АННОТАЦИЯ КРАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

Термодинамика необратимых процессов

Направление подготовки 04.04.01 - Химия

2 семестр

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины «Термодинамика необратимых процессов»: формирование у обучающихся общетеоретических представлений об основах линейной и нелинейной неравновесной термодинамики, знакомство в необходимых пределах с математическим аппаратом этой теории и разъяснение смысла вводимых при этом понятий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Термодинамика необратимых процессов» изучается в вариативной части учебного плана.

Пререквизиты дисциплины «Термодинамика необратимых процессов»: 1. Математика. 2. Информатика. 3. Обработка результатов химического эксперимента. 4. Численные методы в химии. 5. Системное моделирование химических процессов. 6. Общая и неорганическая химия. 7. Физика (некоторые аспекты обработки эксперимента).

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие компетенции (УК-1, ОПК-1, ОПК-2, ПК-3):

Знать: основные понятия неравновесной термодинамики, лежащие в основе физико-химических представлений о природе, суть математического описания неравновесных систем и методов решения соответствующих уравнений, методы решения бифуркационных уравнений;

Уметь: профессионально пользоваться основными теоретическими понятиями неравновесной термодинамики, разбираться в основных методиках приближённого решения задач неравновесной термодинамики;

Владеть: общетеоретической методикой описания неравновесных систем, основами методик построения математического описания неравновесных систем, основными численными методами решения прикладных задач неравновесной термодинамики.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Плотности термодинамических величин. Степень полноты реакции. Химическое сродство. Термодинамическое описание диффузии. Тепловая устойчивость. Механическая устойчивость. Химическая устойчивость и устойчивость при диффузии. Термодинамическая теория флуктуаций и устойчивости. Принцип локального равновесия и локальное производство энтропии. Уравнение материального баланса. Сохранение энергии в открытых системах. Уравнение баланса энтропии. Линейные феноменологические законы. Перекрёстные эффекты. Соотношения взаимности Онзагера. Принцип симметрии. Теорема о минимуме производства энтропии. Системы, далёкие от равновесия. Понятие о бифуркациях, диссипативных структурах. Термодинамические ветви. Полное производство энтропии и его свойства; химические реакции, изотермическая диффузия. Математические основы общей теории бифуркаций (на примере). Нарушение хиральной симметрии и жизнь. Общие представления о термодинамике реакции Белоусова-Жаботинского.

5. ВИД АТТЕСТАЦИИ – экзамен.

6. КОЛИЧЕСТВО ЗАЧЕТНЫХ ЕДИНИЦ – 3 зачетных единиц, 108 часов.

Составитель: доцент кафедры химии Лобко В.Н.

 \mathcal{N}

Заведующий кафедрой химии Кухтин Б.А.

Председатель учебно-методической комиссии

направления 04.04.01 – "Химия" Кумтин-Б

Директор ИБЭ Смирнова Н.Н.

Дата: 03.09,2019

Печать института

high rung blighting

2