Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт машиностроения и автомобильного транспорта

Кафедра Тепловые двигатели и энергетические установки

А.А. Гаврилов

Конспект лекций по дисциплине «Моделирование процессов в поршневых двигателях»

для студентов ВлГУ, обучающихся по направлению 13-04-03 - Энергомашиностроение

1-я лекция (2 часа).

Общие сведения о моделировании. Цели и области исследований с помощью моделей. Виды и классификация моделей. Физические и математические модели. Роль теорий подобия и размерностей.

Моделью обычно называют мысленное или материальное отображение явлений или свойств определенного объекта. Другими словами, модель- это образ, описание, структура или материальное тело, которые воспроизводят с той или иной мерой сходства явление или объект [12].

По способу воспроизведения (отображения).модели можно разделить на мысленные, абстрактно-материальные, материальные и абстрактные.

К мысленным моделям относятся те модели, с помощью которых в сознании человека создается образ явления или объекта.

К материальным моделям относятся специально созданные объекты, которые могут замещать исследуемый объект в той мере, в какой они соответствуют ему. Для определения этого соответствия используются основные положения «Теории подобия». Материальная модель должна обеспечивать получение новой информации об исследуемом объекте или явлении.

Абстрактно-материальные модели являются промежуточными между мысленными и материальными. К ним относятся чертежи, графики, знаки и т.п. Абстрактно-материальные модели носят условный характер и, несмотря на свою материальность, не могут самостоятельно замещать объект с целью получения о нем новой информации.

К абстрактным моделям относятся математические модели, которые подробно будут рассмотрены в последующих лекциях.

Перечисленные модели обычно разбивают на более конкретные виды. Модель всегда приближенно отображает объект или явление.

2-я лекция (2 часа).

Принципы и последовательность разработки математических моделей: расчётные схемы, принятие допущений, выбор методов математического описания процессов (объектов), выбор метода оптимизации. Оценка адекватности модели.

3-я лекция (2 часа).

Разработка и оформление программы расчета. Тестирование программ. Особенности моделирования процессов в поршневых двигателях. Краткие сведения о существующих отечественных и зарубежных программных комплексах.

Базовая математическая модель включает системы уравнений термодина-мических процессов, уравнения баланса энергии, сохранения массы, состояния и эмпирические зависимости. При описании массовых и тепловых потоков приняты индексы: c - цилиндр; s - впускной, а p - выпускной трубопроводы.

Наиболее информативным параметром, по которому можно оценивать адекватность модели преобразования теплоты в механическую работу в цилиндре, является давление рабочего тела. В течение цикла величина его зависит от изменения объёма внутри цилиндрового пространства (далее — текущего объёма) V, изменения массы рабочего тела при газообмене M_c , подвода теплоты, выделившейся при сгорании топлива Q_x , теплообмена со стенками внутрицилиндрового пространства (далее - теплообмена) Q_w и др. факторов. Для целенаправленного совершенствования процессов с целью повышения работы цикла необходимо иметь представление о степени влияния каждого из факторов на давление рабочего тела в цилиндре.

Зависимость давления рабочего тела в цилиндре от указанных выше факторов описывается функцией $p_c = f(V, M_c, Q_x, Q_w)$, (1)

производная которой по времени $d\tau$ представляет сумму частных производных:

$$\frac{dp_c}{d\tau} = \frac{\partial p_c}{\partial V} \frac{dV}{d\tau} + \frac{\partial p_c}{\partial M_c} \frac{dM_c}{d\tau} + \frac{\partial p_c}{\partial Q_x} \frac{dQ_x}{d\tau} + \frac{\partial p_c}{\partial Q_w} \frac{dQ_w}{d\tau}.$$
 (2)

Использование уравнения (2) позволяет получить результаты для оценки вклада в изменение давления рабочего тела в цилиндре в течение цикла от каждого из четырёх факторов (V, M_c, Q_x, Q_w) .

В дальнейшем будет использоваться условная запись уравнения (2) в виде
$$dp_c/d\tau = \left(dp_c/d\tau\right)_{V\,\text{var}} + \left(dp_c/d\tau\right)_{M_c\,\text{var}} + \left(dp_c/d\tau\right)_{O_v\,\text{var}} + \left(dp_c/d\tau\right)_{O_w\,\text{var}}. \tag{3}$$

4-я лекция (2 часа).

Моделирование в цилиндре процессов $\,$ газообмена и $\,$ сжатия (в дизеле, бензиновом и газовых двигателях).

