Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт машиностроения и автомобильного транспорта

УТВЕРЖДАЮ:

инатичу Д. Елкин

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА ПРОЧНОСТИ»

направление подготовки / специальность

13.04.03 – энергетическое машиностроение

направленность (профиль) подготовки

Двигатели внутреннего сгорания

г. Владимир

Год 2022

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Численные методы расчета прочности» являются:

- ознакомление студентов с применяемыми в инженерных расчетах и научных исследований численных методов расчета прочности;
- формирование научно обоснованного подхода к выбору расчетных схем и методов проведения численных методов расчетов;
- обучение умениям обеспечить требуемые качественные результаты, полученные в результате численного расчета;
- научить правильно анализировать полученные результаты расчета и выбирать оптимальные варианты по выбранным критериям;
- воспитании ответственности за правильное и рациональное оформления результатов расчета.

Задачи:

- ознакомить студентов с методами численных расчетов прочности в области энергетического машиностроения;
- обучить студентов основополагающим закономерностям обработки результатов расчетных исследований в энергетическом машиностроении, когда используемые модели описываются дифференциальными уравнениями, не имеющими точного решения;
- сформировать навыки наиболее оптимального метода численного расчета по выбранным критериям;
- сформировать у студентов навыки и умения по организации проведения расчетных исследований прочности, как в процессе обучения, так и в производственных условиях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.В.02 «Численные методы расчета прочности» относится к части дисциплин, формируемой участниками образовательных отношений, блока 1 структуры программы магистратуры.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты о	Наименование оце-	
компетенции	соответствии с индикатором	ночного средства	
(код, содержание	Индикатор достижения ком-	Результаты обучения по	
компетенции)	петенции	дисциплине	
	(код, содержание индикатора		
ПК-1. Способен	ПК-1.1. Знает, как разраба-	Знает •основные методы	Экзамен
участвовать в ра-	тывается проектная и	проведения численных	
ботах по расчету и	техническая документация	расчетных исследований в	
конструированию	при выполнении эскизных,	энергетическом машино-	
деталей и узлов	технических и рабочих	строении, а также смеж-	
двигателя и энер-	проектов изделий, выбирать	ных областей науки и тех-	
гетических уста-	основные и вспомогательные	ники; передовой отече-	

новок в соответствии с техническим заданием с использованием средств автоматизации проектирования материалы при проектировании двигателей. ПК-1.2. Умеет разрабатывать проектную и техническую документацию при выполнении эскизных, технических и рабочих проектов изделий, выбирать основные и вспомогательные материалы при проектировании двигателей. ПК-1.3. Владеет навыками проектирования при выполнении эскизных, технических и рабочих Знает особенности математического моделирования одно-, двух- и трехмерных, дозвуковых и сверхзвуковых, ламинарных и турбулентных, внешних и внутренних течений идеальной и реальной несжимаемой и сжимаемой жидкостей; Умеет создавать математические модели потоков жидкости и газа, учитывающие характерные особенности течений в энергетических установках; анализировать результаты расчетных исследований течений жидкости и газов, делать проектов изделий, выборе основных и вспомогательных материалов

при проектировании

двигателей.

ственный и зарубежный научный опыт в профессиональной сфере деятельности; основные методы расчетов для повышения надежности деталей в энергетическом машиностроении;

Умеет выполнять численные и экспериментальные исследования, проводить обработку и анализ результатов.

Владеет обосновывать конкретные технические решения при создании объектов энергетического машиностроения.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 4 зачетных единиц, 144 часа

