Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра "АТБ"

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ РАБОТАМ ПО ДИСЦИПЛИНЕ «АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ И СВЯЗЬ»

Составитель:

П.С. Сабуров

Tema: «Разработка системы связи и автоматизированной системы оперативного управления гарнизона пожарной охраны»

Цель:

В соответствии с требованиями нормативных документов, регламентирующих построение и эксплуатацию системы связи в ГПС, спроектировать для заданного гарнизона пожарной охраны систему связи и автоматизированную систему оперативного управления силами и средствами гарнизона.

Задание:

- 1. Разработать структурную схему системы оперативной связи гарнизона пожарной охраны и дать ее краткое описание.
- 2. Рассчитать основные характеристики системы оперативной связи гарнизона пожарной охраны.
- 3. Провести расчет и выбор высот установки антенн стационарных радиостанций.
- 4. Разработать схему организации системы оперативной связи на месте пожара.
- 5. Выбрать перечень технических средств связи и оперативного управления для заданного гарнизона пожарной охраны.
- 6. Рассчитать основные характеристики АСОУПО и обосновать целесообразность её внедрения.
- 7. Разработать схему технической реализации АСОУПО.
- 8. Выбрать перечень технических средств для реализации АСОУПО.

Методика выполнения 1-го раздела

Задано:

- гарнизон пожарной охраны имеет центр управления силами (ЦУС), $N_{\Pi Y} = 7$ пожарных частей; особо важных объектов (ОВО) 5 и районных ATC 5;
 - интенсивность повреждения канала связи λ_{II} =0,0005 I/V;
 - время работы канала связи $t_n = 858 \text{ y}$;
- среднее время переговора в сети специальной связи по линиям «01» $\overline{T}_{{\scriptscriptstyle H}}$ = 1,5 ${\scriptstyle mun}$.;
 - коэффициент готовности аппаратуры $K_2 = 0.8$;
- время занятости диспетчера обработкой принятого вызова $T_{obc1} = 4$ мин;
 - коэффициент занятости диспетчера $K_{\phi} = 0.4$;
 - число радиостанций в радиосети N=7;

- время переговора в радиосети $T_{\mu p} = 0.9 \text{ мин};$
- непроизводительные затраты времени $T_n = 0.2 \, \text{мин};$
- минимальное значение напряженности поля полезного сигнала $E_{\text{мин.}} = 20 \ \partial B;$
 - тип коаксиального кабеля РК 75-2-21;
 - длина фидерного тракта передатчика радиостанции ЦУС $l_1 = 20 M$;
 - длина фидерного тракта приемника радиостанции $\Pi \Psi I_2 = 15 M$;
- величина превышения допустимого уровня мешающего сигнала $\Delta E_{\partial op} = 6 \ \partial E;$

Таблица 1.1 Интенсивность поступающих вызовов по часам суток для сети проводной связи

Часы суток	1	2	3	4	5	6	7	8	9	10	11	12
Число вызовов	7	5	4	1	2	5	4	2	7	9	5	7
Часы суток	13	14	15	16	17	18	19	20	21	22	23	24
Число вызовов	13	12	11	5	4	5	7	5	5	10	4	5

Таблица 1.2 **Интенсивность поступающих вызовов по часам суток для сети радиосвязи**

Часы суток	1	2	3	4	5	6	7	8	9	10	11	12
Число вызовов	4	4	2	0	10	0	8	13	10	7	9	7
												_
Часы суток	13	14	15	16	17	18	19	20	21	22	23	24
Число вызовов	8	9	11	10	8	9	7	12	7	8	7	6