На результаты расчета цикла газового двигателя существенное влияние оказывает элементарный состав применяемого топлива. Статистика показывает большую зависимость его от места добычи исходного сырья и технологии производства [10]. В табл. 1 приведены ориентировочные данные по элементарному составу 10-ти газовых топлив (доли δ_i десяти основных элементов: СН4 - метан; С2Н6 - этан; С3Н8 – пропан; С4Н10 – бутан; СпНт - тяжелые углеводороды; Н2 – водород; СО - оксид углерода; N2 – азот; СО2 - диоксид углерода; О2 - кислород)

Таблица 1

$N_{\underline{0}}$	Состав	CH4	C2H6	C3H8	C4H10	CnHm	Hu,
	Газ	H2	CO	N2	CO2	O2	кДж/м³
1	Сжатый	0,91	0,0296	0,0017	0,0055	-	35797.0
	природный	0,0014	0,0014	-	-	-	
2	Пропан	0,04	-	0,9	0,06	-	88476,2
	Автомобильный	-	-	-	-	-	
3	Пропан-бутан	-	-	0,5	0,5	-	102127,3
	Автомобильный	-	-	-	-	-	
4	Этан-пропан	-	0,09	0,85	0,06	-	87700,2

	автомобильный	-	-	-	-	-	
5	Водяной	-	-	-	-	-	11807,42
		0,5	0,5	-	-	-	
6	Генераторный	0,03	-	-	-	0,004	6494,5
	из торфа	0,15	0,28	0,464	0,07	0,002	
7	Генераторный из	0,036	-	ı	-	-	5136,94
	древесных чурок	0,144	0,18	0,54	0,09	0,01	
8	Генераторный из	0,009	-	ı	-	-	4713,75
	древесного угля	0,092	0,262	0,595	0,037	0,005	
9	Синтезгаз	0,52	-	ı	-	0,034	22207,0
		0,09	0,11	0,246	-	-	
10	Светильный	0,162	-	-	-	0,08	18017,0
		0,278	0,202	0,222	0,05	-	

Разнообразие элементарного состава газовых топлив оказывает соответствующее влияние на их плотность и параметры топливо-воздушной смеси. Плотность газового топлива вычисляется по уравнению

$$\rho_{gsz} = \rho_a \sum_{j=1}^{i=10} \delta_j \, \overline{\partial}_j \,,$$

где ρ_a – плотность воздуха при условиях сравнения; δ_j – доля j-го элемента в газовом топливе; $\overline{\partial}_j$ – отношение плотности j –го элемента в газовом топливе к плотности воздуха.

Значения отношений $\bar{\partial}_i$ приведены в табл. 2

Таблица 2

J	1	2	3	4	5	6	7	8	9	10
Элемент	CH4	C2H6	C3H8	C4H10	CnHm	H2	CO	N2	CO2	O2
$\overline{\overline{\partial}}_{j}$	0,554	1,048	1,5206	2,0042	2,0042	0,06952	0,9669	0,9673	1,5291	1,1053

Из табл. 1 также видно, что элементарный состав топлива существенно влияет на величину низшей теплоты сгорания H_{ug} , Дж/м³. Для газового топлива с достаточным приближением её можно рассчитать по уравнению [9] $H_{ug} = (35,7\,CH_4+63,3\,C_2H_6+90,9\,C_3H_8+119,7\,C_4H_{10}+146,2\,C_nH_m+10,8\,H_2+12,8\,CO)10^6$, где CH_4 , C_2H_6 , C_3H_8 , C_4H_{10} , C_nH_m , H_2 , CO- доли компонентов газового топлива (см. табл. 1).

Низшая теплота сгорания дизельного топлива $H_{ud} = 42,5 \cdot 10^6 \, \text{Дж/кг}$.

Принятие параметров, определяющих состав топливо-воздушной смеси, является важным этапом в подготовке и выполнении расчета цикла. Получение достоверных результатов зависит от правильного выбора значений удельного расхода газового топлива g_e , $m^3/(\kappa Bm \cdot u)$ и коэффициента избытка воздуха α , с учетом стехиометрического значения \overline{m}_{teor} , m^3 возд. / m^3 топл. Согласно статистике цикловая масса рабочего тела в цилиндре двигателя без наддува находится в диапазоне 0,9...1,05 грамм на 1 дм 3 рабочего объёма V_h , то есть

$$m_{cik} = \frac{g_e \, \rho_{gaz} \left(\alpha \, \overline{m}_{teor} + 1 \right)}{30 \, i \, n_e \, V_h} = 0.90...1,.05 \, \Gamma.$$

Поэтому, в первом приближении, для выбора параметров, определяющих состав газо-воздушной смеси, рекомендуется использовать соотношение

$$\alpha \overline{m}_{teor} g_e = (0,027...0,033) \frac{i n_e V_h}{N_e},$$

где N_e , кВт; ρ_{gaz} – плотность газа, кг/м³; α – принятый коэффициент избытка воздуха; i – количество цилиндров в двигателе; n_e – частота вращения коленчатого вала, мин $^{-1}$; V_h – рабочий объём цилиндра, дм³. Размерность \overline{m}_{teor} и g_e должна быть одинаковой (в объёмных или массовых единицах).

В газовых двигателях с наддувом величина ориентировочной массы циклового заряда m_{cik} повышается в соответствии со степенью повышения давления π_k .

Основу математической модели процессов в цикле газового двигателя составляет математическая модель цикла поршневого двигателя с газотурбинным наддувом, работающего на бензине или дизельном топливе [1]. В данном описании дополнительно отмечены особенности, обусловленные большим различием состава газо-воздушной смеси, поступающей в цилиндры в процессе газообмена.

