2019

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

УТВЕРЖДАЮ

Проректор

о образовательной деятельности

103 100

 $20/9_{\Gamma}$

АПанфилов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ

Направление подготовки – 04.04.01 – Химия

Профиль/программа подготовки – Химия окружающей среды, химическая экспертиза и экологическая безопасность

Уровень высшего образования: магистратура

Форма обучения - очная

Семестр	Трудоемкость зач. ед,/ час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС,	Форма промежуточной аттестации (экзамен/зачет/зачет с оценкой)
2	3/108	18		18	27	Экзамен (45)
Итого	3/108	18		.18	27	Экзамен (45)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины «Термодинамика необратимых процессов»: формирование у обучающихся общетеоретических представлений об основах линейной и нелинейной неравновесной термодинамики, знакомство в необходимых пределах с математическим аппаратом этой теории и разъяснение смысла вводимых при этом понятий.

Задачи: в результате изучения данного курса студент должен освоить основные понятия неравновесной термодинамики, теории устойчивости, теоретические и практические выводы линейного приближения. В настоящее время особую значимость приобрела нелинейная неравновесная термодинамика. Студент должен усвоить современные представления о системах, далёких от равновесия, возникновении бифуркаций и о диссипативных структурах.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Термодинамика необратимых процессов» изучается в вариативной части учебного плана.

Пререквизиты дисциплины «Термодинамика необратимых процессов»:

- 1. Математика.
- 2. Информатика.
- 3. Обработка результатов химического эксперимента.
- 4. Численные методы в химии.
- 5. Системное моделирование химических процессов
- 6. Общая и неорганическая химия.
- 7. Физика (некоторые аспекты обработки эксперимента).

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

Код формируемых компетенций	Уровень освоения компетенции ¹	Планируемые результаты обучения по дисциплине характеризующие этапы формирования компетенций (показатели освоения компетенции)
1	2	3
УК-1, ОПК-1, ОПК-2, ПК-3	частичное	Знать: основные понятия неравновесной термодинамики, лежащие в основе физико-химических представлений о природе, суть математического описания неравновесных систем и методов решения соответствующих уравнений, методы решения бифуркационных уравнений; Уметь: профессионально пользоваться основными теоретическими понятиями неравновесной термодинамики, разбираться в основных методиках приближённого решения задач неравновесной термодинамики; Владеть: общетеоретической методикой описания неравновесных систем, основами методик построения математического описания неравновесных систем, основными численными методами решения прикладных задач неравновесной термодинамики.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоёмкость дисциплины составляет 3 зачётные единицы, 108 часов.

<u>№</u> п/п	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Вид учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах).			И	Объем учебной работы с применен ием интеракти вных методов (в часах/%)	Формы текущего контроля, форма промежуточ ной аттестации (по семестрам)
				Лекции	Практические занятия	Лабораторные работы.	CPC		
1	Плотности термодинамических величин. Степень полноты реакции. Химическое сродство. Термодинамическое описание диффузии.	2	1-3	2		2	3	2/50	
2	Тепловая устойчивость. Механическая устойчивость. Химическая устойчивость и устойчивость при диффузии. Термодинамическая теория флуктуаций и устойчивости.	2	4-6	4		4	6	3/38	Рейтинг- контроль № 1
3	Принцип локального равновесия и локальное производство энтропии. Уравнение материального баланса. Сохранение энергии в открытых системах. Уравнение баланса энтропии.	2	7-8	2		2	3	2/50	
4	Линейные феноменологические законы. Перекрёстные эффекты. Соотношения взаимности Онзагера.	2	9-12	4		4	6	6/75	Рейтинг- контроль. № 2

	Принини оприметрии							
	Принцип симметрии.							
	Теорема о минимуме							
	производства энтропии.					_		
5	Системы, далёкие от	2	13-16	4	4	6	4/50	
	равновесия. Понятие о							
	бифуркациях,							
	диссипативных							
	структурах.							
	Термодинамические							
	ветви. Полное							
	производство энтропии и							
	его свойства; химические							
	реакции, изотермическая							
	диффузия.							
6	Математические основы	2	17-18	2	2	3	2/50	Рейтинг-
	общей теории							контроль №
	бифуркаций (на							3
	примере). Нарушение							
	хиральной симметрии и							
	жизнь. Общие							
	представления о							
	термодинамике реакции							
	Белоусова-							
	Жаботинского.							
Bcei	Всего за 2 семестр:			18	18	27	19/53	Экзамен (45)
	Наличие в дисциплине КП/КР							. ,
	го по дисциплине			18	18	27	19/53	Экзамен (45)

Содержание лекционных занятий по дисциплине

Раздел І. Введение в неравновесную термодинамику.

