Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

ООО «Новые технологии лазерного термоупрочнения»

Евстюнин Григорий Анатольевич Петров Александр Васильевич

Методические указания к ЛАБОРАТОРНЫМ ЗАНЯТИЯМ ПО ДИСЦИПЛИНЕ «ЛАЗЕРНЫЕ МИКРО- И НАНОТЕХНОЛОГИИ»

для студентов ВлГУ,

обучающихся по направлению 200500.68 «Лазерная техника и лазерные технологии»

Владимир, 2014

Оглавление

Введение
Порядок выполнения лабораторной работы4
Лабораторная работа №1 «Определение класса опасности лазерных
комплексов»
Лабораторная работа №2 «Свойства лазерного излучения. Определение
длины волны лазерного излучения »13
Лабораторная работа №3 «Получение тонких пленок методом лазерной
абляции. Сравнительный анализ кольцевых зон в атмосфере воздуха и в
вакууме »
Лабораторная работа № 4 «Изучение влияния поляризации лазерного луча
на лазерную модификацию поверхности тонких пленок »
Лабораторная работа № 5 «Определение ближнего/дальнего порядка
наноструктурирования поверхности по результатам растровой
электронной микроскопии»28
Лабораторная работа №6 «Контактный режим сканирования атомно-
силового микроскопа»
Лабораторная работа №7 «Получение наночастиц методом лазерной
абляции в жидкость»40
Лабораторная работа №8 «Измерение размеров частиц в коллоидном
растворе»
Лабораторная работа №9 «Статистическая обработка результатов
экспериментов »
Заключение
Рекомендательный библиографический список

Введение

В последнее время наблюдается значительный прогресс в развитии методов синтеза и исследования физических свойств объектов в области пространственного наноразмерного масштаба. Интерес к наноструктуированным материалам возникает вследствие проявлений у них необычных свойств и рекордных характеристик. В основе такого поведения лежит тот факт, что с каждым свойством вещества связан некоторый характерный критический пространственный параметр определенного явления: длина свободного пробега электрона, расстояние тепловой диффузии, размер домена или доменной стенки, диаметра Франка-Рида для скольжения дислокаций, длина волны электрона де Бройля и т.п. [1-3].

В наноструктурах комбинация этих параметров может проявляться различными способами, что аналогично фазовым превращениям вещества. Но в данном случае роль термодинамического параметра, управляющего состоянием среды, фактически выполняет размер синтезируемых наноструктур; важен также и способ их получения.

Это приводит к уникальным возможностям для разработки новых физических принципов создания технологии будущего – нанотехнологий, т.е. производству материалов и изделий с необычными/рекордными характеристиками, которые состоят из различного типа структур с размерами менее 100 нм.

Но, несмотря на значительный прогресс, достигнутый в области нанотехнологий, до сих пор отсутствуют эффективные подходы для управления механизмом образования и роста наноструктур с заданной морфологией. В конечном итоге они должны привести к направленному синтезу материалов с заданными физико-химическими свойствами.

Особая роль здесь принадлежит исследованию различных механизмов синтеза наноструктур [4]. Это важно не только для определения опти-

мальных условий синтеза при разработке новых технологий получения данных наноструктур, но и для понимания физических принципов, на основе которых реализуются процессы самоорганизации в наносистемах [5-7]. Именно эти явления самоорганизации имеют фундаментальное значение для создания новых материалов наноиндустрии, особенно в композициях углерода с нанопорошками различных металлов [8].

Развитие подобных методов и технологий, особенно в части получения функциольных наноматериалов, – одно из принципиальных направлений современной нанотехнологии [1-8]. Таким образом, появляется возможность решения принципиальной проблемы по синтезу новых материалов с требуемой морфологией, что позволит варьировать физикомеханическими свойствами [9]. В настоящее время основными направлениями лазерного синтеза наноструктурированных материалов являются методы физического и химического осаждения из газовой плазмы, из коллоидных систем, а также формирование структур из расплавов веществ и при твердофазной модификации образцов.

ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

Работа в физических лабораториях требует от студента соответствующей подготовки для выполнения лабораторной работы, кроме рассмотренной теоретической части также необходимо использовать литературу, которую рекомендует преподаватель на лекции.

В отчет по лабораторной работе необходимо внести:

- Номер и название работы;
- Цель работы;
- Теоретическую часть;

• Результаты экспериментов (получение или диагностика наноматериалов).

• Вывод.

При работе в лаборатории следует быть внимательным и выполнять правила по техники безопасности. Инструкция по технике безопасности находится в лаборатории.

Работа заканчивается составлением краткого заключения (вывода), в котором следует указать:

- Метод получения или диагностики;
- Краткий анализ результатов.

ЛАБОРАТОРНАЯ РАБОТА №1 «ОПРЕДЕЛЕНИЕ КЛАССА ОПАС-НОСТИ ЛАЗЕРНЫХ КОМПЛЕКСОВ».

<u>Цель работы</u>: Изучить принципы работы лазера и ознакомиться с техникой безопасности при работе технологическими лазерами.

<u>Краткая теория вопроса:</u> Генерацию излучения в лазерах обеспечивают четыре основных элемента — активное вещество, оптический резонатор, источник возбуждения (накачки) и источник питания. Однако для получения эффекта лазерного излучения требуются дополнительные устройства и системы, обеспечивающие работоспособность генератора или предназначающиеся для управления излучением. К ним относят устройство для управления излучением, устройство для селекции типов колебаний, систему охлаждения активного вещества и оптического резонатора, систему модуляции излучения, внешнюю оптическую систему фокусирования луча и некоторые другие устройства.

Присутствие тех или иных элементов или всех сразу не является необходимым условием. Основным элементом, где зарождается генерация излучения, является активная среда, которая в большей степени определяет конструкцию лазера.

Под лазерной безопасностью понимается совокупность технических, санитарно-гигиенических и организационных мероприятий, обеспечиваю-

щих безопасные условия труда персонала при использовании лазерных установок. При этом учитываются требования:

• ГОСТ 12.1.040-83 ССБТ. Лазерная безопасность. Общие положения;

• СанПиН 5804-91. Санитарные нормы и правила устройства и эксплуатации лазеров.

В зависимости от конструкции и условий эксплуатации лазера на обслуживающий персонал могут воздействовать опасные и вредные производственные факторы:

- 1. непосредственное лазерное излучение (прямое, отраженное, рассеянное);
- световое излучение от импульсных ламп накачки и излучательной зоны взаимодействия лазерного излучения с материалами;
- 3. УФ излучение от ламп накачки или кварцевых газоразрядных трубок;
- 4. шум и вибрации, которые возникают при работе лазера;
- 5. ионизирующее излучение;
- 6. высокое напряжение при питании ламп накачки;
- электромагнитное поле ВЧ или СВЧ диапазонов от генераторов накачки;
- 8. ИК и тепловыделение от нагретого оборудования;
- 9. запыленность и загазованность в рабочей зоне;
- 10.агрессивные и токсичные вещества, испаряемые материалами конструкции.

Все перечисленные факторы рассматриваются в нормативных документах, регламентирующих правила безопасности и санитарные нормы при работе с общепромышленным оборудованием.

Биологические эффекты воздействия лазерного излучения на организм (глаза, кожа) зависит от энергетической экспозиции облучения, длины волны, времени воздействия и площади облучения, от частоты повторений и длительности импульсов. Для классификации лазеров с расширяющимся пучком наряду с указанными выше параметрами необходимо знание энергии излучения и максимума угла, на который направление взгляда отклоняется от полного, прямого заглядывания в луч. Эти эффекты обусловлены 3 видами механизмов воздействия:

1. Тепловые эффекты – наиболее значительные эффекты поражения: от простой эритемы до "сваривания" пораженной ткани с остановкой кровотечения вследствии поражения сосудов.

2. Термоакустические эффекты – высокая удельная энергия и мощность приводят к "свариванию" ткани и образовании пара, который разрывает клетки или в замкнутом пространстве (глаз, череп) вызывает ударные волны и взрывные выбросы.

3. Фотохимические эффекты – при малой плотности энергии или мощности появляются функциональные изменения обменных процессов клетки, которые могут как способствовать нормализации процессов клетки, так и вызывать отклонения от нормы вплоть генетических изменений.

Наиболее поражаемая часть организма человека – глаза. Опасно как излучение видимого, ближнего ИК. Также излучение иных частот может привести к поражению роговой оболочки, хрусталика, стекловидного тела или сечатки. Первые три повреждения устранимы, а повреждение сечатки часто необратимы. Хрусталик увеличивает значение E_{yd} в 10⁵-10⁶ на роговую оболочку.

Кожа по сравнению с органами зрения менее подвержена облучению, но случается существенно чаще. Поражение зависит не только от энергетических характеристик и времени облучения, площади поверхности, его кровоснабжения и пигментации. Например, минимальная реакция кожи на излучение лазера на рубине составляет:

E=10 -20 Дж/см² - при светлой коже;

E=2,2 Дж/см² - при пигментированной коже.

За предельно допустимые уровни облучения принимается энергетическая

экспозиция облучаемой ткани [10-11]:

табл.1

Диапазон/Параметры	λ	τ	П _{ду} : Е _{уд}
УΦ	0,2-0,4 мкм	10^{-2} - 10^{3} c	10 ⁻² -1 Дж/см ²
Видимый	0,4-0,75 мкм	1- 10 ⁴ c	10 ⁻² Дж/см ²
ИК	9-20 мкм	$10^{3} c$	10 ⁻² Дж/см ²

Установлены следующие классы лазеров по степени опасности генерируемого ими излучения: Класс 1 – лазерные приборы без опасности. К этому классу лазеров относятся лазеры, излучение которых не вызывает повреждений, потому что их мощность или энергия за рассматриваемый для классификации промежуток времени ниже пороговых значений (значения, при которых еще не наступает поражение организма обозначаются как Pexempt или Qexempt). Под промежутком времени, рассматриваемым в классификации и регламентируемым промежутком времени, следует понимать самое продолжительное время воздействия лазерного излучения на человека в течение рабочего дня. Pexempt и Qexempt определяются с точки зрения предотвращения поражения при рассмотрении наиболее неблагоприятного случая. При этом следует учитывать, используется лазер с расширенным пучком или нет. Для большинства лазеров Pexempt и Qexempt определяются при данных условиях с помощью примерного расчета в виде произведения ab, причем a – предельное значение для дозы прямого облучения глаза за время облучения t_{max}, b – площадь предельного отверстия, определенная для предельного значения. Однако освобождение таких лазеров без риска от дозиметрического контроля относится только к специфической лазерной опасности, но не к другим опасностям, связанным с эксплуатацией лазера.