Для вывода уравнения, учитывающего изменение давления в цилиндре от объёма рабочего тела $\left(\frac{dp_c}{d\tau}\right)_{V\,\text{var}} = \frac{\partial p_c}{\partial V} \frac{dV}{d\tau}$, используется уравнение политропы

 $p \, V^k = const$, где значение показателя k зависит от состава и процесса изменения состояния рабочего тела.

Производная определяется при постоянной массе рабочего тела M_c , отсутствии подвода теплоты и теплообмена $Q_x = Q_w = 0$

$$V^{k} \frac{\partial p_{c}}{\partial V} \frac{dV}{d\tau} + k p_{c} V^{k-1} \frac{dV}{d\tau} = 0.$$

После преобразований

$$\frac{\partial p_c}{\partial V} = -\frac{k p_c}{V}, \text{ a} \qquad \left(\frac{dp_c}{d\tau}\right)_{V} = -\frac{k p_c}{V} \frac{dV}{d\tau}, \qquad (4)$$

где производная dV/d au вычисляется по уравнениям кинематики кривошипно-шатунного механизма $\frac{dV}{d au} = \omega \, F_p \, R \bigg(\sin \varphi + \frac{\lambda}{2} \sin 2 \, \varphi \bigg). \ \, \text{В} \ \, \text{нём} \ \, \omega \, \text{-} \ \, \text{угловая}$ скорость; F_p - площадь поршня; $\lambda = R/L$; R - радиус кривошипа; L - длина шатуна.

Уравнение для определения **второго** слагаемого в (3) $\left(\frac{dp_c}{d\tau}\right)_{M_c \text{ var}} = \frac{\partial p_c}{\partial M_c} \frac{dM_c}{d\tau}$, учитывающего изменение давления в цилиндре от изменения массы рабочего

тела в процессе газообмена, формируется при условии V = const и $Q_x = Q_w = 0$, то есть, за элементарный промежуток времени изменение давления обусловлено

только перемещением масс продуктов сгорания и свежего заряда между цилиндром и трубопроводами. Поэтому для определения частной производной $\partial p_c/\partial M_c$ используется уравнение баланса приращений внутренних энергий

$$\frac{dU_c}{d\tau} = \frac{dU_p}{d\tau} + \frac{dU_s}{d\tau},\tag{5}$$

где U_c - внутренняя энергия рабочего тела в цилиндре; U_p, U_s - внутренние энергии продуктов сгорания и свежего заряда, участвующих в массообмене между выпускным и впускным трубопроводами. В процессе газообмена значения температуры T и удельной теплоёмкости c_v в формуле $U=c_vTM$ зависят от направления перетекания рабочего тела между цилиндром и трубопроводами. Так как расход $G=dM/d\tau$, то обозначив расход продуктов сгорания - G, а свежего заряда - G_1 , уравнение для приращения массы рабочего тела в цилиндре, учитывающее возможные перетекания его между цилиндром и трубопроводами принимает вид

$$dM_{c}/d\tau = -G_{cp} + G_{pc} - G_{cs} + G_{sc} + G_{1sc} - G_{1cs},$$
(6)

где G_{cp}, G_{pc} - расходы продуктов сгорания при их истечении в выпускной трубопровод и их возможном $(p_P \succ p_c)$ возврате в цилиндр; G_{cs}, G_{sc} - расходы продуктов сгорания при забросе $(p_c \succ p_s)$ во впускной трубопровод в период перекрытия клапанов и их возврате в цилиндр; G_{1sc}, G_{1cs} - расходы свежего заряда при впуске и обратном выбросе $(p_c \succ p_s)$ рабочего тела из цилиндра во впускной трубопровод (в такте сжатия).

Левая часть (5) в виде $\frac{dU_c}{d\tau} = \frac{d[(c_v)_c T_c M_c]}{d\tau}$, с учётом уравнения состояния $MT = p \ V/R$, преобразуется к виду

$$\frac{dU_c}{d\tau} = \frac{(c_v)_c V}{R} \frac{dp_c}{d\tau}; \tag{7}$$

Составляющие правой части уравнения (5) с учётом (6) принимают вид:

$$\frac{dU_{p}}{d\tau} = \frac{\partial U_{cp}}{\partial M_{cp}} \frac{dM_{cp}}{d\tau} - \frac{\partial U_{pc}}{\partial M_{pc}} \frac{dM_{pc}}{d\tau} = \frac{\partial \left[(c_{v})_{c} T_{c} M_{cp} \right]}{\partial M_{cp}} G_{cp} - \frac{\partial \left[(c_{v})_{p} T_{p} M_{pc} \right]}{\partial M_{pc}} G_{pc}, \tag{8}$$

$$\frac{dU_{s}}{d\tau} = \frac{\partial \left[(c_{v})_{c} T_{c} M_{cs} \right]}{\partial M_{cs}} G_{cs} - \frac{\partial \left[(c_{v})_{s} T_{s} M_{sc} \right]}{\partial M_{sc}} G_{sc} + \frac{\partial \left[(c_{v})_{s} T_{s} M_{1sc} \right]}{\partial M_{1sc}} G_{1sc} - \frac{\partial \left[(c_{v})_{c} T_{c} M_{1cs} \right]}{\partial M_{1cs}} G_{1cs}.$$
(9)

