Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

УТВЕРЖДАЮ

Проректор

по учебно-методической работе

А.А.Панфилов

« 13»

20 USr.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория нечетких множеств и принятие решений

Направление подготовки 11.04.03 Конструирование и технология электронных средств

Профиль/программа подготовки Высокие технологии в проектировании и производстве электронных средств

Уровень высшего образования Академическая магистратура

Форма обучения - Очная

Семестр	Трудоемкость зач. ед,/ час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	Форма промежу- точного кон- троля (экз./зачет)
3	4 / 144	-	18	-	90	Зачет, 36 час.
Итого	4 / 144	-	18	-	90	Зачет, 36 час.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины являются изучение основных принципов разработки и методов идентификации математических моделей объектов и процессов, определяющих качество электронных средств (ЭС) в условиях недостаточной экспериментальной информации. Курс способствует формированию представлений о методиках разработки «высоких технологий» в электронике, обеспечивающих качество электронных средств в условиях низкой точности измерений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к вариативной части блока 1 программы подготовки магистров в составе дисциплин по выбору наряду с дисциплиной «Разработка и идентификация математических моделей».

«Входные» компетенции формируются при изучении предшествующих курсов бакалаврской подготовки по направлению 11.03.03 «Физика», «Математика», «Измерение физических параметров электронных средств и стандартизация», «Управление качеством электронных средств», «Технология производства электронных средств». Проверка перечисленных «входных» компетенций осуществляется в процессе вступительных испытаний поступающих в магистратуру. «Входными» являются компетенции, сформированные при изучении предшествующих дисциплин «Квалигенетические методы оценки качества электронных средств», «Алгоритмические измерения», а также в ходе научноисследовательской работы (НИР) и научно-исследовательской практики (НИП)

Получаемые в процессе изучения курса знания используются при изучении дисциплин «Специализация по индивидуальному плану», «Численные методы и обратные некорректные задачи», при выполнении выпускной квалификационной работы магистра и в практической деятельности.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен обладать следующими общепрофессиональными (ОПК) и профессиональными (ПК) компетенциями в части базовых знаний, умений и навыков, необходимых в дальнейшем для обоснования высокотехнологичных решений проблем обеспечения качества ЭС в интересах конкретных работодателей:

ОПК-1 способность понимать основные проблемы в своей предметной области, выбирать методы и средства их решения;

ОПК-5 готовность оформлять, представлять, докладывать и аргументированно защищать результаты выполненной работы;

ПК-1 способность самостоятельно осуществлять постановку задачи исследования, формирование плана реализации исследования, выбор методов исследования и обработка результатов;

ПК-2 способность выполнять моделирование объектов и процессов с целью анализа и оптимизации их параметров с использованием имеющихся средств исследований, включая стандартные пакеты прикладных программ;

ПК-4 способность планировать и проводить эксперименты, обрабатывать и анализировать их результаты.

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

- 1) Знать: основные принципы разработки и идентификации математических моделей в своей предметной области (ОПК-1).
- 2) Уметь: самостоятельно осуществлять постановку задачи исследования, формирование плана реализации исследования, выбор методов исследования и обработки ре-

- зультатов (ПК-1), выполнять моделирование объектов и процессов с целью анализа и оптимизации их параметров с использованием имеющихся средств исследований, включая стандартные пакеты прикладных программ (ПК-2), оформлять, наглядно представлять и аргументированно защищать результаты работ по моделированию физических и технологических процессов в области электроники (ОПК-5).
- 3) **Владеть:** навыками планирования и проведения экспериментальных исследований в своей предметной области, методикой и программными средствами сбора и обработки результатов (ПК-4).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины составляет <u>4</u> зачетных единиц, <u>144</u> часов.