Диффузно отраженное лазерное излучение- это лазерное излучение, отра-

женное от поверхности, соизмеримой с длиной волны по всевозможным направлениям в пределах полусферы

<u>Зеркально отраженное</u> лазерное излучение – это лазерное излучение, отраженное под углом, равным углу падения излучения.

<u>Рассеяное</u> лазерное излучение – это лазерное излучение, рассеянное отвещества, находящегося в составе среды, сквозь которую проходит излучение.

<u>Лазерно опасная зона</u> - часть пространства, в пределах которого уровень лазерного излучения превышает предельно допустимый уровень

Класс 2 – лазерные приборы с малой опасностью. К этому классу лазеров (Low-risk-классу) относятся лазеры с малой мощностью, которые работают в видимой области спектра. У этих лазеров возможно прямое попадание луча в глаз при очень тщательном соблюдении контролируемых условий экспонирования. К ним относятся:

a) непрерывные лазеры (400-700 нм), излучаемая мощность которых превышает Рехетрт для регламентируемого промежутка (0,4 мкВт для t_{max}>0,25 c), но не больше 1 мВт;

б) сканирующие лазерные системы (400-700 нм) и импульснопериодические лазеры, которые хотя и могут превышать соответствующее значение Pexempt для регламентируемого промежутка, но не значение для времени облучения 0,25 с.

Класс 3 – лазерные устройства с умеренной опасностью. Этот класс лазеров (<u>Moderate-risk</u>-класс) охватывает лазеры средней мощности, у которых не разрешается прямое заглядывание в луч лазера. К ним относятся следующие типы лазеров:

а) лазеры ИК- (1,4 мкм – 1 мм) и УФ-диапазонов (200-400 нм), мощность которых для регламентируемого промежутка хотя и превышает Pexempt, но не среднюю мощность 0,5 Вт при t_{max} >0,25 с или значение дозы облучения 10 Дж/см² при t_{max} <0,25 с;

б) непрерывные лазеры или импульсно-периодические лазеры в видимом диапазоне (400-700 нм), у которых превышается Рехетрт для $t_{max}=0,25$ с (1 мВт для непрерывных лазеров, которые, однако, не могут излучать среднюю мощность 0,5 Вт при $t_{max}>0,25$ с);

в) импульсные лазеры в ближнем ИК-диапазоие (700-1400 нм), генерируемая энергия которых больше Qexempt и меньше 10 Дж/см² или у которых следует считаться с появлением диффузного отражения излучения, лежащего выше предельных значений и поэтому опасного для организма человека;

г) непрерывные лазеры и импульсно-периодические лазеры, работающие в ближнем ИК-диапазоне (700-1400 нм), мощность которых больше Pexempt для регламентируемого промежутка, но которые не могут генерировать среднюю мощность более 0,5 Вт при tmax>0,25с.

Класс 4 – лазерные устройства с повышенной опасностью. Этот класс лазеров (High-risk-класс) охватывает мощные лазеры, прямой, а также зеркально или дуффузно отраженный луч которых представляет значительную опасность как для глаз, так и для кожи. К ним относятся следующие типы лазеров:

а) лазеры УФ-(200-400 нм) и дальнего ИК-диапазонов (1,4 мкм − 1 мм), у которых для tmax>0,25 с средняя мощность превышает 0,5 Вт или значение дозы облучения 10 Дж/см² при tmax<0,25 с;

б) лазеры видимого (400-700 нм) И ближнего ИК-диапазонов (700-1400 нм) со средней мощностью более 0,5 Вт при tmax>0,25 с или дозой облучения более 10 Дж/см2; к таким лазерам также относят лазеры, у которых во время их работы могут возникать диффузные отражения излучения, превышающие предельные значения[10-11].

Технологическое оборудование, на котором осуществляется лазерная резка металла, наплавка, термообработка и т.п., относится к лазерным устройствам с повышенной опасностью.

Вообще, следует обращать внимание на то, что разделение снабженных экранирующими устройствами лазеров на классы только тогда оправдано, если они эксплуатируются с этими защитными средствами. Ес-

ли это не имеет места, то лазер относится к более высокому классу по степени опасности.

Рис.1.1. Предупреждение о лазерном излучении

Лазерные устройства, которые могут работать на нескольких длинах волн, классифицируются по длинам волн, на которых можно ожидать наибольшую опасность.

Задание к работе:

1. Из вариантов индивидуальных заданий (табл.2) в тетради для лабораторных работ выполнить задание, которое соответствует списочному номеру фамилии в группе.

Варианты индивидуальных или групповых заданий.

табл	2
raon.	_

п/п	Лазерная установка	п/п	Лазерная установка
1.	Лазерная машина для гравировки и резки RABBIT Flat Bed 2616	8.	Химический лазер на молекулах фторида водорода или фторида дейтерия (HF/DF-HXЛ)
2.	Лазерный хирургиче- ский диодный аппарат ДИОЛАН-980-10	9.	Фемтосекундный волоконный лазер EFO-80/10
3.	Эксимерный лазер CL- 7000k	10.	Оборудование для лазерной рез- ки металла Mazak Space Gear- U44
4.	Твердотельный лазер с диодной накачкой DPSSL-50	11.	Лазер на парах Cu: "KULON- 15CU-M"

5.	Nd:YAG лазер TL-400	12.	Лазерный медицинский прибор Ланиет -2
6.	СО ₂ лазер ИнфраЛайт-	13.	Хирургический лазер "ЛАХТА-
	100		МИЛОН"
7.	Фемтосекундный лазер	14.	Лазер на парах золота "KULON-
	на титан-сапфире ТіГ-		1,5 AU"
	100		

2. Необходимо указать класс опасности лазерной установки, ознакомившись и техническими характеристиками (заполнить табл.3) и технологическими применениями прибора. На основе класса опасности прибора описать средства необходимой защиты при работе с ним.

таб.№3

Характеристики лазерной системы «»	Значение
Длина волны излучения, нм	
Режим работы	
Средняя мощность, Вт	
Доза облучения, Дж/см ²	
Охлаждение	
Накачка	
Особенности (токсичные, агрессивные в-ва)	
а – предельное значение для дозы прямого облуче-	
ния глаза за время облучения t _{max} для данного излу-	
чения	

b – площадь предельного отверстия, определенная	
для предельного значения для данного излучения	
Pexempt / Qexempt	

Контрольные вопросы:

- 1. Требования безопасности перед началом работ с лазерным оборудованием.
- 2. Требования безопасности во время работ лазерным оборудованием.
- 3. Требования безопасности по окончании работ с лазерным оборудованием.
- 4. Требование к производственному помещению для лазеров 4-го класса опасности.

ЛАБОРАТОРНАЯ РАБОТА №2 «СВОЙСТВА ЛАЗЕРНОГО ИЗЛУ-ЧЕНИЯ. ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ЛАЗЕРНОГО ИЗЛУЧЕ-НИЯ ».

<u>Цель работы:</u> Изучить устройство полупроводникового лазера, свойства лазерного излучения и явления интерференции, дифракции. Экспериментально определить длину волны лазерного излучения.

Краткая теория: По современным представлениям свет – это сложный электромагнитный процесс переменный во времени и в пространстве, обладающий одновременно как волновыми, так и квантовыми свойствами. В явлениях дифракции и интерференции проявляются волновые свойства света. Явление интерференции состоит в том, что при наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в определенных местах на экране возникают максимумы интенсивности, разделенные минимумами.

Предположим, что две монохроматические световые волны, накладываясь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: $x_1 = A_1 cos(wt+\varphi_1) u \quad x_2 = A_2 cos(wt+\varphi_2)$. По х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях. Напряженности электрического и магнитного нолей подчиняются принципу суперпозиции. Амплитуда результирующего колебания в данной точке $A^2 = A_1^2 + A_2^2 + 2A_1A_2 \cdot cos(\varphi_2 - \varphi_1)$. Так как волны когерентны, то $cos(\varphi_2 - \varphi_1)$ φ₁) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1~A²), те I^2 = $I_{1}^{2} + I_{2}^{2} + 2I_{1}I_{2}.cos(\varphi_{2}-\varphi_{1})$. В точках пространства, где $cos(\varphi_{2}-\varphi_{1}) < 0$, интенсивность $I < I_1 + I_2$, где $\cos(\varphi_2 - \varphi_1) > 0$, интенсивность $I > I_1 + I_2$. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности. Для некогерентных волн разность (ϕ_2 - ϕ_1) непрерывно изменяется, поэтому среднее во времени значение cos(ϕ_2 - ϕ_1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I₁=I₂ равна $2I_1$ (для когерентных волн при данном условии в максимумах $I = 4I_1$, в минимумах I=0).

Дифракционная картина, наблюдаемая при прохождении света через дифракционную решетку, определяется как результат взаимной интерфе-

ренции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Если дифракционная решетка состоит из N щелей, то условием максимумов dsin $\varphi = \pm 2m$ $\lambda/2 = \pm m \lambda$ (m= 1,2,3....), а условием минимумов: d sin $\varphi = \pm m\lambda/N$. Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Явление дифракции и интерференции хорошо наблюдается при прохождении белого света через дифракционную решетку с образованием ярких спектров. При пропускании лазерного излучения через дифракционную решетку можно наблюдать монохроматические максимумы интенсивности.

Лазерами называются приборы, которые позволяют получить усиление световой энергии с помощью вынужденного излучения. То есть, в этих приборах создаются такие условия, при которых можно заставить одновременно большое количество атомов перейти с более высокого (возбужденного) уровня на нижний (основной) с излучением квантов (вынужденное излучение).

Полупроводниковый инжекционный лазер на основе лазерного модуля KLM-650 предназначен для использования в качестве источника когерентного монохроматического излучения. Монохроматический, хорошо коллимированный и пространственно когерентный световой пучок, излучаемый лазером, дает возможность непосредственно наблюдать дифракцию света в паралельнных лучах на круглых частицах.

Работа простейшего полупроводникового лазерного диода п- и ртипа. Полупроводники р- типа получаются при добавлении в основное вещество, например, германий или кремний, примеси меньшей валентности индий; п- типа – большей валентности мышьяк. Причем концентрация примесей должна быть настолько велика, чтобы соответствующие уровни расщеплялись, перекрывались и тем самым могла создаваться инверсия населённости. Это означает, что при соответствующих условиях (например, при наложении внешнего напряжения) значительная часть электронов

оказывается в возбужденном состоянии, затем они могут прорекомбинировать с дыркой с излучением кванта энергии.