После подстановки в (5) уравнений (7), (8), (9), приняв температуры T_c, T_p, T_s и удельные изохорные теплоёмкости $(c_v)_c, (c_v)_p, (c_v)_s$ при истечении рабочего тела постоянными, после преобразований уравнение для определения изменения давления в цилиндре, вследствие изменения массы M_c при выпуске и впуске рабочего тела, имеет вид

$$\left(\frac{dp}{d\tau}\right)_{M \text{ var}} = \frac{R}{(c_v)_c V} \left(-(c_v)_c T_c G_{cp} + (c_v)_p T_p G_{Pc} + (c_v)_s T_s \left(G_{sc} + G_{1sc}\right) - (c_v)_c T_c \left(G_{sc} + G_{1sc}\right)\right), \quad (10).$$

где R – газовая постоянная (Дж/(кг·град)); G, G₁ - расходы отработавшего газа и свежего заряда через клапаны в процессах выпуска и впуска (кг/с).

Начало процесса сгорания определяется углом задержки воспламенения смеси. В такте сжатия в момент подачи искры или начала впрыска дизтоплива, который определяется углом опережения зажигания (впрыска топлива) $\Delta \phi_f$ °п.к.в. до ВМТ, вычисляется угол (время) задержки воспламенения смеси ϕ_i по формуле, разработанной на кафедре ТД и ЭУ ВлГУ [2] по материалам [3],

$$\varphi_i = 6n_e B_i \alpha w_p^{0.754} p_f^{0.242} T_f^{0.270} . \tag{11}$$

Вычисленное значение угла φ_i используется для определения начала резкого нарастания давления в цилиндре (начало подвода теплоты). В формуле (11) p_f, T_f - давление и температура рабочего тела в момент подачи искры; w_p – средняя скорость поршня; α – коэффициент избытка воздуха; B_i – корректирующий коэффициент.

5-я лекция (2 часа).

Моделирование процессов смесеобразования, сгорания и расширения в двигателях с воспламенением топливо-воздушной смеси от искры и сжатия.

В двигателях с внутренним смесеобразованием и газодизелях, а именно, с впрыском топлива в цилиндр в такте впуска при искровом зажигании смеси или в такте сжатия в двигателях с воспламенением от сжатия, необходимо учитывать изменение массы рабочего тела в цилиндре в процессе впрыска топлива.

Сгорание топливовоздушной смеси в цилиндре двигателя — это быстро протекающий и очень сложный процесс. Существующие модели процесса сгорания топлива пока не могут с высокой степенью достоверности описать протекающие реакции и выделяющуюся при этом энергию. Однако, при исследовании циклов во многих случаях можно использовать более простые модели процесса сгорания топлива в цилиндре, которые при принимаемых допущениях должны обеспечивать получение результатов, удовлетворяющих целям исследования.

За основу модели процесса выгорания топлива в цилиндре приняты уравнения баланса энергии и характеристик тепловыделения [1, 4].

Для определения третьего слагаемого в (3)
$$\left(\frac{dp_c}{d\tau} \right)_{Q_x \text{ var}} = \frac{\partial p_c}{\partial Q_x} \frac{dQ_x}{d\tau}$$

используется уравнение баланса энергии

$$Q_{x} = (U_{x} - U_{c1}) + p_{c} V, (12)$$

в котором: Q_x - количество теплоты, выделившейся при сгорании топлива, изменяется в соответствии с характеристикой тепловыделения (выгорания топлива) x (эмпирической или экспериментальной), т.е. $Q_x = xQ_z$, а приращение

$$\frac{dQ_x}{d\tau} = Q_z \frac{dx}{d\tau},\tag{13}$$

где Q_z - количество теплоты, выделившейся при сгорании цикловой дозы топлива; U_{c1}, U_x - внутренние энергии рабочего тела в цилиндре в начале подвода теплоты и в данный момент процесса сгорания. Величина приращения внут-

ренней энергии U_x – U_{c1} изменяется также в соответствии с характеристикой тепловыделения

$$\frac{d(U_x - U_{c1})}{d\tau} = (U_x - U_{c1})\frac{dx}{d\tau}.$$
 (14)

В конце процесса сгорания

$$Q_x = Q_z = \xi_z \left(H_u - \Delta H_u \right) m_f / M_1,$$

где ξ_z - коэффициент использования теплоты; H_u - низшая теплота сгорания топлива, Дж/кг; m_f - цикловая масса топлива, кг; M_1 - масса свежего заряда; ΔH_u - неполнота выгорания топлива (в бензиновом и газовом двигателях при $\alpha < 1$, а в дизеле при $\alpha < 1,3$) Дж/кг.