Тематический план форма обучения – очная

	№ Наименование тем и/или разде- п/п лов/тем дисциплины Семестра Неделя семестра)a	Контактная работа обучающихся с педагогическим работником			Я	3.9	Формы текущего контроля успеваемости,
№ п/п		Неделя семестр	Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки	Самостоятельная работа	форма проме- жуточной аттестации (по семестрам)	
1	Понятие о численных методах расчета в энергомашиностроении	3	1-2	2	2			8	
2	Решение систем линейных алгеб-	3	3-4	2	2			8	
	раических. Схема Гаусса с выбором главного элемента. Компактная схема Гаусса. Обращение матрицы. Вычисление определителей. Схема Жордана. Схема без обратного хода.								
3	Метод сеток для решения плоской задачи. Расчет балки-стенки методом конечных разностей.	3	5-6	2	2			8	Рейтинг-контроль №1
4	Изгиб тонких пластинок. Уравнение Софии Жермен. Выбор граничных условий при различных условиях закрепления.	3	7-8	2	2			8	
5	Расчет пластинок методом конечных разностей. Запись граничных условий в конечных разностях.	3	9-10	2	2			8	
6	Сравнение полученных решений с решением методом конечных разностей. Повышение точности решения.	3	11-12	2	2			8	Рейтинг-контроль №2
7	Вариационные методы решения задач прочности конструкций. Принцип возможных перемещений. Метод Бубнова-Галеркина.	3	13-14	2	2			8	
8	Решения тонких пластин при различных условиях закрепления методом Бубнова-Галеркина	3	15-16	2	2			8	
9	Использование гипотез разрушения при сложном напряженном состоянии. Расчет при переменных напряжениях с использованием метода конечных элементов.	3	17-18	2	2			8	Рейтинг-контроль №3
Всего за 1 семестр:				18	18			72	
Наличие в дисциплине КП/КР				1.0	1.0			100	(2.5)
Итого по дисциплине				18	18			108	экзамен (36)

Содержание лекционных занятий по дисциплине

- Раздел 1. Понятие о численных методах расчета в энергомашиностроении
- Раздел 2. Решение систем линейных алгебраических. Схема Гаусса с выбором главного элемента. Компактная схема Гаусса. Обращение матрицы. Вычисление определителей. Схема Жордана. Схема без обратного хода.
- Раздел 3. Метод сеток для решения плоской задачи. Расчет балки-стенки методом конечных разностей.
- Раздел 4. Изгиб тонких пластинок. Уравнение Софии Жермен. Выбор граничных условий при различных условиях закрепления.
- Раздел 5. Расчет пластинок методом конечных разностей. Запись граничных условий в конечных разностях.
- Раздел 6. Сравнение полученных решений с решением методом конечных разностей. Повышение точности решения.
- Раздел 7. Вариационные методы решения задач прочности конструкций. Принцип возможных перемещений. Метод Бубнова-Галеркина.
- Раздел 8. Решения тонких пластин при различных условиях закрепления методом Бубнова-Галеркина..
- Раздел 9. Использование гипотез разрушения при сложном напряженном состоянии. Расчет при переменных напряжениях с использованием метода конечных элементов.

Содержание практических/лабораторных занятий по дисциплине

- Раздел 1. Понятие о численных методах расчета в энергомашиностроении
- Раздел 2. Решение систем линейных алгебраических. Схема Гаусса с выбором главного элемента. Компактная схема Гаусса. Обращение матрицы. Вычисление определителей. Схема Жордана. Схема без обратного хода.
- Раздел 3. Метод сеток для решения плоской задачи. Расчет балки-стенки методом конечных разностей.
- Раздел 4. Изгиб тонких пластинок. Уравнение Софии Жермен. Выбор граничных условий при различных условиях закрепления.
- Раздел 5. Расчет пластинок методом конечных разностей. Запись граничных условий в конечных разностях.
- Раздел 6. Сравнение полученных решений с решением методом конечных разностей. Повышение точности решения.
- Раздел 7. Вариационные методы решения задач прочности конструкций. Принцип возможных перемещений. Метод Бубнова-Галеркина.
- Раздел 8. Решения тонких пластин при различных условиях закрепления методом Бубнова-Галеркина..
- Раздел 9. Использование гипотез разрушения при сложном напряженном состоянии. Расчет при переменных напряжениях с использованием метода конечных элементов.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