Месторасположение пожарных частей

Таблица 1.3

Таблица 1.4

Таблица 1.5

№ПЧ	1	2	3	4	5	6	7
Координаты	M/2	C/2	К/7	F /10	G/3	O/5	0/9

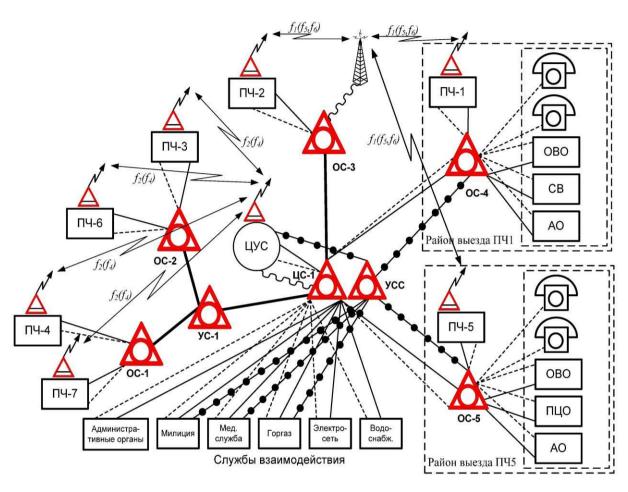
Месторасположение районных АТС

№ ATC	1	2	3	4	5
Координаты	1/8	M/4	C /10	P/6	D/5

Месторасположение особо важных объектов

№ OBO	1	2	3	4	5
Координаты	O /10	D/1	O/1	Q/4	R/5

1. Разработка структурной схемы и расчет основных характеристик системы оперативной связи гарнизона пожарной охраны


1.1. Разработка структурной схемы системы оперативной связи гарнизона пожарной охраны

Структурная схема системы оперативной связи гарнизона ПО (рис. 1.1) представляет собой упорядоченную совокупность различных видов проводной и радиосвязи, которая предназначена для управления силами и средствами гарнизона пожарной охраны и должна обеспечивать обмен служебной информацией между подразделениями гарнизона и внешними абонентами города, а также обмен оперативной информацией между пожарными подразделениями. Из схемы видно, что центр управления силами (ЦУС) гарнизона имеет разветвленную сеть линий и каналов связи, основные из которых обеспечивают круглосуточную связь с пожарными частями (ПЧ), специальными службами города (ССГ), местными административными органами (АО) и особо важными объектами (ОВО).

Для повышения надежности (живучести) системы связи используют несколько дублирующих друг друга линий связи. Линии связи ЦУС и ПЧ включают прямые (некоммутируемые) телефонные линии связи, линии АТС полной значности, специальную связь по линиям "01", радиосвязь, факсимильную и телеграфную связь.

Связь ЦУС с ССГ осуществляется по прямым некоммутируемым линиям связи, по линиям АТС и по линиям спецсвязи "01" через узел спецсвязи (УСС). Связь ЦУС с особо важными объектами осуществляется по прямым линиям связи, линиям АТС и высокочастотным (ВЧ) каналам. Высокочастотные каналы, как правило, служат для передачи дискретных частности, OT датчиков контроля автотранспорта, сигналов, В в депо пожарных частей, а также OT аппаратуры находящегося автоматической пожарной сигнализации, установленной на охраняемых объектах.

При наличии в городе совмещенной охранно-пожарной сигнализации ЦУС и ПЧ имеют связь по прямым линиям связи и по линиям АТС с пунктами централизованной охраны (ПЦО). Сигналы, принятые на ПЦО от совмещенных объектовых устройств тревожной сигнализации, передаются на ЦУС или в пожарную часть.

— телефонная связь по прямым линиям связи;

телефонная связь по линиям полной значности;

телефонная связь по линиям специальной связи «01»;

линия связи с дистанционно управляемой стационарной радиостанцией;

радиосвязь;

 $f_{l}...f_{6}$ — частоты рабочих каналов системы радиосвязи;

ЦС-центральная станция (АТС);

УС-узел связи;

ОС-оконечная станция (АТС);

УСС-узел специальной связи;

АО-административные органы;

СВ-службы взаимодействия;

ОВО-особо важные объекты.

ПЦО-пункт централизованной охраны

Рис.1.1. Структурная схема организации системы оперативной связи гарнизона пожарной охраны

1.2. Расчет основных характеристик системы оперативной связи гарнизона пожарной охраны

1.2.1. Расчет числа резервных каналов связи для обеспечения требуемой надежности системы связи

Устойчивость системы оперативной связи, состоящей из n каналов связи (например, система связи состоит из одного основного и нескольких резервных), характеризуется вероятностью ее безотказной работы:

$$P_n(t) = 1 - \prod_{i=1}^{n} (1 - P_{\delta,p,i}), \tag{1}$$

где $P_{\delta,p,i} = e^{-\lambda_{II} \cdot t_p}$ - вероятность безотказной работы i -го канала связи; λ_{II} - интенсивность повреждения канала связи; t_p - время работы канала связи.