В газодизеле подведенная теплота равна сумме теплоты от сгорания газового топлива Q_{zg} и дизельного Q_{zd}

$$Q_z = Q_{zg} + Q_{zd} \,.$$

Таким образом, производная для третьего слагаемого в уравнениях (2) и (3) с учётом уравнений (13) и (14) принимает вид

$$\left(\frac{dp_c}{d\tau}\right)_{Q_z \text{ var}} = \frac{1}{V} \left[Q_z - \left(U_x - U_{c1}\right)\right] \frac{dx}{d\tau}.$$
 (15)

где $dx/d\tau$ - скорость выделения теплоты в процессе сгорания топлива.

Внутренние энергии рабочего тела в цилиндре газового двигателя в момент воспламенения топливо-воздушной смеси и в процессе её сгорания определяются с учетом содержания в рабочем теле продуктов сгорания, воздуха и топлива. Изменение состава рабочего тела в процессе сгорания происходит в соответствии со скоростью выгорания топлива $dx/d\tau$ или $dx/d\varphi$.

Достоверные характеристики тепловыделения получают при обработке экспериментальных индикаторных диаграмм. При математическом моделировании процесса сгорания в газовом двигателе с зажиганием смеси от искры обычно используют эмпирическую закономерность выгорания топлива, которая описывается экспонентой [3, 4]

$$x = 1 - e^{-6.908 \left(\frac{\varphi_x}{\varphi_z}\right)^{m+1}},\tag{16}$$

где m - показатель характера сгорания; ϕ_x/ϕ_z – отношение текущего угла п.к.в. φ_x к продолжительности сгорания φ_z (является линейным). В двигателях с воспламенением от сжатия (газодизели) это отношение нелинейно. Поэтому отношение ϕ_x/ϕ_z целесообразно заменить отношением $Q_{\phi} \phi_x/Q_z$, где Q_{ϕ} – значение теплоты, выделившееся за 1° п.к.в. или промежуток $\Delta \phi$. Принятие зависимости $Q_{\phi} = f(\phi_x)$ позволяет корректировкой текущего значения подведенной теплоты Q_{ϕ} , достигнуть более близкого совпадения расчетной и опытной характеристик тепловыделения x.

С учётом отмеченного, относительная доля теплоты, выделившейся к рассматриваемому моменту времени $x = Q_x / Q_z$ в газодизеле (характеристика тепловыделения) вычисляется по уравнению

$$x = 1 - e^n \,, \tag{17}$$

 $x = 1 - e^n \,, \tag{17}$ где $n = -6.908 \bigg(\frac{Q_{\phi d} \, \varphi_d + Q_{\phi g} \, \varphi_x}{Q_z} \bigg)^{m+1} \,; \ Q_{\phi d} \,, Q_{\phi g} \,-\,$ текущие количества теплоты, выде-

лившиеся при сгорании дозы дизельного топлива и газа за 1° п.к.в.; $\phi_{\scriptscriptstyle d}, \phi_{\scriptscriptstyle x}$ – текущие углы п.к.в. выгорания дозы дизельного и газового топлив; m - показатель характера сгорания.

Скорость выделения теплоты $dx/d\phi$ (выгорания топлива), а в данной модели доля теплоты, выделившейся за один градус поворота коленчатого вала, $^{\mathrm{O}}\Pi$.K.B. $\Delta x = x_{\varphi} - x_{\varphi-1}$.

При моделировании теплообмена между рабочим телом и стенками внутри цилиндрового пространства предполагается, что при этом изменяется тольэнергия рабочего тела. Исходное внутренняя $Q_{_W} = \Delta U_{_C} = \Delta [(c_{_V})_{_C} T_{_C} M_{_C}] = \Delta [(c_{_V})_{_C} p_{_C} V/R]$ после дифференцирования преобразуется к виду

$$\left(\frac{dp_c}{d\tau}\right)_{Q_w \text{ var}} = \frac{\partial p_c}{\partial Q_w} \frac{dQ_w}{d\tau} = -\frac{R}{(c_v)_c} \frac{dQ_w}{d\tau} = -\frac{(k-1)}{V} \frac{dQ_w}{d\tau}.$$
(18)

Теплота, участвующая в теплообмене между рабочим телом и стенками внутрицилиндрового пространства вычисляется по формуле Ньютона-Рихмана $Q_{w} = \alpha_{w} \Sigma [F_{cx} (T_{cx} - T_{vx})],$

где α_{w} - коэффициент теплоотдачи; F_{cx} - площади поверхностей поршня, крышки цилиндра и зеркала цилиндра в данный момент времени; T_{cx} - текущая температура рабочего тела; T_{vx} - температуры соответствующих поверхностей внутрицилиндрового пространства.

> Температура рабочего тела в цилиндре на каждом элементарном промежутке времени определяется по уравнению состояния

$$T_c = p_c V / (RM_c). ag{19}$$

6-я лекция (2 часа).