Теория устойчивости

Тема 1. Основные неравновесной термодинамики

Содержание темы. Плотности термодинамических величин. Степень полноты реакции. Химическое сродство. Термодинамическое описание диффузии.

Тема 2. Теория устойчивости

Содержание темы. Тепловая устойчивость. Механическая устойчивость. Химическая устойчивость и устойчивость при диффузии. Термодинамическая теория флуктуаций и устойчивости.

Раздел ІІ. Линейное приближение в неравновесной термодинамике

Тема 3. Локальное равновесие

Содержание темы. Принцип локального равновесия и локальное производство энтропии. Уравнение материального баланса. Сохранение энергии в открытых системах. Уравнение баланса энтропии.

Тема 4. Линейное приближение

Содержание темы. Линейные феноменологические законы. Соотношения взаимности Онзагера. Принцип симметрии. Перекрёстные эффекты. Термоэлектрические явления. Диффузия. Химические реакции. Термодиффузия. Теорема о минимуме производства энтропии.

Раздел III. Нелинейная термодинамика. Теория бифуркаций

Тема 5. Диссипативные структуры

Содержание темы. Системы, далёкие от равновесия. Понятие о бифуркациях, диссипативных структурах. Термодинамические ветви. Полное производство энтропии и его свойства; химические реакции, изотермическая диффузия.

Тема 6. Бифуркации

Содержание темы. Математические основы общей теории бифуркаций (на примере). Нарушение хиральной симметрии и жизнь. Общие представления о термодинамике реакции Белоусова-Жаботинского.

Содержание лабораторных занятий по дисциплине

- 1. Тема 1. Плотности термодинамических величин. Степень полноты реакции. Химическое сродство.
- 2. Тема 2. Термодинамическая теория флуктуаций и устойчивости.
- 3. Рейтинг-контроль № 1.
- 4. Тема 3. Принцип локального равновесия и локальное производство энтропии. Уравнение баланса энтропии.
- 5. Тема 4. Линейные феноменологические законы. Перекрёстные эффекты. Соотношения взаимности Онзагера.
- 6. Рейтинг-контроль № 2.
- 7. Тема 5. Понятие о бифуркациях, диссипативных структурах. Полное производство энтропии.
- 8. Тема 6. Математические основы общей теории бифуркаций. Термодинамика реакции Белоусова-Жаботинского.
- 9. Рейтинг-контроль № 3 (итоговый).

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Термодинамика необратимых процессов» используются разнообразные образовательные технологии как традиционные, так и с применением активных и интерактивных методов обучения.

Активные и интерактивные методы обучения:

- Интерактивная лекция (тема № 2, 3, 5);
- Групповая дискуссия (тема № 5, 6);
- Анализ ситуаций (тема № 2, 5);
- Применение имитационных моделей (тема № 5, 6);

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.

Текущий контроль успеваемости приводится по результатам рейтинг-контроля по следующим контрольным вопросам:

Рейтинг-контроль №1

1. Для идеальной системы, где µко (Т) +RT ln хк, получите выражение

$$\Delta_{i} S = -\frac{C_{V}(\delta T)^{2}}{2T^{2}} - \frac{1(\delta V)^{2}}{T_{kT}2V} - \sum_{i} \frac{R(\delta N_{i})^{2}}{2N_{i}}$$

2. а) Вычислите нормировочный множитель Z в выражении

$$P(\delta T, \delta V, \delta \widetilde{N}_i) = Z \exp(\delta S/\kappa) = Z \exp\left[-\frac{C_V(\delta T)^2}{2kT^2} - \frac{1(\delta V)^2}{2kT_{kT}V} - \sum_i \frac{\left(\delta \widetilde{N}_i\right)^2}{2\widetilde{N}_i}\right]$$