Величина вероятности безотказной работы одного канала связи

$$P_{\delta,p} = e^{-\lambda_n \cdot t_p} = e^{-0.0005 \cdot 858} = 0.651.$$

По приведенной в задании требуемой вероятности безотказной работы системы $P_{\it mp}$ определяем необходимое количество каналов $N_{\it mp}$ преобразуя (1) следующим образом

$$\begin{split} P_{mp} &= 1 - \left(1 - P_{\delta.p.}\right)^{N_{mp}}, \\ 1 - P_{mp} &= \left(1 - P_{\delta.p.}\right)^{N_{mp}}. \end{split}$$

Прологарифмируем последнее выражение

$$ln(1-P_{mp}) = ln(1-P_{\delta,p})^{N_{mp}}$$
.

Определяем требуемое количество каналов системы связи

$$N_{mp} = \frac{ln(1 - P_{mp})}{ln(1 - P_{6.p.})} = \frac{ln(1 - 0.823)}{ln(1 - 0.651)} = \frac{ln(0.177)}{ln(0.349)} = 1.64 \Rightarrow 2.$$

Таким образом, для обеспечения требуемой надежности системы связи необходимо иметь 2 канала связи.

1.2.2. Определение интенсивности входного потока вызовов, поступающего на ЦУС по линиям «01»

Гистограмма распределения числа вызовов, поступающих в течение суток по линиям спецсвязи «01» на ЦУС гарнизона, представлена на рис. 1.2 (строится на основании статистических данных табл. 1.1).

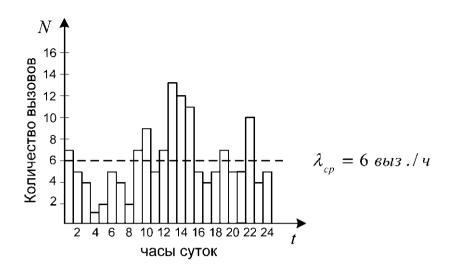


Рис.1.2. Гистограмма распределения числа вызовов по часам суток в сети спецсвязи «01»

Интенсивность входного потока вызовов в течение суток определяется по формуле

$$\lambda = \frac{\sum_{i=1}^{24} N}{24.60} = \frac{144}{24.60} = 0.1 \text{ выз./мин,}$$

где N – общее число поступивших вызовов в течение суток.

Средняя интенсивность поступающих на ЦУС вызовов определяется как

$$\lambda_{cp} = \frac{\sum_{i=1}^{24} N}{24} = \frac{144}{24} = 6 \text{ выз./час.}$$

В заданном гарнизоне интенсивность входного потока вызовов в течение суток составляет $\lambda = 0,1$ выз./мин, а средняя интенсивность составляет $\lambda_{cp} = 6$ выз./ч.

1.2.3. Оптимизация сети спецсвязи по линиям "01" и расчет ее пропускной способности

Оптимизация сети спецсвязи по линиям «01» сводится к нахождению такого числа линий связи «01» и необходимого количества диспетчерского состава, при которых обеспечиваются заданная вероятность потери вызова $P_{II}=0.001$ и необходимая пропускная способность сети спецсвязи.

Последовательно увеличивая число линий связи с 1 до n, находим такое число линий связи, при котором выполняется условие $P_{omk} \leq P_n$.

Нагрузка, создаваемая в сети спецсвязи, может быть представлена как

$$y = \lambda \cdot \overline{T}_{II} = 0,1 \cdot 1,5 = 0,15$$
 мин-зан.,

где λ - интенсивность входного потока вызовов по линиям спецсвязи «01», \overline{T}_{II} - среднее время переговора в сети специальной связи по линиям «01».

В общем виде вероятность того, что все линии связи свободны, определяется по формуле

$$P_{0n} = \frac{1}{\sum_{k=0}^{n} \frac{y^k}{k!}} ,$$

где k - последовательность целых чисел, k = 0, 1, 2, ..., n.