Моделирование процессов в трубопроводах двигателей без наддува и с турбонаддувом

Для моделирования процессов в трубопроводах используются уравнения баланса энтальпий (энергий), производные от которых имеют вид:

- выпускной трубопровод
$$\frac{dI_p}{d\tau} = \sum_{i=1}^i \left(\frac{dI_{cp}}{d\tau} - \frac{dI_{pc}}{d\tau} \right) - \frac{dI_{po}}{d\tau} + \frac{dE_p}{d\tau};$$
 (20)

- впускной трубопровод
$$\frac{dI_s}{d\tau} = \sum_{j=1}^{i} \left(\frac{dI_{cs}}{d\tau} - \frac{dI_{sc}}{d\tau} - \frac{dI_{1sc}}{d\tau} + \frac{dI_{1cs}}{d\tau} \right) + \frac{dI_{1os}}{d\tau} + \frac{dE_s}{d\tau}, \quad (21)$$

где $I_{p}, I_{cp}, I_{pc}, I_{po}$ - энтальпии газов в трубопроводе, выходящих из цилиндра, возвращающихся в цилиндр (если $p_{\scriptscriptstyle p} > p_{\scriptscriptstyle c}$), выходящих из выпускного трубопровода в атмосферу (или турбину);

 $I_s, I_{cs}, I_{sc}, I_{lsc}, I_{los}$ - энтальпии рабочего тела во впускном трубопроводе, заброшенных из цилиндра продуктов сгорания, продуктов, возвратившихся обратно в цилиндр, свежего заряда, поступившего в цилиндр при впуске, вышедших из цилиндра в такте сжатия (обратный выброс), поступивших в трубопровод из атмосферы или компрессора; E_p, E_s - кинетические энергии потоков рабочего тела в трубопроводах, которые целесообразно учитывать при длине трубопроводов $l_{TP} > 6 \, d_{TP}$; i,j - количество и номер цилиндров, подсоединённых к трубопроводу.

Подставив в (20) и (21) значения энтальпий, после дифференцирования и преобразований получим уравнения для приращений давлений рабочего тела в трубопроводах:

$$\frac{dp_{p}}{d\tau} = \frac{R}{V_{p}} \left(\sum_{j=1}^{i} \left[\frac{(c_{p})_{c}}{(c_{p})_{p}} G_{cp} T_{c} \right] - \sum_{j=1}^{i} \left(G_{pc} T_{p} \right) - G_{po} T_{p} + \frac{E_{p}}{(c_{p})_{p}} \right); \tag{22}$$

$$\frac{dp_s}{d\tau} = \frac{R}{V_s} \left[G_k T_k - \sum_{j=1}^i \left(G_{1sc} + G_{sc} \right) T_s + \frac{(c_p)_c}{(c_p)_s} \sum_{j=1}^i \left(G_{1cs} + G_{cs} \right) T_c + \frac{E_s}{(c_p)_s} \right], \tag{23}$$

где $(c_p)_p, (c_p)_s$ - уделдьные изобарные теплоёмкости газов и свежего заряда; V_p, V_s - объёмы трубопроводов; G_k, T_k - расход и температура, определяющие значение энтальпии I_{los} свежего заряда, поступающего во впускной трубопровод из атмосферы (от нагнетателя); G_{po} - расхода газа в атмосферу (турбину), кг/с.

Приращение температур рабочего тела в трубопроводах вычисляется по уравнениям:

$$\frac{dT_P}{d\tau} = \frac{T_P R}{p_P(c_p)_p} \frac{dp_P}{d\tau}; \qquad (24)$$

$$\frac{dT_s}{d\tau} = \frac{T_s R}{p_s(c_p)_s} \frac{dp_s}{d\tau}.$$
 (25)

Уравнения (4, 6, 7, 10, 11, 15, 17, 18, 22, 23, 24, 25) составляют основу квазистационарной математической модели цикла поршневого двигателя. Система дифференциальных уравнений решается методом Эйлера.

Для перехода к производной по углу поворота коленчатого вала $dp/d\varphi$, более удобной при моделировании процессов в поршневом двигателе, используется зависимость $d\varphi = \omega d\tau = 6 \, n_d \, d\tau$, где $\omega = d\varphi/d\tau = 6 \, n_d$ - угловая скорость, °n.к.в./c; n_d - частота вращения вала, мин $^{-1}$.

