Министерство образования и науки Российской Федерации Государственное образовательное учреждение Высшего профессионального образования «Владимирский государственный университет Им. А.Г. и Н.Г. Столетовых» (ВлГУ)

Институт <u>Владимирский государственный университет им. А.Г. и Н.Г. Столетовых</u>

Факультет — <u>автотранспортный</u>

Кафедра — <u>Тепловые двигатели и энергетические установки (ТДиЭУ)</u>

«Моделирование теплового и напряженно-деформированного состояния деталей поршневых двигателей»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА

Направление подготовки — 13.04.03 — Энергетическое машиностроение Программа (профиль) - магистр Форма обучения — очное

Выполнение курсового проекта идет параллельно с выполнением заданий практических занятий и лабораторных работ в соответствии с методическими указаниями.

Выполнение курсового проекта включает:

Исследование теплового и напряженного состояния (ТНДС) поршневой группы.

При этом учитываются следующие факторы нагружения:

- ✓ температурное поле на режиме номинальной мощности и холостого хода;
- ✓ газовые силы;
- ✓ силы инерции;
- ✓ контакт поршневого пальца с шатуном и поршнем
- ✓ Физическая нелинейность материалов поршневой группы

Выполнение курсового проекта включает следующие этапы:

- 1. Создание трехмерной модели в среде трехмерного моделирования, а также чертеж модели с размерностью зон теплообмена.
- 2. Создание КЭМ поршневой группы, Задание кинематических граничных условий и граничных условий контакта, задание ГУ теплообмена, Задание свойств материала.
- 3. Решение стационарной задачи теплопроводности для режима холостого хода.
- 4. Решение стационарной задачи теплопроводности для режима номинальной мощности.
 - 5. Создание исследования переходного термического процесса.
- 6. Анализ температурного состояния поршня для обоих режимов, создание графиков изменения температуры на поверхности поршня в радиальном и осевом

направлении. Вычерчивание графиков термических результатов относительно времени.

- 7. Расчет НДС поршневой группы по первому (температурное и механическое нагружение) и второму варианту нагружения (температура, сила давления газов и силы инерция).
- 8. Анализ НДС пальца и поршневой головки шатуна, определение локальных зон (узлов конечно-элементной модели) с высокой концентрацией напряжений для каждой из деталей и определение запасов прочности для выбранных узлов.

Отчет по проделанной работе должен включать:

- 1. Титульный лист, оформление с названием отдельных пунктов расчета.
- 2. Цели расчета.
- 3. Факторы, участвующие в расчете. Объяснить какие факторы и как связаны с поршневой группой.
- 4. Этапы решения
- 5. Описание конечноэлементной модели (чертеж модели поршневой группы с размерностью зон, количество конечных элементов, тип элементов, описание свойств материала, граничные элементы кинематические и силовые эскизная схема приложенных граничных условий (давление, закрепление, температура, конвекция, инерция и т.д.), описание решателя программы и выбор расчетного шага.
- 6. Результаты расчетов (графики теплового расчета распределение температуры в поршне на различных расчетных ре жимах, графики распределение температуры на поверхности поршня в двух направлениях, результаты расчета напряженно-деформированного состояния, графики изменения НДС в поршне по высоте и диаметру)
- 7. Таблица расчетных напряжений для двух режимов.
- 8. Расчет и анализ прочности отдельных элементов поршневой группы (коэффициенты запаса прочности кромки камеры сгорания, днища сгорания, первой межкольцевой перемычки, соединения юбки и бобышки, пальца, головки шатуна и др. элементов в зависимости от конструкции модели, но не менее 5 элементов)

- 9. Анализ проведенного расчета, выводы и рекомендации, список литературы.
- 10. Качественно подготовленный расчет содержит 12-15 иллюстраций (вместе с графиками), 3-5 таблиц, и включает 6-10 листов печатного текста.

Пример части выполнения курсового проекта приведен в приложении.

ПРИЛОЖЕНИЕ

ЦЕЛЬ РАСЧЕТА: Исследование теплового и напряженного состояния (ТНДС) поршневой группы дизеля ЯМЗ-534. Учитывались следующие факторы нагружения:

- температурное поле на режиме номинальной мощности;
- газовые силы (Рz);
- силы инерции;

Первый вариант расчета учитывал одновременное воздействие всех трех факторов нагружения, второй не учитывал влияния газовых сил. Для решения использовался метод конечных элементов в трехмерной постановке. В модель включались поршень, палец, поршневая головка шатуна. Расчет включал следующие этапы:

- создание трехмерной модели в среде трехмерного моделирования КОМПАС:
- создание конечно-элементной модели поршневой группы;
- задание кинематических граничных условий и поверхностей контакта;
- задание граничных условий теплообмена;
- решение стационарной задачи теплопроводности;
- анализ температурного состояния поршня;
- расчет напряженно-деформированного состояния поршневой группы по первому и второму вариантам нагружения;
- анализ напряженного состояния поршня, пальца и поршневой головки шатуна, определение локальных зон (узлов конечно-элементной модели) с высокой концентрацией напряжений для каждой из деталей и определение запасов прочности для выбранных узлов.