- б) Получите вероятность $P(\delta T)$ для флуктуаций одной переменной (δT) .
- в) Решая интеграл $\int_{-\infty}^{\infty} (\delta T)^2 P(\delta T) d(\delta T)$, получите среднее значение для квадрата флуктуаций.
- **3**. Из

$$P(\alpha_1, \alpha_2 \dots, \alpha_m) = \sqrt{\frac{\det[\mathbf{g}]}{(2\pi k)^2}} \exp\left[-\frac{1}{2k} \sum_{ij}^m g_{ij} \alpha_i, \alpha_j\right]$$

получите

$$F_i = k \frac{\delta lnP}{\delta \alpha_i}$$

4. Используя уравнение Гиббса—Дюгема при постоянных р и Т, а также

$$\sum N_k d\mu_k = 0$$
 и $(\partial \mu_k/\partial N_i) = (\partial \mu_i/\partial N_k)_{\rho,T}$ и $d\mu_k = \sum_i (\partial \mu_k/\partial N_i)_{p,T} dN_i$, покажите, что

$$\sum_{i} \left(\frac{\partial \mu_k}{\partial N_i} \right)_{v,T} N_i = 0$$

Эта формула означает, что детерминант матрицы с элементами $\mu_{ki}=(\partial \mu_k/\partial N_i)$ равен нулю.

Следовательно, одно из собственных значений матрицы (13.2.5) равно нулю.

$$\left[\begin{array}{cc} \mu_{11} & \mu_{12} \\ \mu_{21} & \mu_{22} \end{array} \right]$$

5. Используя $\mu_1(T, p, x_1, x_2) = \mu_1^0(T, p) + RT \ln x_1 + \alpha x_2^2$ и

$$x_1 = \frac{N_1}{N_1 + N_2}$$
 и $x_2 = \frac{N_2}{N_1 + N_2}$

покажите, что условие $\mu_{11} = \partial \mu_1 / \partial N_1 > 0$ приводит к соотношению

$$\frac{RT}{2\alpha} - x_1(1-x_1) > 0$$

6. Для равновесного перехода покажите, что

$$\left(\frac{\partial \xi}{\partial T}\right)_{p,A=0} = -\frac{h_{T,p}}{T\left(\frac{\partial A}{\partial \xi}\right)_{Tp,p}}$$

считая, что вдоль пути перехода $A(\xi, T, p) = 0$

7. Предположив в выражении

$$\delta^2 S = -\sum_{ij} \left(\frac{\partial}{\partial N_j} \frac{\mu_{1j}}{T} \right) \, \delta N_i \delta N_j < 0,$$

что изменение в числе молей обусловлено химической реакцией, получите выражение $\frac{1}{2} \, \delta^2 S = \sum_{i:i} \frac{1}{2T} \left(\frac{\partial A_i}{\partial \, \xi_j} \right)_{aa} \delta \, \xi_i \delta \xi_j < 0$

8. Предположим, что соотношение Гиббса $dU = TdS - pdV + \sum_k \mu_k dN_k$ справедливо для малого элемента объема V. Покажите справедливость соотношения $Tds = du - \sum_k \mu_k \ dn_k$, в котором s = (S/V), u = (U/V) и $n_k = (N_k/V)$

Рейтинг-контроль №2

1. Используя закон сохранения энергии

$$\frac{\partial e}{\partial t} + \nabla \cdot J_e = 0$$

И уравнение баланса по числу молей

$$\frac{\partial n_k}{\partial t} = -\nabla \cdot J_k + \sum_i v_{jk} v_j = 0,$$

покажите, что выражение для потока
$$J_s = J_q + \sum_k u_k J_k$$

удовлетворяет уравнению сохранения энергии

$$\frac{\partial e}{\partial t} = c_V \frac{\partial T}{\partial t} + \sum_j (r_{V,T})_j v_j + \sum_k J_k \cdot (\nabla u_k) - \sum_k \nabla \cdot (u_k J_k) + \frac{\partial}{\partial t} (KE) = -\nabla \cdot J_e$$

2. По данным табл. Для разумных значений градиентов оцените перекресно-диффузионный поток одного компонента, обусловленный градиентом другого.