	Раздел (тема) дисциплины	Семестр	Неделя семестра	само	Практические меорода занятия	іьную центо	работ в ь (в ча э	гу ст	Объем учебной работы, с применением интерактивных методов (в часах / %)	Формы текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации (по семестрам)
1	Проблемы нечеткой логики управления объектами и процессами (fuzzy logic)	3	1 - 2		2			10	0,8 / 40%	
2	Система уравнений полупро- водника	3	3 - 4		2			10	0,8 / 40%	
3	Формально- но- статисти- ческий подход к разработке моделей	3	5 - 6		2			10	0,8 / 40%	Рейтинг 1
4	Причинно- физиче- ский под- ход к раз- работке моделей	3	7 - 8		2			10	0,8 / 40%	
5	Опровер- жение мо- делей как элемент технологии	3	9 - 1 0		2			10	0,8 / 40%	

	получения							
	новых зна-							
	ний.							
6	Аппрокси-	3	1	2	+	10	0,8 / 40%	Рейтинг 2
	мация и		1					
	интерполя-		-					
	ция в мо-		1					
	делирова-		2					
	нии							
7	Метод ми-	3	1	2		10	0,8 / 40%	
	нимизации		3					
	эмпириче-		-					
	ского риска		1					
	с исполь-		4					
	зованием							
	полиномов							
	Чебышева							
8	Структур-	3	1	2		10	0,8 / 40%	
	ная и па-		5					
	раметриче-		-					
	кая иден-		1					
	тификация		6					
	моделей	_				4.0	0.0.4.1007	7
9	Нечеткие	3	1	2		10	0,8 / 40%	Рейтинг 3
	алгоритмы		7					
	управления		-					
			1					
P			8	1.0		00	7.2 / 400/	26
Bc	его			18	+	90	7,2 / 40%	Зачет, 36 час.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

5.1. Активные и интерактивные формы обучения

С целью формирования и развития общепрофессиональных и профессиональных компетенций студентов в учебном процессе используются активные и интерактивные формы проведения занятий (проблемное изложения учебного материала, деловые и ролевые игры, разбор конкретных ситуаций из деятельности профильных предприятий и организаций) в сочетании с внеаудиторной работой.

5.2. Мультимедийные технологии обучения

- Лекционные занятия проводятся в мультимедийной аудитории с использованием компьютерного видеопроектора и аудиосистемы.
- Студентам через ИНТРАНЕТ-сайт кафедры доступны конспект лекций и методические указания к СРС в электронном виде, учебные видеофильмы и рекламно-информационные материалы профильных предприятий и организаций.

В рамках дисциплины возможны вебинары и видеоконференции с участием известных ученых, преподавателей российских и зарубежных университетов, ведущих специалистов и руководителей промышленных предприятий и организаций различных форм собственности, в том числе выпускников $Bn\Gamma y$.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИ- ПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬ- НОЙ РАБОТЫ СТУДЕНТОВ

Рейтинг-контроль проводится трижды за семестр согласно графику учебного процесса, рекомендованного учебно-методическим управлением. Он предполагает расчет суммарных баллов за активную работу на лекциях. Текущий контроль знаний осуществляется на консультациях по курсу, а также в периоды рейтинговых мероприятий. При выполнении студентом графика учебного процесса ему начисляется бонусный балл.

Вопросы для рейтинг-контроля и экзамена приведены в разделе УМК «Фонд оценочных средств».

Перечень вопросов по курсу для промежуточной (рейтинг) и итоговой аттестации (зачет) Рейтинг 1

Проблемы нечеткой логики управления объектами и процессами (fuzzy logic). Фундаментальная система уравнений полупроводника.

Формально-статистический подход к разработке моделей объектов и процессов.

Рейтинг 2

Причинно-физический подход к разработке моделей объектов и процессов Опровержение моделей как элемент технологии получения новых знаний. Аппроксимация и интерполяция в моделировании.

Рейтинг 3

Метод минимизации эмпирического риска с использованием полиномов Чебышева. Структурная и параметрическая идентификация моделей. Нечеткие алгоритмы управления.