Конечно-элементная модель поршневой группы.

Модель состояла из 44374 узлов и 224311 элементов. Базовым элементом являлся четырех узловой тетраэдр. Для обеспечения свободного деформирования входящих в модель деталей в ней использовались контактные конечные элементы. Кроме того использование контактных элементов позволяет моделировать условия натяга, то есть при расчете учитывать напряжения, возникающие при запрессовке втулки или пальца в поршневую головку шатуна.

Симметричность прилагаемой нагрузки относительно оси цилиндра позволило рассматривать только ½ часть

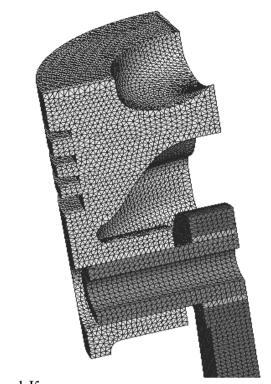


Рис. 1 Конечно-элементная модель поршня

поршня, с приложением соответствующих кинематических граничных условий к плоскостям сечений.

Значения ускорения поршня и Pz взяты из кинематического и теплового расчетов соответственно и составили; $j_{\pi} = 13376 \text{ м/c}^2$, $Pz = 15,7 \text{ M}\Pi a$.

При расчете теплового состояния поршня использовались граничные условия теплообмена III рода (α , Bt/(M^2 K) – коэффициент теплоотдачи с окружающей средой на поверхности поршня и T_{∞} , $^{\circ}C$ – температура окружающей среды, например, средняя за цикл температура газов), полученные по литературным источникам и результатам научно-исследовательских работ, проводимых на кафедре.

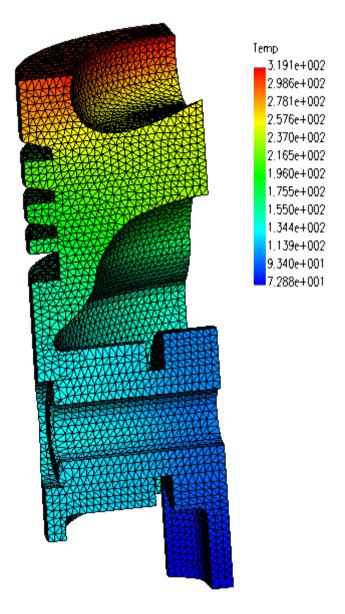
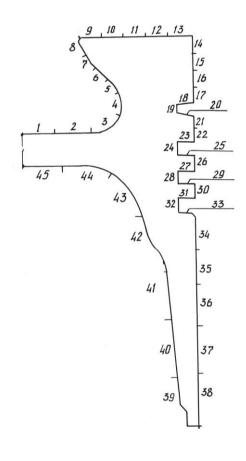
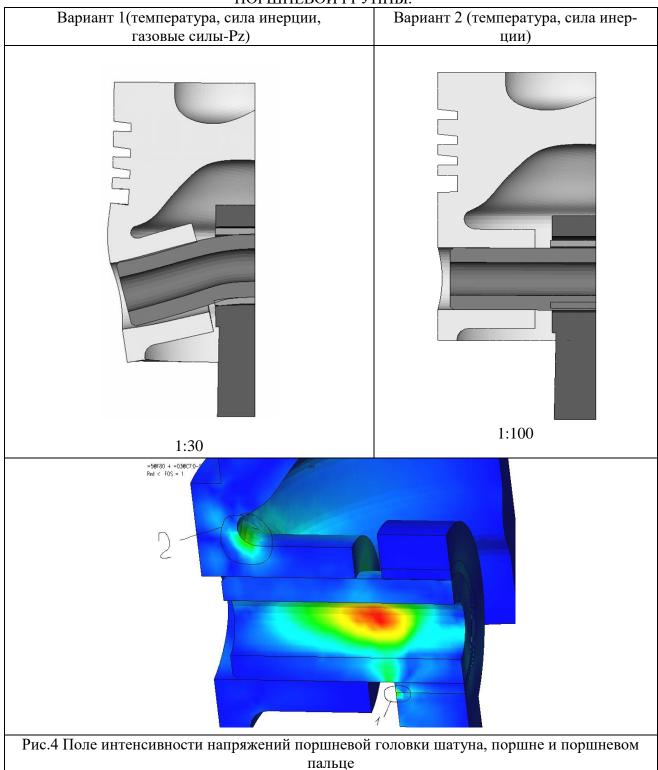