	, j	1 1 1 1 1 1		
T,K	$D_{11}, M^2/c$	$D_{12}, M^2/c$	$D_{21}, M^2/c$	$D_{22}, M^2/c$
1723	$(6,8\pm0,3)\cdot10^{-11}$	(- 2,0±0,5)·10 ⁻¹¹	$(-3,3\pm0,5)\cdot10^{-11}$	$(4,1\pm0,7)\cdot 10^{-11}$
1773	$(1,0\pm0,1)\cdot$ 10 ⁻¹⁰	(- 2,8±0,8) · 10 ⁻¹¹	$(-4,2\pm0,8)\cdot10^{-11}$	$(7,3\pm0,4)\cdot10^{-11}$
1823	$(1,8\pm0,2)\cdot 10^{-10}$	(- 4,6±0,6)· 1 0 ⁻¹¹	$(-4,6\pm0,6)\cdot10^{-11}$	$(1,5\pm0,1)\cdot10^{-10}$

3. Для диффузии в трехкомпонентной системе покажите, что феноменологические коэффициенты

определяются формулами (Можете использовать программы Mathematica или Maple).
$$L_{11} = T \frac{dD_{11} - bD_{12}}{ad - bc} \qquad \qquad L_{12} = T \frac{dD_{12} - bD_{11}}{ad - bc}$$

$$L_{21} = T \frac{dD_{21} - bD_{22}}{ad - bc} \qquad \qquad L_{22} = T \frac{dD_{22} - bD_{21}}{ad - bc}$$

в которых

$$\begin{split} \alpha &= \left(1 + \frac{n_1 v_1}{n_3 v_3}\right) \left(\frac{\partial \mu_1}{\partial n_1}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_1}\right) \\ c &= \left(1 + \frac{n_1 v_1}{n_3 v_3}\right) \left(\frac{\partial \mu_1}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_1 v_1}{n_3 v_3}\right) \left(\frac{\partial \mu_1}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_1}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &= \left(1 + \frac{n_2 v_2}{n_3 v_3}\right) \left(\frac{\partial \mu_2}{\partial n_2}\right) + \frac{n_2 v_2}{n_3 v_3} \left(\frac{\partial \mu_2}{\partial n_2}\right) \\ d &=$$

4. Для серии реакций $M \stackrel{1}{\Leftrightarrow} X_1 \stackrel{2}{\Leftrightarrow} X_2 \dots \Leftrightarrow X_{n-1} \stackrel{n}{\Leftrightarrow} N$ с притоком M и оттоком N, покажите, что стационарное состояние задается следующим образом:

$$\upsilon_1 = \upsilon_2 = \ldots = \upsilon_r$$

где υ_{κ} – скорости соответствующих реакций.

5. Используя уравнение $I=L_C\frac{v_C}{r}=-\frac{L_C}{r}\frac{Q}{c}$ и $L\frac{dI}{dt}=-L_L\frac{I}{r}$, получите зависимость I(t) b Q(t) для реального конденсатора и реальной индуктивности. С помощью

$$\frac{d_{i}S}{dt} = \frac{v_{C}I}{T} = \frac{v_{C}}{T}\frac{dQ}{dt} = -\frac{c}{T}V_{C}\frac{dV_{C}}{dt} = -\frac{1}{T}\frac{d}{dt}\left(\frac{CV_{C}^{2}}{2}\right) = -\frac{1}{T}\frac{d}{dt}\left(\frac{Q^{2}}{2C}\right) > 0$$
 и
$$\frac{d_{i}S}{dt} = -\frac{1}{T}\frac{d}{dt}\left(\frac{LI^{2}}{2}\right) = -\frac{LI}{T}\frac{dI}{dt} = \frac{V_{L}I}{T} > 0$$

получите производство энтропии для любого момента времени t в этих элементах цепи c начальным током I_0 и начальным зарядом Q_0 .