Практические занятия

Выполняются с использованием измерительно-вычислительного комплекса (ИВК) релаксационной спектроскопии глубоких уровней (ГУ) в полупроводниках, разработанного на базе спектрометра ГУ типа DLS-82E фирмы Semilab, Венгрия, и камеры тепла и холода Thermotron, США, и оснащенного программно-аппаратными средствами автоматизации научных исследований собственной разработки кафедры БЭСТ.

ИВК в учебном процессе магистерской подготовки выполняет функцию специализированного и в то же время универсального тренажера, который в соответствии с методическим указаниями к практическим занятиям используется для контроля приобретенных студентом профессиональных умений и навыков по разработке и идентификации математических моделей.

Комплект заданий (индивидуальных или групповых) включает информационный поиск по тематике исследований и разработку и идентификацию математических моделей объектов и (или) процессов.

Контрольная работа

Выполняется в виде отчета-реферата с презентацией по итогам практических занятий (см. выше) и является средством проверки знаний, умений и навыков согласно заранее определенной методике, изложенной в методических указаниях по выполнению практических занятий.

Самостоятельная работа студента.

Цель самостоятельной работы - формирование личности студента, развитие его способности к самообучению и повышению своего профессионального уровня. Самостоятельная работа студентов включает закрепление теоретического материала, под-

готовку к рейтинговым мероприятиям. Основа самостоятельной работы - изучение рекомендуемой литературы, работа с конспектом лекций и в Интернете, выполнение домашних заданий.

На самостоятельную проработку вынесены следующие вопросы:

- 1. Информационный поиск по тематике исследований.
- 2. Области применения нечеткой логики в разработках и производстве ЭС.
- 3. Разработка алгоритма и прикладного программного обеспечения с использованием нечеткой логики.
- 4. Отладка программного обеспечения на оборудовании кафедры.
- 5. Оформление отчета-презентации по практическим занятиям.

Повышению эффективности самостоятельной работы способствуют систематические консультации. Текущий контроль освоения материала и самостоятельной работы проводится на консультациях и в форме рейтинг-контроля.

Вопросы к зачету

Проблемы нечеткой логики управления объектами и процессами (fuzzy logic).

Фундаментальная система уравнений полупроводника.

Формально-статистический подход к разработке моделей объектов и процессов.

Причинно-физический подход к разработке моделей объектов и процессов

Опровержение моделей как элемент технологии получения новых знаний.

Аппроксимация и интерполяция в моделировании.

Метод минимизации эмпирического риска с использованием полиномов Чебышева.

Структурная и параметрическая идентификация моделей.

Нечеткие алгоритмы управления.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) основная литература:

1. Кузькин А.А. Оценивание показателей эффективности и результативности ИТпроцессов с использованием гибридных нейро-нечетких сетей / Интернет-журнал \"Науковедение\", Вып. 1, 2014

Режим доступа: http://znanium.com/bookread2.php?book=477345

2. Управляемые электротехнические комплексы технологического оборуд. Науч.-практ. и метод. реком. по выпол. курс. и диплом. проект.: Уч. пос./Поляков А.Е., Филимонова Е.М.- М.:Форум, НИЦ ИНФРА-М, 2016-300с.: $70x100\ 1/16$.(BO)(П) ISBN 978-5-00091-122-8

Режим доступа: http://znanium.com/bookread2.php?book=506589

3. Осташков В.Н. Практикум по решению инженерных задач математическими методами [Электронный ресурс]: учеб. пособие / В.Н. Осташков. — 2-е изд. (эл.). — М.: БИНОМ, Лаборатория знаний, 2015.-207 с. ISBN 978-5-9963-2991-5