Для случая, когда n=1, вероятность того, что линия связи будет свободна,

$$P_{01} = \frac{1}{\sum_{k=0}^{1} \frac{y^k}{k!}} = \frac{1}{1 + \frac{y^1}{1!}} = \frac{1}{1 + \frac{0.15^1}{1!}} = 0,8696.$$

В общем виде вероятность того, что все n линий связи будут заняты (т.е. вероятность отказа в обслуживании), определяется как

$$P_{om\kappa n} = \frac{y^n}{n!} P_{0n} ,$$

Для случая, когда n = 1, вероятность отказа в обслуживании

$$P_{om\kappa 1} = \frac{y^1}{1!} P_{01} = \frac{0.15^1}{1} 0.8696 = 0.13$$
.

Сравнивая полученное значение $P_{om\kappa 1}$ и заданное значение вероятности потери вызова $P_H=0{,}001$, приходим к выводу, что условие $P_{om\kappa 1} \leq P_H$ не соблюдается. Поэтому увеличиваем число линий связи до n=2. При этом вероятность того, что две линии связи будут свободны, определяется из выражения

$$P_{02} = \frac{1}{1 + \frac{y^1}{1!} + \frac{y^2}{2!}} = \frac{1}{1 + \frac{0.15^1}{1} + \frac{0.15^2}{2}} = 0.8611.$$

Вероятность отказа при этом определяется как

$$P_{om\kappa 2} = \frac{y^2}{2!} P_{02} = \frac{0.15^2}{2} 0.8611 = 0.0097.$$

Сравнивая полученное значение $P_{om\kappa\,2}$ и заданное значение P_H , приходим к выводу, что условие $P_{om\kappa\,2} \le P_H$ не соблюдается. Поэтому

увеличиваем число линий связи до n = 3. При этом вероятность того, что три линии связи будут свободны, определяется по следующей формуле

$$P_{03} = \frac{1}{1 + \frac{y^{1}}{1!} + \frac{y^{2}}{2!} + \frac{y^{3}}{3!}} = \frac{1}{1 + \frac{0.15^{1}}{1} + \frac{0.15^{2}}{2} + \frac{0.15^{3}}{6}} = 0.8607.$$

Вероятность отказа при этом определяется как

$$P_{omk 3} = \frac{y^3}{3!} P_{03} = \frac{0.15^3}{6} 0.8607 = 0.00048$$

Сравнивая полученное значение $P_{om\kappa3}$ и заданное значение P_{II} , приходим к выводу, что при трех линиях связи условие $P_{om\kappa3} \leq P_{II}$ соблюдается, т.е. $P_{om\kappa3} = 0{,}00048 < P_{II} = 0{,}001$.

Таким образом, принимаем необходимое число линий спецсвязи 01» n=3.

Вероятность того, что вызов будет принят на обслуживание (относительная пропускная способность сети спецсвязи), определяется как

$$P_{obc} = 1 - P_{om\kappa 3} = 1 - 0,00048 = 0,99952$$
.

Таким образом, в установившемся режиме в сети спецсвязи будет обслужено 99,9 % вызовов, поступивших по линиям связи "01".

Абсолютная пропускная способность сети спецсвязи определяется выражением

$$A = \lambda \cdot P_{obc} = 0.1 \cdot 0.99952 = 0.099$$
,

т.е. сеть спецсвязи способна осуществить в среднем 0,099 разговора в минуту.

Находим среднее число занятых линий связи:

$$n_3 = y(1 - P_{om\kappa3}) = 0.05(1 - 0.000018) = 0.05$$
.

Таким образом, при установившемся режиме работы сети спецсвязи будет занята лишь одна линия связи.

Коэффициент занятости линий связи

$$K_3 = n_3 / n = 0.05 / 3 = 0.017$$
.

Определяем среднее число свободных линий связи:

$$n_0 = \sum_{k=0}^{n-1} \frac{y^k (n-k)}{k!} P_{0n} = \left(3 + \frac{(3-1)}{1!} 0,15^1 + \frac{(3-2)}{2!} 0,15^2\right) 0,8607 \approx 2,85.$$

Коэффициент простоя линий спецсвязи

$$K_n = n_0 / n = 2,85/3 = 0,95$$
.