- **6.** Для химической реакции $A \Leftrightarrow B$ проверьте общее свойство $d_F P \leq 0$.
- 7. a) Для возмущения $\delta[B]$ от стационарного состояния реакции

$$A+B\frac{k_f}{\overline{k_r}}C+D$$
 получите неравенство
$$\frac{1}{2}\frac{d\delta^2S}{dt}=\sum_a\delta J_a\delta F_a=\frac{\delta A}{T}\delta\vartheta=Rk_f\frac{[A]_S}{[B]_S}(\delta[B])^2>0.$$

б) Для возмущения $oldsymbol{\delta[X]}$ от стационарного состояния реакции

$$2X + Y \frac{k_f}{\overline{k_r}} 3X$$

получите «избыточное производство энтропии»

$$\frac{1}{2}\frac{d\delta^2 s}{dt} = \frac{\delta A}{T}\delta\vartheta = -R\left(2k_f[X]_s[Y]_s - 3k_r[X]_s^2\right)\frac{(\partial X)^2}{[X]_s}.$$

- **8.** Получите избыточное производство энтропии и исследуйте устойчивость стационарного состояния для следующих реакций:
- а) $W \Leftrightarrow X \Leftrightarrow Z$, где концентрации W и Z поддерживаются фиксированными при неравновесном значении.
- б) W + X \Leftrightarrow 2X, X \Leftrightarrow Z, где концентрации W и Z поддерживаются фиксированными при неравновесном значении.

Рейтинг-контроль №3

1. Исследуйте устойчивость решений lpha=0 и $lpha=\pm\sqrt{\lambda}$ для уравнения

$$\frac{da}{dt} = -\alpha^3 + \lambda\alpha$$

и покажите в явной форме , что если $\lambda > 0$, то решение $\alpha = 0$ неустойчиво, в то время как решение $\alpha = \pm \sqrt{\lambda}$ устойчиво.

2. Используя принцип детального равновесия, проверьте для реакций

$$S + T \frac{k_{1f}}{\overline{k_{1r}}} X_L$$

$$S + T + X_L \frac{k_{2f}}{\overline{k_{2r}}} 2X_L$$

$$S + T \frac{k_{1f}}{\overline{k_{1r}}} X_D$$

$$S + T + X_D \frac{k_{2f}}{\overline{k_{2r}}} 2X_D$$

$$S + T + X_D \frac{k_{2f}}{k_{2r}} 2X_D$$
$$X_L + X_D \stackrel{k_2}{\to} P,$$

что равновесии концентрации X_L и X_D равны

3. Используя переменные α , β и λ , определенные в

$$\lambda = [S][T] \quad \alpha = \frac{[X_L] - [X_D]}{2} \quad \beta = \frac{[X_L] + [X_D]}{2},$$

покажите, что кинетические уравнения

$$\begin{split} \frac{d[X_L]}{dt} &= k_{1f}[S][T] - k_{1r}[X_L] + k_{2f}[X_L][S][T] - k_{2r}[X_L]^2 - k_3[X_L][X_D] \text{ M} \\ \frac{d[X_D]}{dt} &= k_{1f}[S][T] - k_{1r}[X_D] + k_{2f}[X_D][S][T] - k_{2r}[X_D]^2 - k_3[X_L][X_D] \end{split}$$

могут быть записаны в виде

$$\begin{split} \frac{da}{dt} &= -k_{1r}a + k_{2f}\lambda a - 2k_{2r}a\beta \text{ H} \\ \frac{d\beta}{dt} &= k_{1f}\lambda - k_{1r}\beta + k_{2f}\lambda\beta - k_{2r}(\beta^2 + \alpha^2) - k_3(\beta^2 - \alpha^2). \end{split}$$

4. Покажите, что $[X]_s = \frac{k_1}{k_s} [A]$ и $[Y]_s = \frac{k_4 k_2 [B]}{k_5 k_5 [A]}$

являются стационарными состояниями кинетических уравнений брюсселятора

$$\begin{split} \frac{d[X]}{dt} &= k_1[A] - k_2[B][X] - k_3[X]^2[Y] - k_4[X] \equiv Z_1 \\ &\text{и } \frac{d[Y]}{dt} = k_2[B][X] - k_3[X]^2[Y] \equiv Z_3 \ . \end{split}$$

Промежуточная аттестация по итогам освоения дисциплины. Вопросы к зачёту

- 1. Плотности термодинамических величин. Степень полноты реакции. Химическое сродство.
- 2. Термодинамическое описание диффузии.
- 3. Тепловая устойчивость.
- 4. Механическая устойчивость.
- 5. Химическая устойчивость и устойчивость при диффузии.
- 6. Термодинамическая теория флуктуаций и устойчивости.