Приращение кинетической энергии движущегося по трубопроводу рабочего тела связано с расходом зависимостью

$$\frac{dE}{d\tau} = \frac{\partial E}{\partial M} \frac{dM}{d\tau} = \frac{G^2}{2} \left(\frac{R T_{TP}}{F_{TP} p_{TP}} \right)^2 \frac{dM}{d\tau} = \frac{G^3}{2} \left(\frac{R T_{TP}}{F_{TP} p_{TP}} \right)^2. \tag{26}$$

Расходы рабочего тела через клапаны, входные и выходные сечения трубопроводов (турбокомпрессора) вычисляются по формуле

$$G = \mu F \psi p / \sqrt{RT}$$
,

где ψ – функция, зависящая от отношения давлений:

$$\begin{cases} \psi = \sqrt{\frac{2k}{k-1}} \left[\left(\frac{p_O}{p} \right)^{\frac{2}{k}} - \left(\frac{p_O}{p} \right)^{\frac{K+1}{k}} \right], \mathring{a} \tilde{n} \ddot{e} \grave{e} \beta = \frac{p_O}{p} > \beta_{\tilde{E}D}; \\ \psi = \sqrt{k \left(\frac{2}{k+1} \right)^{\frac{K+1}{k-1}}}, \mathring{a} \tilde{n} \ddot{e} \grave{e} \beta \leq \beta_{\tilde{E}D}; \end{cases}$$

 μ – коэффициент расхода; F – площадь сечения отверстия; p, T – давление и температура в резервуаре откуда идет истечение; p_o – давление в объеме (среде), куда идет истечение.

Зависимость коэффициента расхода через клапан от перемещения клапана описывается полиномом $\mu_{\mathit{KL}} = 1,06 - B \; h_{\mathit{KL}}$. В программе расчёта задаётся среднее за цикл значение $\mu_{\mathit{KL}\; cp}$, по которому вычисляется коэффициент полинома B

$$B = (1,06 - \mu_{KL cp}) / h_{KL cp}$$
.

При моделировании газотурбинного наддува в цикле газового двигателя принято, что компрессор нагнетает чистый воздух. Поэтому результаты расчета цикла газового двигателя будут близкими к реальным, если отношение (массовых) расхода топлива G_f к расходу свежего заряда будет меньше 0,1, т.е.

 $G_f/(G_a+G_f) \prec 0,1$. На двигателях, использующих генераторный газ, наддув не применяется.

При моделировании цикла в двигателе агрегат наддува представляется в виде «черного ящика», т.е. используются только входные и выходные параметры: расходы, давления, КПД, частота вращения ротора [5]. Передача энергии от выпускных газов к свежему заряду через турбокомпрессор происходит по схеме:

$$E_t \to E_{tk} \to E_k$$

Ротор турбокомпрессора, обладающий большим запасом кинетической энергии E_{tk} , получает от выпускных газов через турбину добавочную энергию E_t и через компрессор в количестве E_k передает ее свежему заряду. За промежуток времени $\Delta \tau$ этот процесс описывается уравнением

$$\frac{\Delta E_{ik}}{\Delta \tau} = \frac{\Delta (E_i - E_k)}{\Delta \tau}.$$
 (27)

Кинетическая энергия ротора ТК при установившемся вращении

$$E_{tk} = \frac{J_{tk} \, \omega_{tk}^2}{2},$$

где J_{tk} - момент инерции ротора (кг·м²) для радиально-осевой турбины определяется по эмпирической формуле $J_{tk} = d_t^{4,74} \cdot 10^{-6}$ [11];

 d_t — диаметр рабочего колеса турбины, см; $\omega_{tk} = \pi n_{tk}/30$ - угловая скорость вращения ротора турбокомпрессора.

При расчете цикла за промежуток времени $\Delta \tau$ обычно принимают угол поворота коленчатого вала $\Delta \phi$ °п.к.в. Для 1°п.к.в. $\Delta \tau = \Delta \phi/(6n_e)$. Тогда энергия, передаваемая газами турбине

$$E_{t} = \frac{G_{t} L_{t} \eta_{t} \Delta \varphi}{6n_{e}}; \qquad L_{t} = \frac{k_{t}}{k_{t} - 1} R T_{t} \left[1 - \left(\frac{p_{to}}{p_{t}} \right)^{\frac{k_{t} - 1}{k_{t}}} \right], \qquad (28)$$

где G_{t}, L_{t} - расход и удельная адиабатная работа газа в турбине; p_{to} - давление газа за турбиной; p_{t} - давление перед турбиной ($p_{t} = p_{p}$); η_{t} - КПД турбины.

Для определения текущего значения энергии $E_{\it k}$ используется коэффициент запаса кинетической энергии, вычисляемый по средним за цикл параметрам на расчётном режиме работы двигателя $K_{\it tk} = \left(E_{\it tk~cp} + E_{\it t~cp}\right)\!/E_{\it k~cp}$.

Тогда текущая энергия, переданная колесу компрессору от ротора

$$E_k = E_{tk}/K_{tk} .$$

Соответствующая энергия, переданная от колеса компрессора свежему заряду за промежуток $\Delta \phi$ равна

$$E_k = \frac{G_k L_k \Delta \varphi}{6n_e \eta_k}; \qquad L_k = \frac{k}{k-1} R T_O \left[\left(\frac{p_k}{p_{ok}} \right)^{\frac{k-1}{k}} - 1 \right], \qquad (29)$$

где G_k , η_k , L_k - расход воздуха, КПД компрессора и удельная адиабатная работа; k - показатель адиабаты (политропы) сжатия в компрессоре; p_{ok} , p_k - давления воздуха перед компрессором и после компрессора (в коротких трубопроводах и без охлаждения воздуха после компрессора $p_k = p_s$).