Фактическая пропускная способность сети спецсвязи по линиям "01" с учетом аппаратурной надежности

$$q_{\phi} = (1 - P_{om\kappa3})K_{\varepsilon} = (1 - 0.00048) \cdot 0.8 = 0.799$$
.

Необходимое число линий связи с учетом аппаратурной надежности:

$$n_{dp} = n/K_{e} = 3/0.8 = 3.75$$
.

1.2.4. Определение необходимого числа диспетчеров

Время занятости диспетчера обслуживанием одного вызова

$$T_{o6c2} = \overline{T}_{II} + T_{o6c1} = 1,5 + 4 = 5,5$$
 мин = 0,092 ч,

где \overline{T}_{II} - заданная величина времени одного "чистого" переговора диспетчера с вызывающим абонентом; $T_{o\delta c1}$ - время занятости диспетчера обработкой принятого вызова (запись поступившего вызова в журнале регистрации и т.п.).

По заданной интенсивности входного потока вызовов $\lambda = 0,1$ *выз./мин*, поступающих в сеть спецсвязи, и времени обслуживания одного вызова диспетчером $T_{obc2} = 0,04$ и определим полную нагрузку на всех диспетчеров за смену, т.е. за 12 ч:

$$y_0 = 24 \lambda T_{o6c2} = 12.0,1.60.0,092 = 6,62 \text{ u-3aH.}$$

где 60 – количество минут в 14 (при переводе λ в 6ы3./4).

Допустимая нагрузка на одного диспетчера за смену с учетом коэффициента занятости диспетчера:

$$y_{1\partial on} = K_{\partial} y_{1Marc} = 0,4 \cdot 12 = 4,8 \text{ y-3}aH.$$

Определим необходимое число диспетчеров:

$$n_{\partial} = \frac{y_{\partial}}{y_{1\partial on}} = \frac{6.62}{4.8} = 1.4.$$

Округляя результат, принимаем два диспетчера на ЦУС гарнизона.

Таким образом, по результатам оптимизации сети спецсвязи определено, что на ЦУС гарнизона необходимо иметь 4 линии спецсвязи «01» и два диспетчера.

1.2.5. Определение интенсивности входного потока вызовов в сети радиосвязи

Гистограмма распределения числа вызовов, поступающих в течение суток в радиосети гарнизона, представлена на рис. 1.3 (строится на основании статистических данных табл. 1.2).

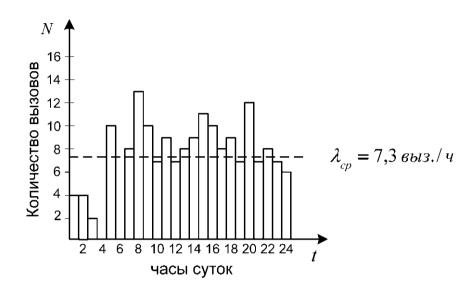


Рис.1.3. Распределение числа вызовов по час ам суток в сети радиосвязи

Интенсивность входного потока вызовов в течении суток определяется по формуле

$$\lambda = \frac{\sum_{i=1}^{24} N_p}{24 \cdot 60} = \frac{176}{24 \cdot 60} = 0.12 \text{ выз./мин,}$$

где $N_{_{p}}$ - общее число поступивших вызовов по радиосети в течение суток.

Средняя интенсивность поступивщих вызовов определяется следующим выражением

$$\lambda_{cp} = \frac{\sum\limits_{i=1}^{24} N_p}{24} = \frac{176}{24} = 7,3 \text{ выз./ч.}$$

В данном гарнизоне пожарной охраны интенсивность входного потока вызовов в сети радиосвязи в течение суток составляет $\lambda=0,\!12$ выз./мин, а средняя интенсивность составляет $\lambda_{cp}=7,\!3$ выз./ч.

1.2.6. Расчет оперативности и эффективности функционирования системы радиосвязи

Оперативность радиосвязи характеризуется вероятностью того, что информация от одного абонента к другому будет передана в течение времени, не более ранее заданного:

$$Q = P[(T_{Hp} + T_{H}) \le T_{OH}], \tag{2}$$

где $T_{\Pi p}$ — время "чистого" переговора в радиосети; T_H — непроизводительные затраты времени на набор номера абонента, посылку вызова и т.п.; $T_{O\!\Pi}$ — заданная величина времени, определяющая оперативность связи (критерий оперативности).