- 7. Принцип локального равновесия и локальное производство энтропии.
- 8. Уравнение материального баланса.
- 9. Сохранение энергии в открытых системах.
- 10. Уравнение баланса энтропии.
- 11. Линейные феноменологические законы. Перекрёстные эффекты.
- 12. Соотношения взаимности Онзагера.
- 13. Принцип симметрии. Теорема о минимуме производства энтропии.
- 14. Системы, далёкие от равновесия. Понятие о бифуркациях, диссипативных структурах. Термодинамические ветви.
- 15. Полное производство энтропии и его свойства; химические реакции, изотермическая диффузия.
- 16. Математические основы общей теории бифуркаций (на примере).
- 17. Нарушение хиральной симметрии и жизнь. Общие представления о термодинамике реакции Белоусова-Жаботинского.

Учебно-методическое обеспечение для самостоятельной работы студентов

- **1.** Учитывая изменения $\delta^2 F$, получите условия устойчивости по тепловым флуктуациям при постоянных N_k и V.
- **2.** Рассмотрим идеальный газ при температуре T и давлении $\rho = 1$ атм. Предположим, что этот идеальный газ содержит два компонента A и B в состоянии равновесия $A \rightleftharpoons B$. Рассчитайте число молекул в малом объеме δ V при превращении $A \rightarrow B$, если изменение энтропии в рассматриваемом объеме равно постоянной Больцмана k. Уравнение $(\Delta_i S_{chem}) = -r \frac{k}{2}$ в этом случае определяет ожидаемые флуктуации.
- **3.** Для идеального газа в состоянии равновесия при T=300~K вычислите изменение энтропии, обусловленное флуктацией температуры $\delta T=1.0\cdot 10^{-3}~K$ в объеме $V=1.0\cdot 10^{-6}~{\rm M}$
- **4.** Объясните физический смысл условия устойчивости $\left(\frac{\partial A}{\partial \xi}\right)_{eq} < 0$ при протекании химической реакции
- 5. Предположим, что соотношение Гиббса $dU = TdS pdV + \sum_k \mu_k dN_k$ справедливо для малого элемента объема V. Покажите справедливость соотношения $Tds = du \sum_k \mu_k dn_k$, в котором s = (S/V), u = (U/V) и $n_k = (N_k/V)$
- 6. Для положительно определённой 2х2-матрицы покажите, что должно выполнятся $L_{11}>0 \quad L_{22}>0 \quad (L_{12}+L_{21})^2<4L_{11}L_{22}$
- 7. Приведите примеры выполнения равенства

$$\langle \alpha_i(t)\alpha_k(t+\tau)\rangle = \langle \alpha_k(t)\alpha_i(t+\tau)\rangle$$

предложенного Онсагером. Приведите примеры, когда оно несправедливо.

- **8.** Для одной из реакций, приведенных в гл.9, определите условия, при которых могут быть использованы линейные феноменологические соотношения.
- **9.** Используя закон Фурье $J_q = -k\nabla T$, получите нестационарное уравнение теплопроводности

$$C\frac{\partial T}{\partial t} = k\nabla^2 T$$

в котором С – теплоемкость в единичном объеме.

- б) Для одномерной системы покажите, что стационарное состояние системы приводит к линейной температурной зависимости.
- в) Ядра планет имеют более высокую температуру, чем их поверхности. Рассмотрите сферу радиуса R, ядро которой радиуса R_1 находится при температуре T_1 , а поверхность при T_2 ($T_1 > T_2$). Используя закон теплопроводности Фурье, получите стационарное распределение температуры T(R) и определите тепловой поток J_q как функцию R. (Теплопроводность планетарного вещества не может определяться тепловым потоком у поверхности планеты. Поэтому считается, что перенос теплоты обусловлен конвективными процессами внутри планеты.)
- **10.** а) Записав молярную энтропию системы как $s_m = s_{m0} + C_{Vm} lnT$, где C_{Vm} молярная теплоемкость, получите выражение полной энтропии системы. Пусть ρ плотность, M- молярная масса. Расстояние между горячим и холодным концами равно L и площадь поперечного сечения равна 1. Плотность ρ почти однородна и не меняется с температурой T.
- б) Предположим, что контакт системы с резервуаром был внезапно устранен и затем систему изолировали без потери теплоты.
 - 1) Какова была бы конечная температура системы при достижении равновесия?
 - 2) Какова была бы конечная энтропия системы?
- 3) Насколько бы возросла энтропия системы по сравнению с первоначальным неравновесным состоянием?
- **11.** Для серии реакций $M \stackrel{1}{\Leftrightarrow} X_1 \stackrel{2}{\Leftrightarrow} X_2 ... \Leftrightarrow X_{n-1} \stackrel{n}{\Leftrightarrow} N$ с притоком M и оттоком N, покажите, что стационарное состояние задается следующим образом:

$$v_1 = v_2 = ... = v_n$$

где $\upsilon_{\rm K}$ – скорости соответствующих реакций.

- **12.** Докажите принцип минимума производства энтропии для производственного числа ограниченных и свободных термодинамических сил.
- **13.** Вычислите сродство следующих реакций для различных концентраций (или парциальных давлений) реагентов и продуктов реакций и сравните полученные ответы с RT при T = 298 K.

Использую табличные данные, определите область значений, для которых следующие системы находятся в линейном термодинамическом режиме:

- 1) реакция рацемизации $L \Leftrightarrow D$ (L и D оптические изомеры).
- 2) реакция $N_2O_4(\Gamma) \Leftrightarrow 2NO_2(\Gamma)$ (с парциальными давлениями $h N_2O_4$ и $h NO_2$).
- **14.** а) Какие факторы подтверждают, что атмосфера Земли не находится в термодинамическом равновесии?
- б) Используя соответствующие литературные источники, определите, находятся ли атмосферы Марса и Венеры в химическом равновесии.
- **15.** Для химической реакции $A \Leftrightarrow B$ проверьте общее свойство $d_{F}P \leq 0$.
- **16.** Получите избыточное производство энтропии и исследуйте устойчивость стационарного состояния для следующих реакций:
- а) $W \Leftrightarrow X \Leftrightarrow Z$, где концентрации W и Z поддерживаются фиксированными при неравновесном значении.
- б) W + X \Leftrightarrow 2X, X \Leftrightarrow Z, где концентрации W и Z поддерживаются фиксированными при неравновесном значении.
- **17.** Запишите программу для решения уравнения упр. 19.1. Постройте эти решения как функцию времени для различных начальных условий и покажите в явной форме, что решения приходят к устойчивым стационарным состояниям.

Для успешного выполнения самостоятельной работы студентам рекомендуется следующая литература:

Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. Издательство «Мир». 2002.

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Книгообеспеченность

		КНИГС	ООБЕСПЕЧЕННОСТЬ
Наименование литературы: автор, название, вид издания, издательство	Год издания	Количес тво экземпл яров изданий в библиот еке ВлГУ в соответс твии с ФГОС ВО	Наличие в электронной библиотеке ВлГУ
1	2	3	4
Основная литература*			
1. В.И. Грызунов, И.Р. Кузеев, Е.В. Пояркова, В.И. Полухина, Е.Б. Шабловская, Е.Ю. Приймак, Н.В. Фирсова. Физическая химия: учеб. Пособие. 2-е изд., стер. М.: ФЛИНТА. 2014.	2014	2	http://www.studentli brary.ru/book/ISBN 9785976519633.htm
2. Г.В. Булидорова, Ю.Г. Галяметдинов, Х.М. Ярошевская, В.П. Барабанов. Физическая химия: учебное пособие. Казан. нац. исслед. технол. ун-тКазань: Изд-во КНИТУ. 2012.	2012		http://www.studentli brary.ru/book/ISBN 9785788213675.htm 1
3. В. В. Еремин [и др.]. Основы физической химии: учебное пособие: в 2 ч. Ч. 1: Теория 3-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2013.	2013		http://www.studentli brary.ru/book/ISBN 9785996321063.htm 1
4. В. В. Еремин [и др.]. Основы физической химии: учебное пособие: в 2 ч. Ч. 2: Задачи 3-е изд. (эл.). М.: БИНОМ. Лаборатория знаний. 2013.	2013		http://www.studentli brary.ru/book/ISBN 9785996321070.htm 1
Дополнительная литератур			
1. Афанасьев Б.Н. Акулова Ю.П. Физическая химия. Издательств: Лань. 1-е изд. 2012.	2012		http://e.lanbook.com/books/element.php? pl1_id=4312
2. Г.В. Булидорова, Ю.Г. Галяметдинов, Х.М. Ярошевская, - В.П.Барабанов. Основы химической термодинамики (к курсу физической химии): учебное пособие. Казань: Изд-во Казан. гос. технол. ун-та, 2011.	2011		http://www.studentli brary.ru/cgi-bin/mb4