7-я лекция (2 часа).

Использование характеристики компрессора для анализа совместной работы двигателя и ТКР. Аппроксимация характеристики для использования в программе расчёта цикла двигателя с наддувом.

При наличии универсальной характеристики компрессора текущие значения G_k и η_k определяются с её использованием. Методика применения характеристики базируется на уникальной особенности отношения $(G_k/\eta_k)_x$, вычисленного при постоянном значении степени повышения давления в компрессоре $\pi_k = const$ на характеристике компрессора возрастать с увеличением расхода воздуха G_k . Теоретически это отношение представляет предельный расход идеального газа на данном режиме работы центробежного компрессора. При расчете цикла двигателя из уравнения (15) вычисляется отношение $\left(\frac{G_k}{\eta_k}\right)_2 = \frac{6n_e E_k}{\Delta \phi L_k}$, а характеристика компрессора для

практического использования перестраивается в графики зависимости $(G_k/\eta_k)_x = f(G_k,\pi_k)$. Значения G_k и η_k берутся в точках пересечения линии $\pi_k = const$ с кривыми $\eta_k = const$ начиная с границы помпажа. Полученные отношения $(G_k/\eta_k)_x$ аппроксимируются полиномами не четвёртой степени.

Если рассчитываются расходы отработавших газов через колесо турбины и минуя ее через перепускной жиклер (регулирование наддува перепуском газа минуя турбину) с целью определения диаметра отверстия на расчетном режиме (см. п. 5.8), то в этом случае промежуток времени увеличивают $\Delta \tau = \omega_e^{-1}$, где угловая скорость вращения вала двигателя $\omega_e = \pi n_e/30$ (рад/с). Тогда уравнения энергии (28) и (29) принимают вид

$$E_{t} = \frac{G_{t}L_{t}\eta_{t}}{\omega_{e}} \qquad \qquad u \qquad E_{k} = \frac{G_{k}L_{k}}{\eta_{k}\omega_{e}}. \tag{30}$$

8-я лекция (2 часа).

.Использование программы расчёта цикла для выбора параметров перепуска газа минуя турбину, фаз газораспределения и др.

9-я лекция (2 часа).

Перспективы разития методов расчета процессов в поршневых двигателях.

Литература

- 1. Гаврилов А.А. Влияние внешних факторов на давление рабочего тела в цикле поршневого двигателя. / А.А. Гаврилов, А.Н. Гоц// Материалы V-ой Украинской науч. техн. конференции с междунар. участием. Первомайск, 2013. С. 52-59.
- 2. *Гаврилов А.А.* Продолжительность задержки воспламенгенгия топливовоздушной смеси в поршневых двигателях / А.А. Гаврилов, А.Н. Гоц // Фундаментальные исследования, №6 (4), 2014. .С. 703-708. ISSN 1817-7339.
- 3. *Кавтарадзе Р.З.* Теория поршневых двигателей. Специальные главы. Учебник для вузов.-М.: ИРзд-во МГТУ им. Н.Э. Баумана,2008.-720с. (ISBN 978-5-7038-3086-4)
- 4. Вибе И.И. Новое о рабочем цикле двигателя внутреннего сгорания.-М.: Машиностроение, 1961. - 240 с.
- 5. *Гаврилов А.А.* Модель турбонаддува в цикле двигателя с переменным давлением воздуха на впуске / А.А. Гаврилов, А.Н. Гоц // Фундаментальные исследования, №8 (часть 1), 2013. .С. 24-28. Библиогр. 28. ISSN 1817-7339.

- 6. Двигатели внутреннего сгорания. Кн.1. Теория рабочих процессов: Учебник для вузов/ В.Н. Луканин, К.А. Морозов, А.С. Хачиян и др.; Под ред. В.Н. Луканина.-М.: Высш.шк., 2005.-479 с.
- 7. Двигатели внутреннего сгорания: Кн.3. Компьютерный практикум. Моделирование процессов в ДВС: Учебник для вузов / В.Н. Луканин, М.Г. Шатров, Г.Ю. Кричевская и др.; Под ред. В.Н. Луканина и М.Г. Шатрова.- М.: Высш. шк., 2005.-414 с.
- 8. Гаврилов А.А., Игнатов М.С., Эфрос В.В. Расчет поршневых двигателей внутреннего сгорания. Владимир, 2003. 102 с.
- 9. Колчин А.И., Демидов В.П. Расчет автомобильных и тракторных двигателей: Учеб. пособие для вузов.- М.: Высш. шк., 2002.- 496 с.
- 10. Коллеров Л.К. Газовые двигатели поршневого типа.- М.: Машиностроение, 1968г.
- 11. Турбокомпрессоры для наддува дизелей: Справочное пособие. Л.: Машиностроение, 1975. 200 с.
- 12. Круглов М.Г., Меднов А.А. Газовая динамика комбинированных двигателей внутреннего сгорания.-М.: Машиностроение, 1988.- 360с.