Дифракционная решетка изготавливается на заводе путем нанесения определенного числа штрихов на 1 мм, например, $N = 1/d = 100 \text{ мm}^{-1}$, указывается на самой d решетке, d – параметр дифракционной решетки. Дифракционная решетка позволяет разложить лазерный луч на большое число когерентных лучей, расходящихся под произвольными углами. Параллельные лучи интерферируют в бесконечности, образуя тах и min на достаточно удаленном (по сравнению с параметром дифракционной решетки) экране. В тех направлениях, для которых в разность хода параллельных лучей укладывается четное число полуволн, наблюдаются максимумы.

Задание к работе:

1. Перед лазером на расстоянии L от экрана установить в штативе дифракционную решетку. На экране получить изображение нескольких дифракционных max. Измерить расстояние L.

2. Когда на экране появились неперекрывающиеся дифракционные спектры в виде полос, измерения Δl_k заключаются в определении на экране расстояния между нулевым максимумом и максимумом порядка k (k=3 или 4 по указанию преподавателя). Для этого необходимо отметить на экране (приложив чистый лист бумаги) нулевой максимум и максимум порядка k и измерить линейкой расстояние Δl_k , выразив его в метрах.

3. Сделать не менее 6 измерений для трех различных значений L. Ре-

зультаты измерений занести в табл. 3.

4. Из формулы дифракционной решетки dSin φ = k λ (1),

где d- период решетки (на используемой решетке указано число штрихов на миллиметр, (а не период!), для вычислений период перевести в м) и полагая, что при малых φ Sin $\varphi \approx tg\varphi$ вычислить tg $\varphi = \Delta l_k/L$, а затем длину волны по формуле (1).

5. Далее произвести расчеты абсолютной Δλ и относительной погрешности с доверительной вероятностью 0,95. Все результаты записать в таблицу 1.

6. На основании проделанной работы сделать вывод. Результаты записать в виде: $\lambda = \lambda_{cp} \pm \Delta \lambda_{ot}$

табл.4

№ п/п	L, мм	k	ΔI _k , мм	N, мм ⁻¹	λ _i , мм	λ_{cp} , нм	Δλ , нм	$\Delta\lambda_{c,n}$, нм	Δλ _{οτ} , %

Контрольные вопросы.

- 1. Какие лучи называются когерентными?
- 2. Что собой представляет свет?
- Почему интерференцию можно наблюдать от двух лазеров и нельзя от двух электроламп?
- 4. Изобразите на чертеже и запишите уравнение электромагнитной волны.
- 5. В чем суть явления интерференции?
- 6. Освещая тонкую пленку из прозрачного материала монохроматическим светом, падающим нормально к поверхности пленки, на ней наблюдаются параллельные чередующиеся равноудаленные светлые и темные полосы. Одинакова ли толщина отдельных участков плен-

ки?

- 7. Как возникает излучение лазера? Охарактеризуйте его.
- 8. Свойства лазерного излучения.

ЛАБОРАТОРНАЯ РАБОТА №3 «ПОЛУЧЕНИЕ ТОНКИХ ПЛЕНОК МЕТОДОМ ЛАЗЕРНОЙ АБЛЯЦИИ. СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛЬЦЕВЫХ ЗОН В АТМОСФЕРЕ ВОЗДУХА И В ВАКУУМЕ ».

<u>Цель работы:</u> Изучить процессы лазерной абляции в воздухе и в вакууме с использованием схемы прямого лазерного осаждения.

<u>Краткая теория</u>: Интерес к лазерной плазме [13] (ЛП) объясняется ее уникальными характеристиками и растет по мере достижения все больших параметров, что стало возможным благодаря быстрому прогрессу лазерной техники. Особенностью ЛП является высокая скорость энерговыделения. На современном уровне в ЛП достигаются (при наносекундных импульсах) мощности энерговыделения более 10^{14} Вт, плотности энергии в плазме 10^9 Дж/см³, удельные скорости энерговыделения 10^{18} Вт/см³ (удельная энергоемкость обычных взрывчатых веществ ~ 10^4 Дж/см³).

Взаимодействие лазерного излучения с твердотельными мишенями характеризуется необычайно большим спектром явлений, представляющих интерес для различных областей физики. Результат воздействия лазерного излучения на вещество зависит, помимо длины волны лазера λ и длительности лазерного импульса τ_n , главным образом от поверхностной плотности потока излучения

$$q = \frac{Q}{S * \tau_{\pi}}$$

где Q — энергия лазерного излучения в импульсе, S — площадь пятна на поверхности твердотельной мишени, на которую фокусируется излучение лазера, τ_{n} - длительность импульса. Величина q может изменяться на много порядков от 10⁵ до 10¹⁸ Вт/ cm^{2} . Явлений без фазовых изменений материала мишени можно ожидать только на уровне импульсных лазеров без модулированной добротности при $q < 10^7$ Вт/ cm^2 . При этом наблюдается термоэмиссия электронов (или ионов), включая многофотонную эмиссию. В этих явлениях помимо плотности потока излучения на мишень также могут играть роль и другие параметры лазера, такие как модовая структура, форма лазерного импульса, ширина полосы излучения и т.д.

С увеличением плотности потока излучения на поверхности материала наблюдаются фазовые переходы и наблюдаются плавление и испарение. Экспериментальные и теоретические исследования показывают, что при заданной форме и длительности импульса существует достаточно четко определенная критическая плотность потока излучения $q = 10^6 - 10^7$ Вт/*см*² (зависящая от теплофизических характеристик облучаемого вещества), начиная с которой происходит интенсивное испарение вещества. Значение

 $(q = 10^7 \text{ Bt/cm}^2 \text{ является тем уровнем плотности излучения современных ла$ зеров, который используется в настоящее время для лазерного отжига ионно-имплантированных полупроводников и обработки материалов.

При $q = 10^9$ Вт/ cm^2 происходит образование волн напряжения большой амплитуды в твердом теле. Аналогично УВ такие волны напряжения изменяют суб- и микроструктуру, т.е. параметры кристаллической решетки. Это приводит к изменению механических свойств вещества, что успешно применяется для повышения прочности и твердости некоторых металлов и сплавов и для увеличения их предела усталости.

При плотностях, больших, чем $q = 10^9$ Вт/см² получаемых от лазеров с модулированной добротностью или пикосекундных лазеров, образование плазмы является основным эффектом. При воздействии мощного лазерного излучения (МЛИ) на поверхность твердого тела наблюдается быстрое

плавление, испарение и ионизация вещества, и дальнейшее взаимодействие лазерного излучения уже происходит с плавно меняющимся профилем плотности плазмы на границе вещество-вакуум. Основной механизм поглощения лазерного излучения здесь - обратный тормозной эффект, имеющий место в результате электрон-ионных столкновений. При увеличении плотности потока повышается температура начального сгустка. Это сопровождается увеличением излучения ЛП, в т.ч. в рентгеновском диапазоне спектра. При дальнейшем увеличении плотности потока *q* доминирующим процессом поглощения плазмой лазерного излучения становится процесс нелинейного поглощения, и возникают эффекты деформации пространственного профиля плазмы. Порог этого эффекта определяется условием:

$$q\lambda^2 \ge 10^{15} Bm/cm^2,$$

здесь значение длины волны λ выражено в мкм. Для $\lambda \sim 1$ мкм, длительности лазерного импульса $\tau \sim 1$ нс и для площади фокусировки $S = 10^{-4}$ см² это условие требует энергии в импульсе Q = 100 Дж. Диапазон $q\lambda^2 > 10^{14}$ - 10^{17} Вт/см² принадлежит области современных исследований по лазерному термоядерному синтезу (ЛТС).

С точки зрения экспериментальных ситуаций и теоретического анализа процесса формирования и динамики ЛП следует иметь в виду два случая: малые капельные мишени, полностью испаряющиеся при воздействии лазерного излучения, и массивные мишени, когда количество образующейся ЛП определяется длительностью лазерного импульса, τ_{n} и его энергией Q.

Как в первом, так и во втором случае могут осуществляться два режима: режим инерциального удержания и режим стационарного облучения. В режиме инерциального удержания разлет горячей плазмы осуществляется за времена

где R_0 — начальный размер мишени, c — скорость звука в плазме (характерная величина $R_0 \sim 100$ мкм, $c \sim 10^7$ см/с, t ~ 10^{-9} с). Если длительность импульса $\tau_n < 10^{-9}$ с, то энергия лазерного излучения вкладывается в плазму до начала ее разлета. В случае режима инерциального удержания целесообразно, чтобы разлет плазмы и ее нагрев осуществлялся одновременно, т.к. плотность плазмы при разлете уменьшается и поглощение становится ничтожно мало. Во втором случае при $\tau_n \sim 10^{-9}$ с характерна нестационарность в нагреве и разлете; для $\tau_n > 10^{-9}$ с устанавливается квазистационарный режим нагрева и разлета плазмы (нагретая плазма уходит из области нагрева за 10^{-9} с, позволяя лазерному излучению нагревать другие слои плазмы, и т.д.).

Таким образом, использование лазерных источников позволяет получать плотную плазму и использовать ее в качестве источника для осаждения различных материалов. В рамках данной работы мы рассмотрим формирование осаждаемых структур в схеме прямого лазерного переноса материала.

$$t \cong \frac{R_0}{c},$$

Задание к работе:

Изготовление наноструктурированных микропленок оксидов и нитридов металлов (титан, никель, серебро и т.д.) осуществляется по механизмам «сверху-вниз» методом лазерной абляции.

Рис.3.1. Экспериментальная схема: 1- лазер, 2 - поворотное зеркало, 3 - фокусирующая линза, 4 – конструкция, где происходит процесс напыления: показаны последовательно кварцевая подложка-акцептор, керамическая шайба, мишень.

Для получения наноструктурированных пленок выполнить следующий порядок действий.

1. Разместить поверхность мишени в области перетяжки лазерного луча, для получения наиболее интенсивной плазмы при заданной мощности лазерного излучения. Для точного расположения образца использовать прицельный лазер системы.

2. В соответствии с ранее проведенными исследованиями выбирается высота позиционирования холодной подложки от плоскости мишени. Расстояние от плоскости мишени до поверхности подложки является управляющим фактором морфологии поверхности осажденного слоя. В общем случае расстояние варьируется в диапазоне от 100мкм до 2.5 мм.