7.2. Периодические издания:

1. Журнал физической химии.

7.3. Интернет-ресурсы.

- 1. http://www.studentlibrary.ru/book/ISBN9785996321063.html.
- 2. http://www.studentlibrary.ru/cgi-bin/mb4
- 3. http://www.y10k.ru/books
- 4. http://www.abc.chemistry.bsu.by/current/fulltext.htm
- 5. http://www.sciencedirect.com
- 6. http://chemteq.ru/lib/book
- 7. http://www.chem.msu.su/rus

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

При чтении лекционного курса используются мультимедийные средства обучения в виде набора слайдов с демонстрацией через проектор.

На лекциях и лабораторных используются наглядные пособия в виде моделей.

Перечень используемого лицензионного программного обеспечения: Windows 7, Microsoft Office 2010, Power Point, Adobe Reader,

Рабочую программу составил доцент Лобко В.Н.
Рецензент (представитель работодателя)
АО «РМ НАНОТЕХ», начальник аналитического отдела центральной заводской лаборатории
к.х.н. А.В. Третьяков
Программа рассмотрена и одобрена на заседании кафедры химии
Протокол № <u>1</u> от <u>03. 09</u> 201 <u>9</u> г.
Заведующий кафедрой Мухичи Б.А.Кухтин
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
Haddardehug $04.03.01 - y$ Ymagy
Протокол № 1 от <i>03.09</i> 2019 г.
Протокол № 1 от 03.09 2019 г. Председатель комиссии Мухичи Б.А.Кухтин

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на <u>2000/201/</u> учебный год	
Протокол заседания кафедры №// от _ <i>£ До_</i> года	
Заведующий кафедрой уубые	
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой	
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой	
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой	
Рабочая программа одобрена на учебный год	*
Протокол заседания кафедры № от года	
Зэрелующий кафеллой	

Рецензия

на рабочую программу дисциплины «Термодинамика необратимых процессов»

Направление подготовки — 04.04.01 — Химия квалификация выпускника - магистр, составленную к.х.н., доцентом кафедры химии ВлГУ Лобко В.Н.

Рабочая программа дисциплины «Термодинамика необратимых процессов» представлена на рецензию кафедрой химии ИБиЭ ВлГУ.

Рабочая программа состоит из 8 основных разделов, сформулированы цели и задачи освоения дисциплины.

В рассматриваемой программе изложены: место дисциплины в структуре ОПОП ВО; компетенции обучающегося, формируемые в результате освоения дисциплины; структура и содержание дисциплины, и виды занятий. Достаточно подробно изложено содержание разделов дисциплины. Имеется тематика лекций, практических занятий, разделы по самостоятельной работе студента и оценочным средствам для текущего контроля. Программа способствует формированию системы теоретических знаний и практических умений, культурному, личностному развитию студентов, предусматривает развитие коммуникативной направленности, связанной с познавательной деятельностью.

Содержание программы обеспечивает создание и развитие базовых умений и навыков для использования основных законов естественнонаучных дисциплин в профессиональной деятельности, формирование представлений научного мировоззрения на основе системных знаний о линейной и нелинейной неравновесной термодинамике.

Рецензируемая рабочая программа по «Термодинамика необратимых процессов» составлена в соответствии с современными методами педагогических технологий.

Рабочая программа данной дисциплины соответствует предъявляемым требованиям ФГОС ВО.

Рецензент (представитель работодателя)

АО «РМ НАНОТЕХ», начальник аналитического отдела центральной

заводской лаборатории, к.х.н.

итаем А.В. Третьяков