В случае, когда надежность и качество радиоканала идеальны, оперативность радиосвязи оценивается по формуле:

$$Q = P_0 + P_1, \tag{3}$$

где P_0 - вероятность того, что радиоканал свободен;

 P_1 - вероятность того, что радиоканал занят, но ожидающих нет.

Вероятности состояний сети радиосвязи P_0 и P_1 рассчитываются по формулам:

$$P_{0} = \frac{1}{\sum_{k=0}^{N} \frac{N!}{(N-k)!} (y_{0})^{k}}; \qquad P_{1} = \frac{N \cdot y_{0}}{\sum_{k=0}^{N} \frac{N!}{(N-k)!} (y_{0})^{k}}, \tag{4}$$

где N - число радиостанций в сети радиосвязи (число абонентов в радиосети); y_0 - нагрузка в сети радиосвязи; k - последовательность чисел $k=0,\,1,\,2...,\,N$.

Из формул (3), (4) следует

$$Q = \frac{1 + N \cdot y_0}{\sum_{k=0}^{N} \frac{N!}{(N-k)!} (y_0)^k}.$$

Эффективность функционирования является показателем качества использования канала связи для выполнения заданных функций в радиосети и определяется по формуле

$$E = \sum_{i=0}^{n} P_i \left(\frac{T_{\Pi i}}{T_{H i} + T_{H i}} \right), \tag{5}$$

где n — число возможных состояний системы связи; P_i — предельные вероятности состояния системы; T_{IIi} — эффективное время передачи

информации при i-ом вызове; T_{Hi} – непроизводительные затраты времени при i-ом вызове.

Эффективность функционирования радиосети может быть оценена средним состоянием сети радиосвязи в данный момент времени и определяться как математическим ожиданием случайной величины вероятности отношения чистого времени переговоров к общему времени доставки информации.

В случае, когда надежность и качество радиоканала идеальны, эффективность функционирования радиосети оценивается по следующей формуле

$$E = Q + (1 - Q) \frac{T_{IIp}}{T_{IIp} + T_H},$$

где T_{Hp} , $T_{H}-$ время переговора и непроизводительные затраты времени в радиосети соответственно.

Пример расчета характеристик оперативности радиосвязи и эффективности функционирования радиосети.

Нагрузка в сети радиосвязи $y_0 = \lambda \cdot T_{\Pi p} = 0,\!12 \cdot 0,\!9 = 0,\!11$ мин-зан., где $T_{\Pi p}$ - время переговоров в радиосети.

Оперативность радиосвязи при этом определяется как

$$Q = P_0 + P_1 = \frac{1 + Ny_0}{\sum_{k=0}^{N} \frac{N!}{(N-k)!} (y_0)^k} = \frac{1 + 7 \cdot 0.11}{1 + \frac{7!}{(7-1)!} \cdot (0.11)^1 + \frac{7!}{(7-2)!} \cdot (0.11)^2 + \frac{7!}{(7-3)!} \cdot (0.11)^3 + \dots + \frac{7!}{(7-7)!} \cdot (0.11)^7} = 0.648.$$

Эффективность функционирования радиосети определяется по формуле

$$E = Q + (1 - Q)\frac{T_n}{T_n + T_{II}} = 0,648 + (1 - 0,648)\frac{0.9}{0.9 + 0.2} = 0,936.$$

1.3. Расчет и выбор высот установки антенн стационарных радиостанций

При определении высот подъема антенн стационарных радиостанций ЦУС и ПЧ, необходимых для обеспечения заданной дальности радиосвязи с самой удаленной ПЧ, следует пользоваться графическими зависимостями напряженности поля $(E_H, \partial B)$ полезного сигнала от расстояния $(d, \kappa M)$ между антеннами для различных значений произведения высот подъема антенн (h_1h_2, M^2) .

