ч); n_x — частота вращения коленчатого вала, используя метод наименьших квадратов

n_x ,	g _{ex} ,
мин ⁻¹	г/(кВт·ч)
1000	420
1500	305
2000	271
2500	261
3000	252
3500	250
4000	254
4500	260
5000	283
5500	302

- 10. Разработать структурную схему виртуального прибора для измерения температуры с помощью термопар.
- 11. Разработать структурную схему виртуального прибора для измерения деформаций с помощью тензодатчиков.
- 12. Разработать структурную схему виртуального прибора для измерения частоты аналогового сигнала.

Виды и формы самостоятельной работы студентов

Самостоятельная работа студентов включает текущую и творческую проблемноориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает в себя:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- выполнение домашнего задания;
- опережающую самостоятельную работу;
- изучение тем, вынесенных на самостоятельную проработку;
- подготовку к лабораторным занятиям.

Творческая самостоятельная работа направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) компетенций, повышение творческого потенциала студентов. Эта работа включает в себя:

- поиск, анализ, структурирование и презентацию информации;
- исследовательскую работу и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме.

Содержание самостоятельной работы студентов

Перечень научных проблем и направлений научных исследований:

- Создание в Lab VIEW измерительных систем с обратной связью.
- Разработка приложений для статистического анализа экспериментальных данных.

Темы, выносимые на самостоятельную проработку:

- Информационно-измерительные системы (ИИС). Назначение и основные функции ИИС. Разновидности структур ИИС.
- Информация и сигнал. Виды сигналов и их математическое описание.
- Временная и частотная форма представления сигналов.
- Цифровая обработка сигналов.
- Измерительные схемы с оптическими (оптоволоконными) сенсорами измерения деформаций.
- Способы измерения температурных деформаций.
- Особенности измерения температурных деформаций с помощью тензорезисторов.
- Виды погрешностей и способы их снижения при измерении температурных деформаций с помощью тензорезисторов.
- Измерительные схемы и области применения емкостных датчиков.

Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей. Последний осуществляется путем: рейтинг-контроля по основным разделам дисциплины; устного опроса студентов на лабораторных и практических занятиях; защиты отчетов по лабораторным и практическим работам, а также отчетов по творческой самостоятельной работе.

Своевременная подготовка отчетов по выполненным лабораторным и практическим работам и их защита определяют количество баллов, получаемых студентом при проведении рейтинг-контроля и экзамена.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) основная литература (электронно-библиотечная система ВлГУ):
- 1. Общая теория измерений: Монография / Д.Д. Грибанов. М.: НИЦ ИНФРА-М, 2015. 116 с.: 60х90 1/16. (Научная мысль) (Обложка) ISBN 978-5-16-010766. Режим доступа: http://znanium.com/bookread2.php?book=501732.
- 2. Голых, Ю.Г. Метрология, стандартизация и сертификация. Lab VIEW: практикум по оценке результатов измерений [Электронный ресурс] учеб. пособие / Ю.Г. Голых, Т.И. Танкович. Красноярск: Сиб. федер. ун-т, 2014. 140 с. ISBN 978-5-7638-2927-3. Режим доступа: http://znanium.com/catalog.php?bookinfo=507394.
- 3. Калинеченко, А.В. Справочник инжененра по контрольно-измерительным приборам в автоматике [Электронный ресурс] / А.В. Калиниченко, Н.В. Уваров, В.В. Дойников. М.: Инфра-Инжененрия, 2015. 576 с. ISBN 978-5-9729-0017-6. Режим доступа: http://znanium.com/bookread2.php?book=520694.
- 4. Физические основы получения информации: Учебное пособие / Б.Ю. Каплан. М.: НИЦ ИНФРА-М, 2014. 286 с.: 60х90 1/16. (Высшее образование: Бакалавриат). (переплет) ISBN 978-5-16-006381-2. Режим доступа: http://znanium.com/bookread2.php?book=374641.
- 5. Назаров, В.И. Теплотехнические измерения и приборы. Лабораторный практикум: учеб. пособие / В.И. Назаров, А.Л. Буров, Е.Н. Криксина. Минск: Выш. шк., 2012. 131 с.: ил. ISBN 978-985-06-2146-7. Режим доступа: http://znanium.com/bookread2.php?book=508579.