3. В соответствии с видом материала мишени выбирается диапазон мощности воздействия лазерного излучения. Значение мощности может варьироваться в зависимости от требований к осаждаемому слою от 10 до 50Вт.

4. Задается время воздействия (осаждения), что также влияет на толщину осаждаемого слоя и размер сформировавшихся наноструктур от 3с до 15с.

5. Повторить последовательность пп. 1-4 при работе в вакуумной камере.

6. После воздействия холодная подложка маркируется. При помощи оптического микроскопа оценить кольцевые зоны осажденного слоя (диаметры зон, их ширины).

 Полученные образцы размещаются в чистом боксе для дальнейшего исследования с использованием растрового электронного и атомно-силового микроскопа.

Контрольные вопросы:

1. Лазерная абляция.

2. Особенности лазерной плазмы.

3. Прямой и обратный перенос материала.

4. Определение интенсивности лазерного воздействия.

5. Длина свободного пробега частиц в вакууме.

ЛАБОРАТОРНАЯ РАБОТА № 4 «ИЗУЧЕНИЕ ВЛИЯНИЯ ПОЛЯРИ-ЗАЦИИ ЛАЗЕРНОГО ЛУЧА НА ЛАЗЕРНУЮ МОДИФИКАЦИЮ ПОВЕРХНОСТИ ТОНКИХ ПЛЕНОК »

<u>Цель работы:</u> экспериментально изучить явление поляризации лазерного излучения при модификации лазерным излучением поверхности полупроводниковой пленки.

<u>Краткая теория:</u> Естественные и искусственные макроскопические источники света, такие как лампы накаливания, газоразрядные лампы, Солнце и т.д., представляют собой совокупность множества атомных излучателей, которые испускают кванты света независимые друг от друга. Пространственная ориентация электромагнитных векторов Е и В этих квантов и моменты актов испускания отдельными частицами распределены хаоти-

чески. Поэтому световая волна, излучаемая таким источником, характеризуется быстро изменяющимися колебаниями векторов Е и В, плоскости которых с рав-

ной вероятностью ориентированы во всевозможных направлениях, перпендикулярных направлению распространения светового луча. Такой свет называется естественным (неполяризованным) и может быть изображен совокупностью векторов Е, расположенных хаотично в сечении, перпендикулярном распространению луча (рис.4.1а). Свет, в котором колебания вектора Е каким-либо образом упорядочены в преимущественном направлении (рис.4.1б) называется частично поляризованным или колеблются в определенной плоскости, называется линейно или плоско-поляризованным (рис.4.1в).

Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой

волны, называется плоскостью поляризации. Плоскополяризованный свет является предельным случаем эллиптически поляризованного света света, для которого вектор E (вектор H) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается в прямую (при разности фаз φ , равной нулю или π), то имеем дело с рассмотренным выше плоскополяризованным светом, если в окружность (при разности фаз $\varphi=\pm\pi/2$, и равенстве амплитуд складываемых волн), то имеем дело с циркулнрно поляри юваниим (поляризованным по кругу) светом.

Степенью поляризации называется величина $B = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$

I_{max} и I_{min} — максимальная и минимальная интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора Е. Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления. В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (турмалин).

При направлении естественного света перпендикулярно пластинке турмалина T₁, вырезанной параллельно оптической оси 00, вращая кристалл T₁

вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдается. Если на пути луча поставить вторую пластинку турмалина T₂ и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от

угла между оптическими осями кристаллов по закону Малюса: $I=I_0 \cos^2 \alpha$, где I и I_0 — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него. Пластинка T_1 , преобразующая естественный свет в плоскополяризованный, является поляризатором. Пластинка T_2 , служащая для анализа степени поляризации света, называется анализатором.

Интенсивность прошедшего через пластинки света изменяется от минимума (полное погашение света) при $\alpha = \pi/2$ (оптические оси пластинок перпендикулярны) до максимума при $\alpha = 0$ (оптические оси пластинок параллельны). Однако, амплитуда Е световых колебаний, прошедших через пластинку T₂, будет меньше амплитуды световых колебаний E₀, падающих на пластинку T₂: $E = E_0 \cos \alpha$.

Луч лазера поляризован. В этом можно убедиться с помощью поляризатора, пропускающего колебания только определенного направления. Поляризатор представляет собой пластинку, вырезанную из анизотропного кристалла таким образом, что оптическая ОО располагается в плоскости пластинки.

Наноструктурированное состояние узкозонных полупроводников халькогенидов свинца PbSe (ширина запрещенной зоны E_g =0,29 эB), PbTe (0,32 эB), PbS (0,41 эB) перспективно для реализации квантово-размерных эффектов в объектах с относительно большими геометрическими размерами в десятки нанометров. Для формирования наноразмерных структур бинарных соединений PbTe, PbSe, PbS и твердых растворов на их основе применяются различные подходы, среди которых важное место занимают лазерные технологии. Известно, что лазерное излучение при различных энергиях квантов ($\omega\hbar < E_g$, $\omega\hbar > E_g$) и в разных режимах облучения эффективно изменяет структурные и электрофизические параметры халькогенидов свинца, в том числе приводит к созданию микро- и наноструктур. При

сканировании лазерным лучем по поверхности тонких пленок соединений PbTe, PbSe, PbS возникает эффект перераспределение поверхности в виде кольцевых концентрических периодических структур рельефа поверхности, простирающихся на расстояния в несколько радиусов лазерного пятна от области воздействия. Эти структуры образуются при лазерной обработке эпитаксиальных пленок селенида свинца в режиме непрерывного облучения при длине волны $\lambda = 1,06$ мкм ($\omega\hbar > E_g$).

Порядок выполнения работы:

1. Разместить поверхность мишени в области лазерного луча. Для точного расположения области взаимодействия лазерного излучения с тонкой пленкой использовать прицельный лазер системы.

2. В соответствии с видом материала мишени выбирается диапазон мощности воздействия лазерного излучения и размер лазерного пятна. Значение мощности может варьироваться в зависимости от требований к получаемому режиму (от твердотельной модификации до плавления) от 10 до 50Вт.

3. Задается время воздействия и скорость сканирования.

4. После воздействия холодная подложка маркируется. При помощи оптического микроскопа оценить кольцевые зоны осажденного слоя (диаметры зон, их ширины).

5. Ввести в оптическую схему поляризатор. Поворачивая поляризатор вокруг оптической оси ОО, определить поляризацию лазерного излучения по интерференционной картине на экране.

6. Повторить последовательность пп. 1-4. для некоторого положения поляризатора и при повороте оси поляризатора на 90⁰ относительно этого положения.

Контрольные вопросы и задания.

- 1. Поляризованный свет.
- 2. Угол Брюстера.
- 3. Поляризационные приборы.
- 4. Твердофазная модификация поверхности.
- 5. Схема зон полупроводников.

ЛАБОРАТОРНАЯ РАБОТА № 5 «ОПРЕДЕЛЕНИЕ БЛИЖНЕ-ГО/ДАЛЬНЕГО ПОРЯДКА НАНОСТРУКТУРИРОВАНИЯ ПО-ВЕРХНОСТИ ПО РЕЗУЛЬТАТАМ РАСТРОВОЙ ЭЛЕКТРОННОЙ МИКРОСКОПИИ»

<u>Цель работы:</u> Ознакомление с устройством, принципами работы и получение навыков использования сканирующего электронного микроскопа на примере установки Quanta 200 3D.

Краткая теория:

Электронные микроскопы позволяют получать изображения объектов с разрешением, значительно превосходящим возможности их оптических аналогов. Данное преимущество электронных микроскопом основывается на использовании положений теории о волнах де Бройля. В оптических микроскопах предельное пространственное разрешение определяется длиной волны излучения подсветки. Аналогично в электронной микроскопии максимальное пространственное разрешение определяется длиной волны де Бройля электронов, которая в свою очередь зависит от величины ускоряющего напряжения.

Используя известные соотношения, можно определить длину волны де Бройля электронов:

$$\lambda_{_e} = \frac{h}{p_{_e}} = \frac{h}{\sqrt{2m_{_e}E_{_e}}} = \frac{h}{\sqrt{2m_{_e}eU}} \ , \label{eq:lambda_e}$$

где λ_e – длина волны де Бройля электрона, h – постоянная Планка, p_e – импульс электрона, m_e – масса электрона, E_e – энергия электрона, e – элементарный заряд, U – ускоряющее напряжение.

В современных электронных микроскопах используют, как правило, ускоряющие напряжения в диапазоне от 10 кВ до 100 кВ. Очевидно, что предельное пространственное разрешение в таких диагностических устройствах будет не менее чем в два порядка лучше по сравнению с оптическими микроскопами.

Однако нельзя ориентироваться только на физический предел пространственного разрешения. Необходимо учитывать технические ограничения, накладываемые особенностями функционирования элементов и узлов электронного микроскопа (катода, электростатических линз, магнитных линз и др.). Их влияние достаточно велико. В результате предельное пространственное разрешение большинства сканирующих электронных микроскопов ограничивается десятками ангстрем.

Источником электронов в микроскопах служат специальные катоды. Наиболее простым и распространенным является термоэмиссионный катод. Традиционно такие катоды изготавливались из вольфрама, но в последнее время активно начинают использоваться более эффективные термоэмиссионные катоды из гексаборида лантана LaB₆. Еще более эффективными, но дорогими и чувствительными к внешним воздействиям являются катоды, реализующие принципы холодной или термополевой эмиссии.

Управление пучком электронов осуществляется электрическими и магнитными полями с помощью специальных линз. При использовании электростатических линз электрон при попадании в область большего потенциала смещается к нормали к эквипотенциальной поверхности. Это происходит за счет увеличения составляющей его скорости, направленной вдоль нормали к эквипотенциальной поверхности. Если изменить направ-

ление градиента электрического поля на противоположно, то электрон будет отклоняться в противоположную сторону.

Принцип фокусировки электронного луча неоднородным магнитным полем короткой катушки основан на том, что сила Лоренца смещает электроны к оси катушки. Изменяя индукцию магнитного поля, можно обеспечить пересечение траекторий всех электронов в определенной точке на оси пучка. Тем самым обеспечивается фокусировка электронного потока.