1-й рейтинг-контроль

- 1. Как приближенно можно записать производные первого четвертого порядков для произвольной функции?
- 2. Как можно уменьшить погрешность при вычислении производных методом конечных разностей?
 - 3. Как записывается уравнение конечных разностей для функции двух переменных?
 - 4. Порядок расчета балки-стенки методом конечных разностей?
 - 5. Как определяются функции напряжений для законтурных точек балки-стенки?
 - 6. Как повысить точность численного расчета методом конечных разностей?
 - 7. Как выбираются граничные условия для балки-стенки?
- 8. В чем суть схемы Гаусса с выбором главного элемента при решении систем линейных алгебраических уравнений?
 - 9. Как выполняется проверка правильности решения системы уравнений?
 - 10. Как выбирают размер сетки при решении задач методом конечных разностей?
 - 11. Как выбираются граничные условия при расчете балки-стенки методом конечных разностей?
 - 12. Как выбираются функции в законтурных точках?

2-й рейтинг-контроль

- 1. Дифференциальное уравнение изогнутой срединной поверхности пластинки (уравнение Софи Жермен).
 - 2. Условия на контуре пластинки.
 - 3. Выражение для внутренних силовых факторов для тонкой пластинки.
- 4. Уравнение для внутренних силовых факторов тонкой пластинки через конечные разности.
 - 5. Уравнение Софи Жермен в конечных разностях.
- 6. Составление разностных уравнений для прямоугольной пластины при равномерно распределенной нагрузке.
 - 7. Как повышается точность численного решения?
 - 8. Что понимается под прямыми вариационными методами?
 - 9. В чем суть метода Рэлея Ритца?
- 10. Какие требования предъявляются к аппроксимирующим функциям для перемещений в методе Рэлея Ритца?
 - 11. В чем приближенность метода Рэлея Ритца?
 - 12. В чем заключается идея метода Бубнова Галеркина?
- 13. Удовлетворяются ли уравнения равновесия при использовании метода Бубнова Галеркина?

3-й рейтинг-контроль

1. В чем суть гипотез прочности при расчете деталей поршневых двигателей?

- 2. Какие из гипотез предпочтительнее при расчете деталей из легированных сталей?
- 3. Как использовать результаты расчетов МКЭ при определении запасов прочности при переменных нагрузках?
 - 4. Для чего определяются эквивалентные напряжения при расчете МКЭ?
 - 5. В чем недостаток гипотезы О. Мора?
 - 6. В чем суть детерминированной модели прочности Биргера?
- 7. Как использовать данные по расчету деталей, когда определен объемный тензор напряжений.
 - 8. Каковы достоинства и недостатки плоского треугольного конечного элемента?
 - 9. В чем смысл совместного прямоугольного конечного элемента?
 - 10. Какие конечные элементы называются изопараметрическими?

5.2. Промежуточная аттестация по итогам освоения дисциплины - экзамен. **Контрольные вопросы к экзамену**

- 1. Понятие о численных методах расчета в энергомашиностроении.
- 2. Идея метода решения дифференциальных уравнений сеточным методом.
- 3. Метод сеток для решения плоской задачи. Расчет балки-стенки методом конечных разностей.
- 4. Решение систем линейных алгебраических. Схема Гаусса с выбором главного элемента. Компактная схема Гаусса. Обращение матрицы. Вычисление определителей. Схема Жордана. Схема без обратного хода.
- 5. Метод коллокаций.
- 6. Изгиб тонких пластинок. Уравнение Софии Жермен. Выбор граничных условий при различных условиях закрепления.
- 7. Расчет пластинок методом конечных разностей. Запись граничных условий в конечных разностях.
- 8. Расчет пластинок методом конечных разностей. Запись граничных условий в конечных разностях.
- 9. Вариационные методы решения задач прочности конструкций. Принцип возможных перемещений. Метод Бубнова-Галеркина.
- 10. Решения тонких пластин при различных условиях закрепления методом Бубнова-Галеркина..
- 11. Использование гипотез разрушения при сложном напряженном состоянии.
- 12. Расчет при переменных напряжениях с использованием метода конечных элементов.