Режим доступа: http://www.studentlibrary.ru/book/ISBN9785996329915.html

б) дополнительная литература

- 1. Кручинин, В.В. Компьютерные технологии в науке, образовании и производстве электронной техники [Электронный ресурс] : . Электрон. дан. М. : ТУСУР (Томский государственный университет систем управления и радиоэлектроники), 2012. 155 с. Режим доступа: http://www.iprbookshop.ru/13941
- 2. Евсюков, В.Н. Теория автоматического управления: учеб. пособие для студентов вузов. / В.Н. Евсюков. 2-е изд. Оренбург: ОГУ, 2011. 260 с. Режим доступа: http://www.bibliorossica.com/book.html?currBookId=7573
- 3. В.И. Гадзиковский, Цифровая обработка сигналов / В.И. Гадзиковский. М.: СО-ЛОНПРЕСС, 2013. 766 с. ISBN:978-5-91359-117-3

Режим доступа: http://www.studentlibrary.ru/book/ISBN9785913591173.html

в) периодические издания:

- 1. Производственно-практический журнал «Современная электроника», Изд-во «СТА-Пресс», г. Москва. Бесплатная подписка для специалистов на www.soel.ru
- 2. Информационно-технический журнал «Новости электроники». Учредитель ООО «КОМПЭЛ», г. Москва, Электронная подписка на <u>www.compeljornal.ru</u>
- 3. Производственно-практический журнал «Современные технологии автоматизации», 4 выпуска в год, Издательство «СТА-Пресс», г. Москва. Содержания выпусков и подписка доступны по адресу: www.cta.ru

г) интернет-ресурсы:

- 1. Новостной и аналитический портал «Время электроники» (с подпиской на новости) http://www.russianelectronics.ru/leader-r/
- 2. Федеральный портал: Единое окно доступа к образовательным ресурсам. Образование в области техники и технологий. http://window.edu.ru/catalog/?p rubr=2.2.75
- 3. ЭЛИНФОРМ. Информационный портал по технологиям производства электроники (с подпиской на новости) http://www.elinform.ru/

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает:

- кафедральные мультимедийные средства (ауд. 331-3, 333-3, 324-3);
- электронные записи лекций (мультимедиа-презентации);
- оборудование компьютерного класса 330-3;
- специализированные лаборатории НИР, оснащенные измерительно-вычислительным комплексом автоматизации научных исследований в области квалигенетического подхода к индивидуальной оценке качества полупроводниковой ЭКБ в составе: спектрометр глубоких уровней DLS-82E, камера тепла и холода Thermotron, измерительные приборы с внешним компьютерным управлением (ауд. 122-3, 323-3);
- программно-аппаратные средства технологического оснащения специальных видов испытаний, разработанные на кафедре БЭСТ;
- демонстрационные дозиметры ионизирующих излучений;
- ИНТРАНЕТ-сервер локальной сети кафедры с Wi-Fi роутером беспроводного доступа на территории помещений кафедры.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению 11.04.03 Конструирование и технология электронных средств

Рабочую программу составил проф. каф. БЭСТ Крылов В.П.

(ФИО, подпись)

Согласовано:
Внешний рецензент — Холодков Д.В., вед. инженер-программист ООО Завод Промприбор

(ФИО, должность, подпись, расшифровка подписи)
Программа рассмотрена и одобрена на заседании кафедры БЭСТ

Протокол № 6 от 12.02.2015 года

Заведующий кафедрой БЭСТ Сушкова Л.Т.

(ФИО, подпись)

Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 11.03.03 Конструирование и технология электронных средств

Протокол № 6 от 12.02.2015 года

Председатель комиссии

(ФИО полпись)

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рабочая программа одобрена на	y	чебный год
Протокол заседания кафедры №	от	года
Заведующий кафедрой		
Рабочая программа одобрена на	у	чебный год
Протокол заседания кафедры №	от	года
Заведующий кафедрой		
Рабочая программа одобрена на	у	чебный год
Протокол заседания кафедры №	от	года
Заведующий кафедрой		