При столкновении с молекулами газа среды, в которой распространяется пучок электронов, последние изменяют направление своего движения. Это ухудшает качество пучка. Поэтому необходимым условием перемещения электронов в виде пучка на большое расстояние является обеспечение как можно большей средней длины свободного пробега. Это условие выполняется за счет создание в рабочей камере электронного микроскопа вакуума. Для большинства целей, для достижения которых используются электронные микроскопы достаточно поддерживать в рабочей камере вакуум приблизительно 10^{-4} Па.

Общая функциональная схема сканирующего электронного микроскопа на примере установки Quanta 200 3D состоит из четырех основных блока, создающих изображение объекта (рисунок 5.1):

1. Электронная и ионная пушки.

Пушки излучают электроны/ионы (заряженные частицы), ускоряют их до заданной энергии и сводят в пятно малых размеров (кроссовер), из которого пучок расходится под небольшим углом.

2. Система электромагнитных линз.

Данная система осуществляет окончательно формирование пучка электронов и управляет им на пути к поверхности образца.

3. Генератор развёртки.

Сигнал генератора развёртки, управляя отклоняющей системой, перемещает пучок, образуя растр на поверхности образца. Величина напря-

жения на выходе детектора изменяется при перемещении пучка от точки к точке, поэлементно отображая структуру объекта. Этот сигнал, модулируя яркость точек на экране монитора, создаёт изображение объекта.

4. Детекторы вторичного излучения.

Частицы, соударяясь с образцом, взаимодействуют с его атомами и образуют рентгеновские лучи, электроны и фотоны. Детектор собирает соответствующие частицы, преобразует их в усиленный электрический сигнал, который и отображается на экране монитора компьютера.

Рисунок 5.1. Общая функциональная схема сканирующего электронного микроскопа на примере установки Quanta 200 3D

Порядок выполнения работы.

1. Внимательно ознакомьтесь с устройством и принципом работы электронного микроскопа на основании руководства пользователя СЭМ Quanta 200 3D.

2. Включите сканирующий микроскоп Quanta 200 3D и запустите, запустить программу управления им.

3. Ознакомьтесь с расположением основных командных окон и кнопок интерфейса управления Quanta 200 3D.

4. Установите по очереди исследуемые образцы с лабораторных работ №3,№4 на держателе в рабочей области вакуумной камеры электронного микроскопа.

5. Используя возможности интерфейса управления Quanta 200 3D, установите требуемые режимы вакуума и ускоряющего напряжения.

6. Сфокусируйте электронный пучок на поверхности образца.

7. Выберите на поверхности образца область для исследования.

8. Установите требуемые параметры формирования изображения: увеличение, яркость, контраст, астигматизм и скорость сканирования.

9. Осуществите регистрацию изображения.

Используя возможности интерфейса управления Quanta 200
 3D, произведите измерения пространственных характеристик поверхности исследуемого образца.

11. Выключите сканирующий микроскоп Quanta 200 3D

12. По результатам работы подготовьте отчет.

Контрольные вопросы и задания.

1. Какие физические принципы определяют высокое разрешение электронного микроскопа?

2. Объясните принципы формирования электронного пучка и управления им.

3. Устройство сканирующего электронного микроскопа Quanta 200 3D: основные функциональные узлы и их назначение.

4. Перечислите основные области применения сканирующих электронных микроскопов.

5. Объясните принципиальные различия в устройстве и принципах работы просвечивающего и растрового электронных микроскопов.

 Перечислите факторы, определяющие качество изображений получаемых методом электронной микроскопии, и объясните принципы их влияния.

ЛАБОРАТОРНАЯ РАБОТА №6 «КОНТАКТНЫЙ РЕЖИМ СКАНИ-РОВАНИЯ АТОМНО-СИЛОВОГО МИКРОСКОПА».

<u>Цель работы:</u> Изучить работу ACM в контактном режиме и получить изображения поверхности в данном режиме.

Краткая теория:

Основными элементами микроскопа являются зонд, система регистрации отклонения зонда, пьезосканер, система обратной связи. Типичная схема взаимодействия основных элементов ACM показана на рис. 6.1.

Рис. 6.1 Схема взаимодействия основных элементов микроскопа

Сканирование поверхности осуществляется при помощи пьезосканера, который двигает образец относительно зонда последовательно, строка за строкой (изменяются координаты *X* и *Y*). При взаимодействии с поверхностью происходит изменение механического состояния зонда, например, отклонение кантилевера. В процессе сканирования величина отклонения кантилевера (или какого-либо другого параметра взаимодействия) от начально установленного значения измеряется при помощи регистрирующей системы. Сигнал, пропорциональный отклонению, поступает в систему обратной связи, которая управляет положением пьезосканера оси *Z*.

Измерительная головка содержит держатель зонда и оптическую систему детектирования его отклонений. Сканирование в приборе Ntegra Aura осуществляется образцом, поэтому зонд закрепляется на головке жестко, в отличие от систем (конфигурация Smena B), в которых при сканировании перемещается зонд (кантилевер).

Регистрирующая система состоит из источника излучения, позиционно-чувствительного фотоприемника и оптической системы (рис. 6.»). Источником излучения является полупроводниковый лазер (длина волны — 670 нм, мощность — 0.9 мВт). Позиционно-чувствительным фотоприемником является четырехсекционный фотодиод. Оптическая система состоит из фокусирующего объектива и зеркальной поверхности кантилевера.

Рис. 6.2. Оптическая схема регистрации отклонения кантилевера

Рис. 6.3. Смещение лазерного пятна при отклонении кантилевера

Луч лазера фокусируется объективом в эллиптическое пятно размером около 50 мкм на обратной стороне кантилевера в районе острия. Отраженный от кантилевера свет попадает на четырехсекционный фотодиод.

Отклонение кантилевера вызывает перемещение лазерного пятна относительно сегментов (a, b, c, d) фотодиода (рис. 10), что вызывает изменение электрических сигналов (A, B, C, D), поступающих с этих сегментов. Сигналы предварительно обрабатываются (усиливаются, складываются и вычитаются), и с выхода регистрирующей системы поступают три сигнала:

1) DFL — сигнал, пропорциональный отклонению кантилевера в вертикальном направлении. DFL является разностным сигналом между верхней и нижней (рис. 6.3) половинами фотодиода: DFL = (A + B) - (C + D).

2) LF — сигнал, пропорциональный боковому отклонению луча, который позволяет измерять крутильную деформацию кантилевера. LF является разностным сигналом между правой и левой (рис. 6.3) половинами фотодиода: LF = (A + C) - (B + D).

3) LASER — сигнал, пропорциональный интенсивности света, отраженного от кантилевера. LASER является суммарным сигналом от всех четырех сегментов фотодиода: LASER = A + B + C + D. Данный сигнал используется при юстировке лазера.

Сканер обеспечивает два независимых движения образца относительно кантилевера: сканирование вдоль поверхности образца (в плоскости X, Y) и перемещение в направлении, перпендикулярном к поверхности (по оси Z). Сканер изготовлен из пьезоэлектрического материала. В микроскопе Smena B и Ntegra Aura используются несколько модификаций сканеров, имеющих некоторые отличия в конструкции и обеспечивающих различное максимальное поле сканирования: 50×50 мкм² и 100×100 мкм². При этом максимальная измеряемая высота — 2,5 мкм и 10 мкм соответственно.

Сканер состоит из двух пьезотрубок разного диаметра, вставленных одна в другую. Пьезотрубка меньшего диаметра обеспечивает сканирование в плоскости образца (X, Y), большего — перемещение образца относительно кантилевера по нормали (по оси Z).

В контактном режиме кантилевер непосредственно касается острием поверхности образца и работает на отталкивание от поверхности. Сила отталкивания F, действующая на кантилевер, связана с величиной отклонения кантилевера х законом Гука:

$$F = -kx \approx -k_0\theta$$
,

где k и k₀ — коэффициенты упругости, θ — угол отклонения кантилевера от положения равновесия. Величина отклонения кантилевера в вертикальном направлении измеряется при помощи оптической регистрирующей системы и преобразуется в электрический сигнал DFL. В контактном режиме сигнал DFL используется в качестве параметра, характеризующего силу взаимодействия острия с поверхностью.

Работа микроскопа в режиме поддержания постоянной силы взаимодействия острия с поверхностью образца является основой для измерения топографии поверхности, а также для измерения локальной вязкости и локальной силы трения.

В режиме «постоянной силы» сигнал DFL используется в качестве входного сигнала цепи обратной связи. Перед началом сканирования оператор задаёт некоторое значение силы взаимодействия между образцом и зондом, которое будет поддерживаться в процессе сканирования постоянным (параметр SP). Тем самым он устанавливает определенную величину отклонения кантилевера в подведенном состоянии. Затем происходит подвод образца к зонду с помощью двигателя. Пьезотрубка оси Z при этом полностью выдвинута, так как цепь обратной связи отрабатывает не равный нулю сигнал ошибки еггог. Подвод будет осуществляться до тех пор, пока сигнал DFL не станет равным значению SP, то есть пока сигнал еггог

не обратится в ноль. В конечном итоге, по окончании подвода, пьезотрубка оси Z должна быть выдвинута на половину своей длины.

Поддержание заданной величины DFL, равной значению SP, происходит благодаря работе системы ОС. При сканировании величина отклонения кантилевера изменяется из-за рельефа поверхности. Соответственно текущее значение сигнала DFL изменяется относительно уровня SP. В каждой точке поверхности система ОС при помощи сканера перемещает образец относительно зонда по нормали к поверхности таким образом, чтобы вернуть текущую величину DFL к значению SP, т.е. величину отклонения кантилевера к исходной величине. Одновременно сигнал, пропорциональный вертикальному перемещению сканера, через усилитель поступает на аналого-цифровой преобразователь и через интерфейсную плату записывакомпьютера. Таким образом ется В память формируется массив {Zij [F=const, Xi, Yj}, по данным которого восстанавливается топографический образ поверхности образца.

Наряду с режимом "постоянной силы" часто используется режим "постоянной высоты", в котором обратная связь отключена (коэффициент усиления обратной связи FB gain — около нуля), поэтому длина пьезотрубки остаётся неизменной. Регистрируется непосредственно разностный сигнал фотодиода, пропорциональный реальному отклонению кантилевера, взаимодействующего с неровностями поверхности. Разностный сигнал с фотодиода записывается в массив {Fij□Z=const, Xi, Yj}, по данным которого формируется изображение сигнала, пропорционального силе, действующей между кантилевером и образцом. В случае, когда образец достаточно жёсткий, получаемое изображение хорошо отображает топографию поверхности. Если предварительно для используемого кантилевера снята зависимость прогиба кантилевера от расстояния между зондом и образцом и если известна константа упругости используемого кантилевера, то изображение сигнала отклонения кантилевера можно пересчитать в изображение

локальной силы, действующей на кантилевер. Такой метод используется преимущественно для исследования кристаллографических атомноплоских поверхностей при полях сканирования нанометрового масштаба. Благодаря высокой чувствительности и малоинерционности этот метод позволяет получать ангстремное разрешение.