- б) дополнительная литература (электронно-библиотечная система ВлГУ):
- 6. Подлесный, С. А. Устройства приема и обработки сигналов[Электронный ресурс]: Учеб. пособие / С. А. Подлесный, Ф. В. Зандер. Красноярск : Сиб. федер. ун-т, 2011. 352 с. ISBN 978-5-7638-2263-2. Режим резание: http://znanium.com/bookread2.php?book=441113.
- 7. Измерения в LabVIEW/БаранЕ.Д., МорозовЮ.В. Новосиб.: НГТУ, 2010. 162 с.: ISBN 978-5-7782-1428-6. Режим доступа: http://znanium.com/bookread2.php?book=546030.
- 8. Макарова Н.Ю. Создание виртуальных приборов в среде LabView: методические указания к лабораторным работам / Н.Ю. Макарова; Владимирский государственный университет (ВлГУ), Кафедра приборостроения и информационно-измерительных технологий. Владимир: Владимирский государственный университет (ВлГУ), 2010. 58 с.: ил. Имеется электронная версия. Библиогр.: с. 57. Режим доступа: http://e.lib.vlsu.ru/bitstream/123456789/1857/3/00735.pdf.
- 9. Оптические измерения [Электронный ресурс] / А.Н. Андреев, Е.В. Гаврилов, Г.Г. Ишанин и др. М.: Университетская книга; Логос, 2012. 416 с. ISBN 978-5-98704-173-2. Режим доступа: http://znanium.com/bookread2.php?book=469178.
 - в) периодические издания (библиотека ВлГУ)
- 10. Контрольно-измерительные приборы и системы. Москва: ЭЛИКС+.
- 11. Информационно-измерительные и управляющие системы: научный журнал. Москва: Ралиотехника.
 - г) Internet–ресурсы:

http://www.picad.com.ua/lesson.htm

http://labview-rus.blogspot.ru/

http://automationlab.ru/index.php/ni-labview/274--labview

Учебно-методические издания

- 1. Иванченко А.Б. Методические указания к практическим работам по дисциплине «Информационно измерительные системы» для студентов направления 15.04.05 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2015. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 2. Иванченко А.Б. Методические указания к лабораторным работам по дисциплине «Информационно измерительные системы» для студентов направления 15.04.05 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2015. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 3. Иванченко А.Б. Методические рекомендации к выполнению самостоятельной работы по дисциплине «Информационно измерительные системы» для студентов направления 15.04.05 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2015. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 4. Иванченко А.Б. Оценочные средства по дисциплине «Информационно измерительные системы» для студентов направления 15.04.05 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2015. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1) Портал Центр дистанционного обучения ВлГУ [электронный ресурс] / Режим доступа: http://cs.cdo.vlsu.ru/
- 2) Раздел официального сайта ВлГУ, содержащий описание образовательной программы [электронный ресурс] / Режим доступа: Образовательная программа Образовательная программа 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» http://op.vlsu.ru/index.php?id=56

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лаборатория Lab VIEW с оборудованием NATIONAL INSTRUMENTS.
 2. Лицензионное программное обеспечение: математические пакеты Mathcad, MATLAB.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС		
ВО по направлению <u>15.04.05</u> «Конструкторско-технологическое обеспечение		
машиностроительных производств»		
Рабочую программу составил <u>к. Г. и., доцени</u> <i>Ивонаенко А. £</i> . <i>£</i>		
(TIO, NOMINOS)		
Рецензент (представитель работодателя): ЗАО «Рост-Плюс», генеральный директор Заморников А.А.		
(место работы, должность, ФИО, подпись)		
Программа рассмотрена и одобрена на заседании кафедры Технология машиностроения		
Протокол № <u>6</u> от <u>9.21. 2015</u> года		
Заведующий кафедрой д.т.н., профессор Морозов В.В. (ФИО, подпись)		
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии		
направления <u>15.04.05</u> «Конструкторско-технологическое обеспечение		
машиностроительных производств»		
Протокол № <u>6</u> от <u>9.0а. золх</u> года Председатель комиссии д.т.н., профессор Морозов В.В. (ФИО, подпись)		

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 2016/2017 учебный год	
Протокол заседания кафедры № от от года	1
Заведующий кафедрой д.т.н., профессор Морозов В.В	fry
Рабочая программа одобрена на <u>жемаев</u> учебный год	
Протокол заседания кафедры № / от 2908.2014 года	
Заведующий кафедрой д.т.н., профессор Морозов В.В	- Any
Рабочая программа одобрена на 2018 /2019 учебный год	
Протокол заседания кафедры №1 _ от _3.09, 2018 _ года	
Заведующий кафедрой д.т.н., профессор Морозов В.В	fy-
Рабочая программа одобрена на мер / моло учебный год	
Протокол заседания кафедры №	
Заведующий кафедрой д.т.н., профессор Морозов В.В	fry