Рис. 2 Тепловое состояние поршня на режиме номинальной мощности

ГРАНИЧНЫЕ УСЛОВИЯ ТЕПЛООБМЕНА НА РЕЖИМЕ НОМИНАЛЬНОЙ МОЩНОСТИ							
	α , BT/(M^2 K)	T∞, K					
1	400,0	923,0					
	400,0	923.0					
3	400,0	923,0					
4	400,0	923.0					
2 3 4 5 6 7	700,0	973,0					
6	700,0	973,0					
7	700,0	973,0					
8	700,0	973,0					
9	650,0	923,0					
10	650,0	923,0					
11	650,0	923,0					
12	650,0	923,0					
13	650,0	923,0					
14	650,0	523,0					
15	650,0	523,0					
16	650,0	523,0					
17	650,0	523,0					
18	900,0	523,0					
19	0.0	503,0					
20	18000,0	473,0					
21	400,0	463,0					
22	400,0	463,0					
23	600,0	453,0					
24	0.0	453,0					
25	16000,0	453,0					
26	400,0	453,0					
27	400.0	453,0					
28	0,0	453,0					
29	14000,0	443,0					
30	400,0	433,0					
31	500,0	433,0					
32	0,0	423,0					
33	12000,0	423,0					
34	600,0	423,0					
35	600,0	423,0					
36	600,0	423,0					
37	600.0	423,0					
38	600,0 -	423,0					
39	250,0	363,0					
40	250,0	363,0					
41	250,0	363,0					
42	250,0	363,0					
43	250,0	363,0					
44	250,0	363,0					
46	250,0	363,0					
.0	250,0	505,0					

РЕЗУЛЬТАТЫ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОРШНЕВОЙ ГРУППЫ.

Значения тензора, главных и интенсивности напряжений представлены в таблице.

Область № 2

τ, c	σ_{x} ,	σ_y ,	σ_z ,	τ_{xy} ,	$\tau_{\mathrm{yz}},$	τ_{zx} ,	σ_1 ,	σ_2 ,	σ_3 ,			
	МПа	МПа	МПа	МПа	МПа	МПа	МПа	МПа	МПа			
Вариант 1	-350,1	-85,9	-75,2	0,058	-15,6	-40,9	-90,58	-112,7	-259,8			
Вариант 2	1,0	0,95	0	0,3	-0,2	0,4	1,1	0,5	0,3			
[ĺ	ĺ	ĺ	ĺ	ĺ						

Определение запаса прочности по критериям усталостного разрушения:

Определим амплитуды нормальных и касательных напряжений цикла нагружения:

$$\sigma_{xa} = (\sigma_{x \max} - \sigma_{x \min})/2 = (1 - (-350,1))/2 = 175,5$$

$$\sigma_{ya} = (\sigma_{y \max} - \sigma_{y \min})/2 = (0,95 + 85,9)/2 = 43,4$$

$$\sigma_{za} = (\sigma_{z \max} - \sigma_{z \min})/2 = (75,2)/2 = 37,6$$

$$\tau_{xya} = (\tau_{xy \max} - \tau_{xy \min})/2 = (0,3 - 0,058)/2 = 0,125$$

$$\tau_{xza} = (\tau_{xz \max} - \tau_{xz \min})/2 = (0,4 + 40,9)/2 = 20,65$$

$$\tau_{yza} = (\tau_{yz \max} - \tau_{yz \min})/2 = (-0,2 + 15,6)/2 = 7,7$$

Определим интенсивность амплитуд переменных напряжений цикла:

$$\sigma_{ia} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{xa} - \sigma_{ya})^2 + (\sigma_{ya} - \sigma_{za})^2 + (\sigma_{xa} - \sigma_{za})^2 + 6(\tau_{xya}^2 + \tau_{yza}^2 + \tau_{xza}^2)} = 141,7$$
 Запас прочности :

$$n = \frac{\sigma_{.1}}{\frac{K_{\sigma}}{\varepsilon_{\sigma}\beta_{\sigma}}\sigma_{ia} + \psi_{\sigma}\sigma_{1max}} = 2,3$$

 σ_{1max} – максимальное главное напряжение (P1)

 $K_{\sigma} = 1,2 - эффективный коэффициент концентрации напряжений при изгибе;$

 $\epsilon_{\sigma} = 0.80$ – коэффициент, учитывающий масштабный эффект изгибе;

 $\beta = 1, 1-$ коэффициент, учитывающий состояние поверхности;

 $\psi_{\sigma} = \sigma_{\text{-1}}/\sigma_{\text{B}} = 0.5$ — коэффициент, учитывающий влияние постоянной составляющей цикла напряжений на сопротивление усталости изгибе.

 $\sigma_{-1} = 450 M\Pi a -$ предел усталости материала;

 $\sigma_B = 900$ - предел прочности материала