В контактном режиме сканирования кроме измерения топографии можно также исследовать распределение локальной силы трения по поверхности образца. Согласно установившимся понятиям и представлениям данная методика называется "<u>микроскопией латеральных сил</u>". Данная методика позволяет различать области с различными коэффициентами трения, а также подчеркивать особенности рельефа поверхности. Эти возможности могут быть использованы одновременно с получением рельефа поверхности для более полной характеризации исследуемого образца.

Физическая сущность методики заключается в следующем. Во время сканирования в контактном режиме, кроме отклонения кантилевера, в направлении нормальном к поверхности, возникает дополнительная крутильная деформация кантилевера (рис. 6.4). Угол кручения для небольших отклонений пропорционален боковой (латеральной) силе. Как указывалось выше, оптическая регистрирующая система формирует электрический сигнал LF, изменение которого пропорционально изменению крутильной деформации кантилевера, поэтому его используют для получения изображения локальной силы трения (рис. 6.5).

При сканировании гладкой поверхности с участками с различными коэффициентами трения угол скручивания меняется на каждом участке. Это позволяет проводить измерения локальной силы трения. Если же поверхность не гладкая, то такая интерпретация затруднена. Для того, чтобы различить участки с различными коэффициентами трения и неоднородности рельефа необходимо использовать второй проход в противоположном направлении. Кроме того измерения латеральных сил позволяют относи-

тельно просто достигать атомарного разрешения на слюде и на других слоистых материалах

боты

Рис. 6.4. Контактный режим ра- Рис. 6.5. Сканирование в областях с различными коэффициентами трения (сигнал LF)

Метод Латеральных Сил имеет важное значение при исследованиях полупроводников, полимеров, пленочных покрытий, запоминающих сред, при изучениях поверхностных загрязнений, химических особенностей и фрикционных характеристик, а также постоянно растущий ряд новых применений.

Задание к работе:

1. Установить кантилевер в измерительную головку. Произвести юстировку оптической системы (добиться максимального значения сигнала LASER, DFL = 0, LF = 0).

2. Установить образец №1 из лабораторной работы № 3 в держатель сканера.

3. Настроить микроскоп для работы в контактном режиме (Set point = 2; FB gain = 0,5).

4. Произвести подвод образца к кантилеверу.

5. Исследовать топографию в режиме постоянной силы и по методу латеральных сил в двух взаимно перпендикулярных направлениях сканирования. Определить топографию и распределение сил трения по поверхности образца.

6. Отвести образец от зонда на 1,0 мм.

Заменить образец №1 из лабораторной работы № 3 на образец
 №2 в держателе сканера. Повторить пп 3-6.

8. Используя возможности программы обработки полученных данных Image Analisys, представить статистику пространственных характеристик поверхности исследуемых образцов.

9. По результатам работы подготовить отчет.

Контрольные вопросы и задания

1. Сравнить электрические схемы организации обратной связи для режимов «постоянной высоты» и «постоянной силы».

2. Как меняется сигнал DFL при подводе зонда к образцу/образца к зонду.

3. Достоинства и недостатки контактного режимов.

ЛАБОРАТОРНАЯ РАБОТА №7 «ПОЛУЧЕНИЕ НАНОЧАСТИЦ МЕ-ТОДОМ ЛАЗЕРНОЙ АБЛЯЦИИ В ЖИДКОСТЬ».

<u>Цель работы</u>: изучение принципов работы лазера, ознакомление с техникой безопасности при работе лазерными комплексами. Получить коллоидный раствор методом лазерной абляции в жидкость.

Краткая теория:

Лазерная абляция с поверхности мишени, когда она помещена в жидкость, позволяет получать коллоидные растворы и формировать на поверхности мишени различные микро– наноструктуры. Формирование таких поверхностных структур происходит за счет высокой температуры и обратного действия давления паров мишени, возникающих из-за оптического пробоя в поле лазерного изучения [14,15]. Действительно, при оптическом пробое формируется парогазовое облако непосредственно над поверхностью мишени, из которого в жидкую среду вылетают микро- наночастицы расплавленного материала [16-19], образуя коллоидный раствор. В зависимости от геометрии эксперимента из него можно осаждать эти частицы на определенную поверхность, в т.ч. и управляемым способом при некоторых дополнительных условиях (например, с помощью квазистатического электрического/магнитного поля).

Для получения упорядоченных подобных структур в работе [20] использовалась многоимпульсная лазерная абляция с перемещающимся лазерным пучком. Данный сканирующий режим позволяет получить на поверхности мишени микрокунусы, период которых растет с увеличением диаметра лазерного пучка на поверхности мишени (рис.2). Это является особенностью лазерной абляции материала в жидкостях [20], в отличии от структур, образующихся при лазерной абляции материала в вакууме, для которых период возникающих структур определяется лишь константами самого материала (коэффициент поверхностного натяжения расплава и т.д.).

Рис. 7.1 Зависимость периода микроструктур, полученных методом лазерной абляции латунной подложки в воде, от диаметра лазерного пятна нп поверхности мишени. Плотность энергии излучения 25 Дж/см². [20]

Образование наноструктур на поверхности титана, никеля, вольфрама, молибдена при их лазерной абляции в жидкости рассмотрено в работе [21] с использованием пико- и фемтосекундного лазерного излучения. В результате облучения на поверхности мишени были сформированы наноструктуры, поперечный размер которых составляет от 50-200нм в зависимости от материала мишени.

Морфология и плотность расположения полученных наноструктур зависела как от интенсивности падающего излучения, так и от числа и длительности лазерных импульсов, воздействующих на среду (рис.7.2).

Рис. 7.2. Поверхностная плотность наноструктур на мишени как функция от числа лазерных импульсов для плотностей энергии в импульсе KrF-лазера составляла 1.32 (1), 0.75 (2) и 0.6 (3) Дж/см² при абляции в воде; длина волны лазерного излучения – 248 нм и длительность лазерного импульса – 5 пс [21].

При облучении титановой мишени, область лазерного воздействия изменяла цвет. Это было обусловлено плазмонными колебаниями электронов в образованных наноструктурах. При высокой плотности таких наноструктур подложки можно использовать в качестве элементов для прикладных задач: устройств оптоэлектроники и фотоники, например полевых эмиттеров электронов и/или в качестве среды для магнитной записи различной информации.

Получение коллоидных растворов с наночастицами меди и латуни рассмотрено в работе [22]. Наночастицы получались посредством облучемишеней в воде, этаноле, ния ацетоне импульсно-периодическим Nd³⁺: YAG лазером (λ=1.06 мкм, длительность импульса – 130нс) и лазером на парах меди (λ =0.51 мкм, длительность импульса – 20нс). При этом требования на энергетические характеристики лазерного излучения определяются только условием выбором линзы (плотность энергии) - не менее 200-500 Дж/см² в случае Nd³⁺:YAG лазера, а при использовании медного лазера – частотой повторения импульсов 7.5 кГц и средней мощностью около 3 Вт, достигается плотность энергии на поверхности мишени около 30 Дж/см². В результате наночастицы меди в ацетоне имели размер в несколько нанометров и были покрыты диффузной оболочкой из стеклоуглерода. Наличие наночастиц меди с соответствующей оболочкой в этаноле не наблюдалось, поэтому такие наночастицы могут окислиться в атмосфере воздуха. При облучении латунной мишени в воде также образуются наночастицы с оболочкой, которая может состоять из продуктов реакции цинка с водой (например, $Zn(OH)_2$).

Таким образом, получение наночастиц в растворах зависит от природы жидкости, в которую помещена мишень, а не от типа лазерного излучения. Повторное облучение такого раствора приводит к уменьшению среднего размера наночастиц [23,24].

Типичная схема эксперимента по получению коллоидных частиц представлены на рис. 7.3.

Рис 7.3. Формирование коллоида при лазерном воздействии

Порядок выполнения работы:

1. Ознакомится с техникой безопасности при работе с лазерными комплексами и получить допуск у преподавателя, отметиться в журнале по ТБ.

2. Ознакомится с теорией о лазерной абляции.

3. Подготовить мишени в виде пластин стеклоуглерода и золота. В кюветы кварцевого стекла поместить мишени и заполнить растворителем.

4. Поместить кювету в область действия лазерного луча согласно схеме на рис.4. Перед воздействием проверить фокусировку и определить диаметр лазерного пятна в мкм. Записать параметры эксперимента: мощность воздействия, скорость сканирования, время воздействия.

5. В выводах к лабораторной работе определить интенсивность воздействия и описать физические процессы, наблюдаемые в эксперименте.

6. Оформить отчет по лабораторной.

Контрольные вопросы.

1. Требования безопасности перед началом работ с лазерным оборудованием.

2. Требования безопасности во время работ лазерным оборудованием.

3. Требования безопасности по окончании работ с лазерным оборудованием.

4. Лазерная абляция.

5. Основные элементы лазера.

6. Особенности лазерного излучения.

ЛАБОРАТОРНАЯ РАБОТА №8 «ИЗМЕРЕНИЕ РАЗМЕРОВ ЧА-СТИЦ В КОЛЛОИДНОМ РАСТВОРЕ».

<u>Цель работы</u>: Измерение размеров частиц в коллоидном растворе методом динамического рассеяния света.