Эти графические зависимости приведены на рис. 1.4 и представляют собой медианные значения напряженности поля, превышаемые в 50% мест и 50% времени. Графики приведены для вертикальной поляризации антенн и условий распространения радиоволн в полосе частот 140-174 МГц [1, 12]. Графики построены для мощности излучения передатчика P_{nep} =10 Bm. В случае отличия мощности излучения передатчика от 10 Bm необходимо пользоваться графиком, приведенным на рис. 1.5. Этот график представляет собой значения поправочного коэффициента B_M , ∂E , учитывающего изменение мощности передатчика P_{nep} , Bm от 1 до 100 Bm, в зависимости от типа применяемых радиостанций [1].

Графики напряженности поля (см. рис. 1.4) приведены для среднепересеченной местности (параметр рельефа местности Δh =50 M). Среднепересеченной считается такая местность, на которой среднее колебание отметок высот не превышает 50 M [1].

В случае отличия рельефа местности от среднепересеченного необходимо ввести дополнительный коэффициент ослабления сигнала B_{ocn} , значения которого для полосы частот 140-174 МГц приведены в табл. 1.6.

Таблица 1.6 Значения коэффициента ослабления в зависимости от рельефа местности

Δh , M	30	40	50	70	90	110	120	140	150	170	190
B_{ocn} ∂B	-2	-1	0	1	3	4	5	6	7	8	9
Δh , M	2	210	2	30	250	2'	90	330	30	50	500
B_{ocn} ∂b		10	1	1	12	1	3	14	1	5	16

При расчете условий обеспечения заданной дальности радиосвязи минимальное значение напряженности поля полезного сигнала $E_{\text{мин}}$, $\partial E_{\text{м}}$, при котором обеспечивается высокое качество радиосвязи, принимается равным $20 \ \partial E$ ($10 \ \text{мкB/м}$).

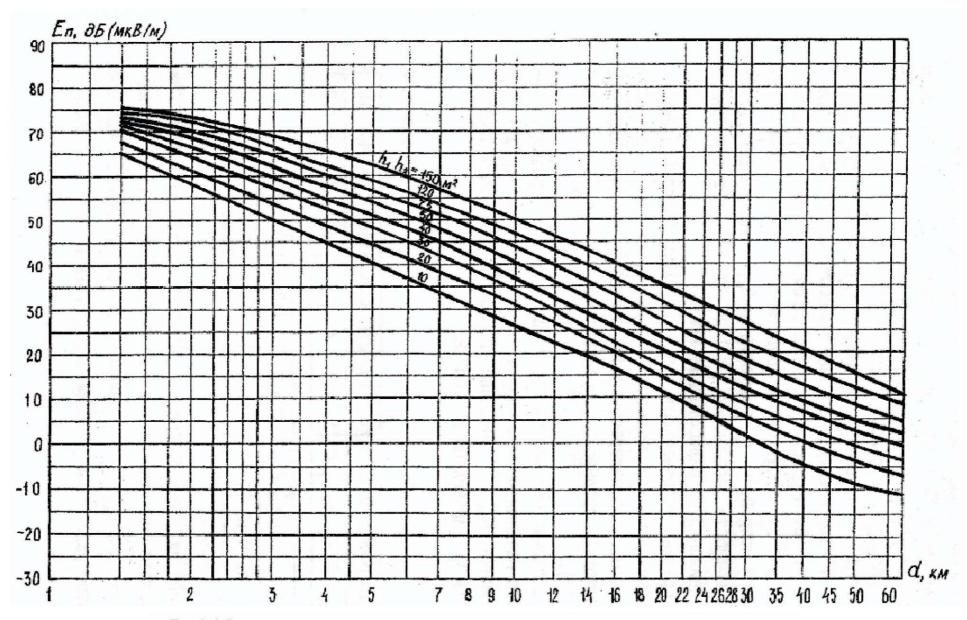


Рис.1.4. Зависимость средних значений напряженности поля от расстояния между антеннами