6.3. Самостоятельная работа студентов

Самостоятельная работа студентов по изучению дисциплины «Численные методы расчета прочности» включает следующие виды работ:

- изучение материала, вынесенного на лекции;
- изучение материала, вынесенного на практические занятия;
- изучение материала, вынесенного на самостоятельное изучение;
- подготовка и выполнение под руководством преподавателя курсовых работ или индивидуальных работ;
 - подготовка к экзаменам.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6.1. Книгообеспеченность

Наименование литературы: автор, название,	Год	КНИГООБЕСПЕЧЕННОСТЬ			
вид издания, издательство		Наличие в электронном каталоге			
	кин	ЭБС			
Основная литература					
1.Гоц А.Н. Численные методы расчета в	2019	да			
энергомаши-ностроении; учеб. пособие/ А.Н.					
Гоц. – 3-е изд., исп. и доп. – М.: ФОРУМ:					
инфра-м, 2019. – 352 с. (Гриф УМО).					
2. Гоц А.Н. Численные методы расчета в энер-	2013	да			
гомаши-ностроении; учеб. пособие. В 2 ч. Ч.1,					
151 с. 2012 г., ч.2, 2013 г., 180 с; Владим. гос.					
ун-т имени А.Г. и Н.Г. Столетовых. – Влади-					
мир: Изд-во ВлГУ. (Гриф УМО).					
3. Гоц А.Н.Расчеты на прочность деталей ДВС	2017	да			
при на-пряжениях, переменных во времени:					
учебное пособие. – 3-е изд., испр. и доп. –					
М.:ФОРУМ; инфра-м, 2017. – 208 с. (Гриф					
УМО)					
Дополнительная литература					
І. Гоц А.Н. Расчеты на прочность деталей	2011	да			
ДВС при на-пряжениях, переменных во вре-					
мени: учебное пособие. – 2-е изд., испр. и доп.					
Владим. гос. ун-т имени А.Г. и Н.Г. Столето-					
вых. – Владимир: Изд-во ВлГУ.2011 – 140 с.					

6.2. Интернет-ресурсы

- 1. Программный комплекс «Diesel RK». Бесплатный удаленный доступ к системе ДИЗЕЛЬ-РК http://www.diesel-rk.bmstu.ru/Rus/index.php?page=Vozmojnosti.
 - 2. Онлайн-калькулятор. Решение систем линейных уравнений методом Гаусса.

http://ru.onlinemschool.com/math/assistance/equation/gaus/

http://math.semestr.ru/gauss/gauss.php

http://www.webmath.ru/web/prog13 1.php

http://matematikam.ru/solve-equations/sistema-gaus.php

http://www.math-pr.com/equations 1.php;

http://ru.onlinemschool.com/math/assistance/equation/matr/;

http://ru.numberempire.com/equationsolver.php.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МО-ДУЛЯ) «ЧИСЛЕННЫЕ РАСЧЕТЫ ПРОЧНОСТИ»

Для выполнения самостоятельных работ и при проведении практических занятий используются ПК в компьютерной классе кафедры. Используются программы Mathcad 12, MATLAB, а также программы, разработанные на кафедре.

Рабочую программу составил

MRC

В. С. Клевцов

Рецензент		
(представитель работодателя) специалист по с завод», Владимирская область, г. Камешково	сертификации AO «Kar	мешковский механический
д.т.н.		А. Р. Кульчицкий
Программа рассмотрена и одобрена на заседан	нии кафедры7 \mathscr{I}	424
Протокол № <u>1</u> от <u>30.08</u> . 22 года	/	
Заведующий кафедрой		А. Ю. Абаляев
Рабочая программа рассмотрена и одобрена		
на заседании учебно-методической комиссии строение	направления 13.04.03	- энергетическое машино-
Протокол № <u>1</u> от <u>30.08</u> . 22 года		
Председатель комиссии Председатель комисс	ии,	
д.т.н., профессор	Aug	А. Н. Гоц

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ) «ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА ПРОЧНОСТИ»

Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ в рабочую программу дисциплины «Теория поршневых двигателей»

образовательной программы направления подготовки 13.04.03 – энергетическое машиностроение, направленность: двигатели внутреннего сгорания

Номер	Внесены изменения в части/разделы	Исполнитель	Основание
изменения	рабочей программы	ФИО	(номер и дата протокола
			заседания кафедры)
1			
2			
Заведующий	й кафедрой/		