Краткая теория:

В данной работе твердую фазу коллоидного раствора необходимо исследовать на анализаторе размеров частиц динамического рассеяния лазерного света Horiba LB-550. Динамическое рассеяние света (ДРС) — представляет собой совокупность таких явлений как изменение частоты (Доплеровский сдвиг), интенсивности и направления движения света прошедшего через среду движущихся (Броуновских) частиц. Размеры измеряемых частиц должны быть такого же порядка, что и и длина волны рассеиваемого света. При прохождении пучка света через суспензию происходит его упругое (рэлеевское) рассеяние. В случае ДРС используют лазерное излучение, которое когерентное и монохроматическое. Измеряемой величиной служит т.н. автокорреляционная функция (АКФ), определяемой по

временному изменению интенсивности рассеиваемого излучения:

$$G(t_d) = \frac{1}{N} \sum_i I(t_i) I(t_i - t_d) = \langle I(t) I(t - t_d) \rangle$$

где $G(t_d)$ - автокорреляционная функция, N- число измерений, выполняемых в момент времени t_i ,

 $I(t_i-t_d)$ - интесивность рассеивания света после определенного периода времени задержки t_d

Лазерный анализатор предназначен для измерения частиц в диапазоне от 3 нм до 6 микрон. Анализатор использует теорию динамического рассеивания света. На рисунке 8.1. представлена оптическая схема исследования раствора лазерным анализатором частиц.

Принципом исследования является то что, фокусная точка луча лазера расположена как можно ближе к внутренней стенке ячейки. Это сдерживает эффект многократного рассеяния при больших концентрациях пробы и обеспечивает достаточную силу сигнала для проб с большими концентрациями, т.к. рассеянный свет не затухает, проходя через большой объем диспергированной пробы.

Рисунок 8.1. Оптическая схема работы лазерного анализатора частиц Horiba LB-550.

Угол испускания света в ячейку также контролируется, исключая эффекты рассеяния и отражения света. Это увеличивает соотношение сигнал/шум и позволяет измерять разбавленные пробы. Высокочувствительный детектор ФЭУ определяет мгновенные сигналы от пробы, которые поглощают свет или пробы, которые имеют низкий сигнал рассеяния света. Такой подход обеспечивает широкий диапазон динамической чувствительности, что позволяет измерять высококонцентрированные пробы на той же оптической системе и детектором.

Порядок выполнения работы:

1. Ознакомится с теоретическими основами метода определение частиц в коллоидном растворе по ДРС.

2. Получив результат эксперимента, проведите анализ данных по полученной диаграмме распределения частиц по размерам. Определите оптимальные параметры для лазерного воздействия в лабораторной работе №7.

Контрольные вопросы:

- 1. Броуновское движение частиц.
- 2. Методы определения дисперсности.
- 3. Доплеровский сдвиг.

ЛАБОРАТОРНАЯ РАБОТА №9 «СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ ».

<u>Цель работы:</u> ознакомление с основами статистической обработки данных и вычислению погрешностей эксперимента современными методами.

<u>Краткая теория:</u> Для прямых измерений исходными данными для расчёта погрешности *Дх* являются оценки приборной погрешности

$$\sigma_{xn}: \sigma_{xn=\sigma_{no\kappa a3}}^2 + \sigma_{omc4}^2$$
(1)

и среднеквадратичной ошибки σ_{* разбр}, вызванной разбросом экспериментальных данных:

$$\sigma^2_{\overline{x} pas \delta p} \approx S^2_{\overline{x}} = \frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \overline{x})^2$$

Приборные погрешности определяются в соответствии с рекомендациями, приведёнными в [25]: ошибка показаний – по классу точности или по паспортным данным прибора с использованием "правила 3σ", ошибка отсчёта – по формуле: σ_{отсч} =d/3, где d - шаг округления.

Если одна из ве- $S_{\bar{x}}$ личин или σ_{xn} превышает другую в три и более раз (соответственнс, σ_{xn}^2 и σ_{xn}^2 различаются на порядок и более), для дальнейших расчётов используют $\sigma_{xn} \approx S_{\bar{x}}$ большую из них. Если же находят полную дисперсию и среднеквадратичную ошибку:

$$\sigma_{\overline{x}}^2 = \sigma_{x\pi}^2 + S_{\overline{x}}^2;$$

При использовании величин \overline{x} і для дальнейших расчётов косвенно измеряемых величин обработка результатов прямых измерений на этс \overline{x} і заканчивается. Если же есть окончательный результат эксперимента, нужно найти погрешность Δx , соответствующую заданной доверительной вероятности α .

В научных статьях, как правило, приводят доверительный интервал "плюс - минус одна среднеквад- $\Delta x = \sigma_{\bar{x}}$, ратичная ошибка":

соответствующий значению a = 0,68. Такой интервал называют "стандартным" и при указании погрешности часто не приводят значение доверительной вероятности.

В лабораторной практике употребительны значения α, равные 0,90; 0,95 или 0,99. Способ вычисления погрешности зависит от соотношения между

случайной и приборной ошибками и от числа измерений величины *x*. Рассмотрим типичные ситуации.

1. В большинстве случаев для вычисления погрешности можно пользоваться распределением Гаусса и находить Δx с помощью функции Лапласа (см. табл. 1) по следующей схеме:

$$\alpha = \Phi(u) \to u \to \Delta x = u\sigma_{\bar{x}}$$

Действительно, условием применимости распределения Гаусса является достаточно большое число факторов, влияющих $(S_{\overline{x}} >> \sigma_{x_0})$ на опплоху г. - если преоблана ошибку результата. Это условие заведомо выполняется, дают случайные ошибки и число измерений велико (n > 5). Если случайные и приборные ошибки одного порядка, то даже при малом числе измерений ($n \le 5$) количество факторов, влияющих на формирование ох, оказывается достаточно большим (разброс результатов отдельных измерений плюс приборные погрешности). Если преобладают приборные погрешно- $(S_{\overline{x}} >> \sigma_{x_1})$ лена по по на например, сти, часть их не обязательно распределена по нормальному (гауссову) закону. Ошибки округления, имеют равномерное распределение. Однако предположение о нормальном распределении совокупной приборной погрешности (1) не приводит к существенным ошибкам при вычислении погрешности.

2. Если преобладают случайные ошибки и число измерений невелико (n < 5), погрешность Δx определяют с помощью коэффициентов Стьюдента (табл. 2).

3. Если приборная погрешность превышает остальные, можно в записи результата не указывать доверительную вероятность, но необходимо указать характер погрешности. Например: U = 25,6 ± 0,8 В (погрешность предельная приборная).

Блок-схема расчёта погрешности описанная выше, приведена на рис. 9.1 (автор - Луковников А.И.)

Рис. 9.1 Схема статистического расчета погрешностей и результатов прямого эксперимента. Обозначения: d - цена деления; h - предельная приборная погрешность, σ_{xon} - погрешность отсчета показания, $\sigma_{x\cdot np}$ приборная погрешность, Δx_{cn} - случайная погрешность, остальные обозначения - стандартные.

Счёт случайных событий

Счёт случайных событий производится в самых разных отраслях науки и техники: статистика отказов оборудования, дорожно - транспортных происшествий, значительная часть экспериментов атомной и ядерной физики и т.д..

Как правило, определяют среднее число событий $\langle N \rangle$ (например, количество частиц, попавших в счётчик в течение определённого интервала времени τ) или среднюю скорость счёта $\langle N \rangle / \tau$. Если события независимы и средняя скорость счёта - постоянна, фактическое число событий N в течение интервала τ является случайной величиной, распределенной по закону Пуассона с дисперсией:

$$\sigma^2 = < N > .$$

При $\langle N \rangle \gg 1$ распределение Пуассона близко к распределению Гаусса, и стандартному доверительному интервалу ($\alpha = 0,68$) соответствует погрешность:

 $\Delta N = \sigma = \sqrt{\langle N \rangle} \approx \sqrt{N}.$

Относительная погрешность при этом равна:

$$\frac{\Delta N}{N} \approx \frac{1}{\sqrt{N}}$$

и убывает с ростом N, поэтому в эксперименте стараются получить значение N как можно большее (как говорят, набирают статистику). Часто единственным способом увеличения N является увеличение длительности эксперимента τ , поэтому нередки эксперименты, длящиеся месяцами, а то и годами (например, при регистрации комического излучения). В ряде экспериментов ядерной физики помимо интересующих экспериметатора "полезных" числом N₀ событий (например, испускание данным источником частиц данного сорта) счетчик регистрирует и другие, "посторонние" события, называемые фоном (например, частицы другого сорта или другого источника). Число "посторонних" событий обозначим N_ф. Нередко N_ф >> N₀, как говорят, фон "забивает" полезный эффект. Можно ли в таких условиях определить N₀? Оказывается, можно. Для этого эксперимент проводят дважды: один раз с исследуемым источником считают в течение интервала времени τ_1 величину N ₁= N₀ + N_ф, а второй раз - без исследуемого источника, при этом в течение такого же интервала времени $\tau_1 = \tau_2$ считают N₂ \approx N_φ. Затем из результатов первого эксперимента вычитают результат второго: N₀= N₁ - N₂

Найдём погрешность N₀, полагая N₀>>1 и N_{ϕ}>>1. Закон сложения дисперсий даёт $\sigma_{N_0}^2 = \sigma_{N_1}^2 + \sigma_{N_2}^2 \approx N_1 + N_2 = N_0 + 2N_{\phi}$. результат:

$$\delta_{N_0} = \frac{\sigma_{N_0}}{N_0} = \frac{\sqrt{N_1 + N_2}}{N_1 - N_2};$$

Относительная погрешность для стандартного доверительного интервала равна:

$$\alpha = 0,68.$$

Если уровень фона невелик (N_ ϕ >> N_0), то целесообразно сократить время счёта фона, выбрав $\tau_2{<}\tau_1$.

<u>Пример</u>. Сколько времени нужно затратить на определение активности источника при средней скорости счёта $v_0 = 5$ квантов в секунду, чтобы относительная погрешность не превышала $\delta = 10\%$ при доверительной вероятности $\alpha = 0.95$?

Требуемая погрешность невелика и может быть обеспечена лишь при больших *N*, поэтому можно пользоваться табл. 1, с помощью которой находим:

$$\Delta N = 2\sigma_N = 2\sqrt{\langle N \rangle};$$

$$\delta = \frac{\Delta N}{\langle N \rangle} = \frac{2}{\sqrt{\langle N \rangle}};$$

$$\langle N \rangle = \left(\frac{2}{\delta}\right)^2 = 400;$$

$$\tau = \frac{\langle N \rangle}{V_0} = 80 \ C.$$

Косвенные измерения

Пусть интересующая нас величина *z* является известной функцией величин *a*, *b*, *c*,измеряемых непосредственно:

z = z (a, b, ...).

По результатам прямых измерений находятся сред- $\bar{a}, \bar{b}, ...$ ние значения и погре $\sigma_{\bar{a}}, \sigma_{\bar{b}}, ...$ В качестве наилучшего приближения для z возьмём: $\bar{z} = z(\bar{a}, \bar{b}, ...)$.

Для определе- $\sigma_{\bar{z}}$ ния учтём, что при отклонении результатов измерений первичных величин от их истинных значений на малые приращения da,db,... величина *z* получит приращение:

$$dz = \frac{\partial z}{\partial a} da + \frac{\partial z}{\partial b} db + \dots$$

Если погрешности измерения различных первичных величин независимы, в правой части имеем сумму случайных независимых величин. Используя закон сложения $\sigma_{\bar{z}} = \sqrt{\sigma_{\bar{z}a}^2 + \sigma_{\bar{z}b}^2 + ...}$, дисперсий, найдём

$$\sigma_{\bar{z}a} = \left| \frac{\partial z}{\partial a} \right| \sigma_{\bar{a}},$$
$$\sigma_{\bar{z}b} = \left| \frac{\partial z}{\partial b} \right| \sigma_{\bar{b}}$$

Значения производных находим, как и значение *z*, подставляя вместо истинных значений величин их средние экспериментальные значения.

Для выделения максимального вклада в результирующую погрешность следует вначале $\sigma_{\bar{z}a}, \sigma_{\bar{z}b}, ...,$ найти численные значения сравнить их и лишь затем, если потребуется, воспользоваться формулой.

$$\sigma_{{}_{\overline{z}a}}, \ \sigma_{{}_{\overline{z}b}}, ...,$$

Если после вычисления окажется, $\sigma_{\bar{z}}$, что лишь одна (наибольшая) из этих величин определяет ошибку например, например $\sigma_{\bar{z}} \approx \sigma_{\bar{z}a}$, то погрешность Δz определяется через и доверительную вероятность так же, как и в случае прямых измерений, т.е. с помощью функции Лапласа или коэффициентов Стьюдента - в зависимости от числа параметров, сформировавших ошибку соответствующей первичной величины. При этом погрешности Δz и Δa , соответствующие заданной доверительной вероятности, связаны соотношением:

$$\Delta z = \left| \frac{\partial z}{\partial a} \right| \Delta a$$

Если же две или более из величин $\sigma_{\bar{z}a}$, $\sigma_{\bar{z}b}$,..., дают сравнимые вклады в $\sigma_{\bar{z}}$, то общее число измерений величин *a*, *b*,..., определяющих $\sigma_{\bar{z}}$, оказывается достаточно большим, и поправки, даваемые коэффициентами Стьюдента, несущественны. Соотношение между Δz и полученной оценкой $\sigma_{\bar{z}}$, определяется нормальным распределением и находится с помощью функции Лапласа (см. прил. 1).

Порядок выполнения работы:

1. Ознакомится с теоретическими основами статистической обработки экспериментальных данных.

2. Получите окончательный результат эксперимента для данных лабораторной работы №8, проведите анализ погрешностей.

3. Оформить отчет по лабораторной работе в тетради.

Контрольные вопросы и задания

- 4. Какое измерение дает наибольший вклад в погрешность результата?
- 5. Какие погрешности (случайные или приборные) преобладают в эксперименте?
- Согласуется ли результат опыта с теорией или с табличными данными? Если нет, то каковы причины расхождения? Расхождение будем считать незначительным, если доверительные интервалы сравнимых величин перекрываются.
- 7. Попробуйте также указать возможные источники систематических ошибок и пути повышения точности эксперимента.

ЗАКЛЮЧЕНИЕ

В современных нанотехнологиях используется достаточно много методов получения наночастиц. Все методы получения наночастиц можно разделить на три группы. Первая объединяет методы механического диспергирования (дробление, прессование и т.д.). Ко второй группе относятся методы физического диспергирования (распыление расплава, испарение с последующей конденсацией т.д.). К третьей группе относятся методы химического диспергирования, в которых наночастицы получаются в результате химических реакций окисления или восстановления.

Данные методы используют различные механизмы формирования наночастиц: механизм «снизу-вверх» и «сверху-вниз». Эти механизмы отличаются тем, что в первом случае формирование наночастиц связано с процессом зарождения и ростом новой фазы. Во втором случае процесс формирования наночастиц происходит из массивного образца в более мелкие составляющие этого же образца.

В данных методических рекомендациях приводится краткий обзор существующих методов лазерного синтеза наночастиц и структур на их основе; обсуждаются методы их диагностики.

РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: ФИЗМАТЛИТ, 2005. - 416 с.
- 2. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УроРАН, 1998. 199с.
- 3. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. – М.: КомКнига, 2006. - 592 с.
- Беленков Е.А., Шабиев Ф.К. Новые углеродные фазы с кольчужной структурой // Известия Челябинского научного центра. – 2006. – №2. – С. 32.
- Емельянов В.И. Самоорганизация упорядоченных ансамблей наночастиц при лазерно-управляемом осаждении атомов // Квантовая электроника. – 2008. – №6. – С. 36.
- Kukovitsky E. F., L'vov S. G., Sainov N. A., Shustov V. A. CVD growth of carbon nanotube films on nickel substrates. – 2003. – T. 215. – P. 201-208.

- Чесноков В.В., Буянов Р.А. Особенности механизма образования углеродных нанонитей с различной кристаллографической структурой из углеводородов на катализаторах содержащих металлы подгруппы железа // Информационно-аналитический журнал «Мембраны» серия критические технологии. – 2005. – №4(28). – С. 75-79.
- Домрачев Г.А. и др. Роль углерода в самоорганизации системы железо-углерод при различном содержании компонентов // Физика твердого тела. – 2004. – Т. 46. – В. 10. – С. 1901-1915.
- Рыженков Д.И. и др. Наноматериалы М.: БИНОМ. Лаборатория знаний. – 2008. – С. 365.
- 10.• ГОСТ 12.1.040-83 ССБТ. Лазерная безопасность. Общие положения.
- 11.• СанПиН 5804-91. Санитарные нормы и правила устройства и эксплуатации лазеров.
- 12.http://www.znaytovar.ru/gost/2/GOST_12104083_SSBT_Lazernaya_b. html
- Делоне И.Б. Взаимодействие лазерного излучения с веществом: курс лекций. – М.:Наука, 1980. – 280с.
- 14.Dolgaev S.I., Voronov V.V., Shafeev G.A., Fauquet-Ben Ammar C., Themlin J.-M., Cros A., Marine W. Appl. Surf. Sci., 109-110, 559 (1997).
- 15.Shafeev G.A., Obraztsova E.D., Pimenov S.M. Appl. Phys. A, 65,29(1997).
- 16.Sibbald M.S., Chumanov G., Cotton T.M. J. Phys. Chem, 100, 4672(1996).
- 17.Yeh M.-S., Yang Y.-S., Lee Y.-P., Lee H.-F., Yeh H.-F., Yeh C.-S. J. Phys. Chem. B, 103, 6851 (1999).
- 18. Takami A., Kurita H., Koda S. J. Phys. Chem. B, 103, 1226 (1999).
- 19.Link S., Burda C., Nikoobakht B., El-Sayed M.A. J. Phys. Chem. B, 104, 6152 (2000).

- 20.Казакевич П.В., Симакин А.В., Шафеев Г.А. Образование периодических структур при лазерной абляции металлических мишеней в жидкости // Квантовая электроника. 2005.Т.35. №9. С.831-834.
- 21. Бармина Е.В., Стратакис Э., Фотакис К., Шафеев Г.А. Генерация наноструктур при лазерной абляции металлов в жидкостях: новые результаты // Квантовая электроника. 2010. Т.40. №11. С. 1012–1020.
- 22.Казакевич П.В., Воронов В.В., Симакин А.В., Шафеев Г.А. Образование наночастиц меди и латуни при лазерной абляции в жидкости // Квантовая электроника. 2004. Т.34. №10. С. 951–956.
- 23.Simakin A.V., Voronov V.V., Shafeev G.A., Brayner R., Bozon-Verduraz F. *Chem .Phys. Lett.*, 348, 182(2001)
- 24.Kurita H., Takami A., Kada S., Appl. Phys. Lett., 72(7),789(1998).

Приложение 1

Таблица 1

Значения функции Лапласа

$u = \frac{\Delta x}{\sigma_x}$	$\alpha = \Phi(u)$	и	$\Phi(u)$
0	0		
0,5	0,383	2,5	0,988
1,0	0,683	3,0	0,997
1,5	0,866	3,5	0,9995
2,0	0,954	4,0	0,99994

Таблица 2

Коэффициенты Стьюдента t_{а.п}

n^{α}	0,2	0,4	0,5	0,6	0,7	0,8	0,9	0,95	0,98	0,99	0,999
2	0,33	0,73	1,00	1,38	2,0	3,1	6,3	12,7	31,8	63,7	636,6
3	0,29	0,62	0,82	1,06	1,3	1,9	2,9	4,3	7,0	9,9	31,6
4	0,28	0,58	0,77	0,98	1,3	1,6	2,4	3,2	4,5	5,8	12,9
5	0,27	0,57	0,74	0,94	1,2	1,5	2,1	2,8	3,7	4,6	8,6
6	0,27	0,56	0,73	0,92	1,2	1,5	2,0	2,6	3,4	4,0	6,9
7	0,27	0,55	0,72	0,90	1,1	1,4	1,9	2,4	3,1	3,7	6,0
8	0,26	0,55	0,71	0,90	1,1	1,4	1,9	2,4	3,0	3,5	5,4
9	0,26	0,54	0,71	0,90	1,1	1,4	1,9	2,3	2,9	3,4	5,0
10	0,26	0,54	0,70	0,88	1,1	1,4	1,8	2,3	2,8	3,3	4,8
15	0,26	0,54	0,69	0,87	1,1	1,3	1,8	2,1	2,6	3,0	4,1
20	0,26	0,53	0,69	0,86	1,1	1,3	1,7	2,1	2,5	2,9	3,9
25	0,26	0,53	0,69	0,86	1,1	1,3	1,7	2,1	2,5	2,8	3,7
30	0,26	0,53	0,68	0,85	1,1	1,3	1,7	2,0	2,5	2,8	3,7
40	0,26	0,53	0,68	0,85	1,1	1,3	1,7	2,0	2,4	2,7	3,6
60	0,25	0,53	0,68	0,85	1,0	1,3	1,7	2,0	2,4	2,7	3,6
120	0,25	0,53	0,68	0,85	1,0	1,3	1,7	2,0	2,4	2,6	3,4
x 0	0,25	0,52	0,67	0,84	1,0	1,3	1,6	2,0	2,3	2,6	3,3