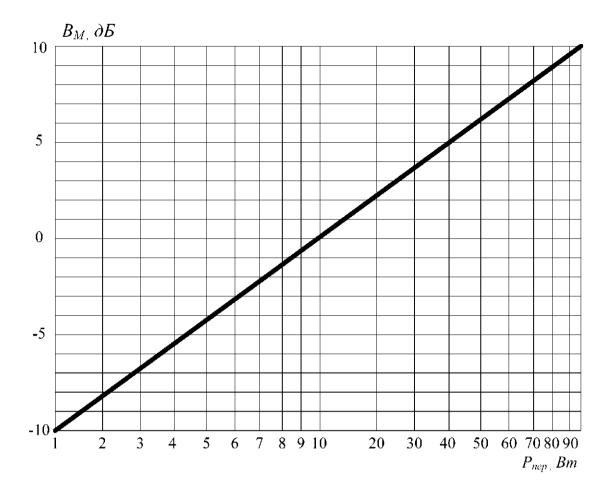


Рис.1.5. Поправочный коэффициент, учитывающий отличие мощности передатчика от 10 *Вт*

При одновременной работе близко расположенных радиостанций, работающих в различных радиосетях (на различных несущих частотах), возникает проблема обеспечения их электромагнитной совместимости, т.е. проблема обеспечения совместной работы радиостанций без взаимных мешающих влияний.

Под мешающими влияниями, прежде всего, понимается влияние передатчика одной радиостанции на приемник другой радиостанции, разнесенных между собой территориально и по частоте. Мешающие влияния должны учитываться, в первую очередь, в части блокирования полезного сигнала мешающим. Результаты экспериментальных исследований приемопередатчиков стационарных и возимых радиостанций показали, что для обеспечения заданного качества и надежности радиосвязи (заданного отношения сигнал/шум на выходе низкочастотного тракта приемника) в случае превышения допустимого уровня полезного сигнала на входе приемника [1, 12]. Таким образом, для обеспечения

радиосвязи с заданным качеством и надежностью (при заданной в контрольной работе величине превышения допустимого уровня мешающего сигнала $\Delta E_{\partial on}$, ∂B) необходимо минимальную величину напряженности поля $E_{\mathit{мин}}$ увеличить на величину $\Delta E_{\partial on}$ (т.е. на то же число децибел).

Определение дальности радиосвязи необходимо проводить исходя из минимального значения напряженности поля с учетом влияния рельефа местности, выходной мощности передатчика, затухания антенно-фидерных трактов передатчика ($\beta_l l_1$) и приемника ($\beta_2 l_2$), коэффициентов усиления передающей (G_l) и приемной (G_2) антенн, величины превышения допустимого уровня мешающего сигнала (ΔE_{den}).

Таким образом, с учетом вышеизложенного, величина напряженности поля полезного сигнала определяется по формуле [12]

$$E_n = E_{Mun} + B_{OCI} - B_M + \beta_1 l_1 - G_1 + \beta_2 l_2 - G_2 + \Delta E_{\partial OD} ,$$

где β_1,β_2 — коэффициент погонного затухания фидерного тракта передатчика и приемника соответственно, $\partial b'\!/M$ (определяется в зависимости от типа заданного коаксиального кабеля рис.1.7); l_1 и l_2 — длина фидерного тракта передатчика радиостанции ЦУС и приемника радиостанции ПЧ соответственно, м; $G_1 - G_2 - 1,5$ $\partial b'$ — коэффициент усиления антенн передатчика и приемника соответственно; B_M — поправочный коэффициент, величина которого принимается равной 0 $\partial b'$ (в соответствии с графиком рис.1.5) в случае использования радиостанций, имеющих мощность излучения передатчика $P_{nep} = 10$ Вт.

Пример расчета и выбора установки антенн стационарных радиостанций.

В соответствии с заданием разрабатывается координатная сетка расположения пожарных частей заданного гарнизона пожарной охраны, на которой указываются высоты размещения ПЧ в зависимости от параметра рельефа местности (приложение 1, координатная сетка № 1) и строится схема организации радиосвязи с указанием радиосетей и радионаправлений (см. рис.1.6).

Расстояние от ЦУС до самой удаленной ПЧ-2 определяется из условия, что одна клетка координатной сетки равна $2\kappa M$, $d=\sqrt{18^2+12^2}=21,6\,\kappa M$.

Параметр рельефа местности определяется как

$$\Delta h = h_{\text{max}} - h_{\text{min}} = 234 - 164 = 70 M$$
.

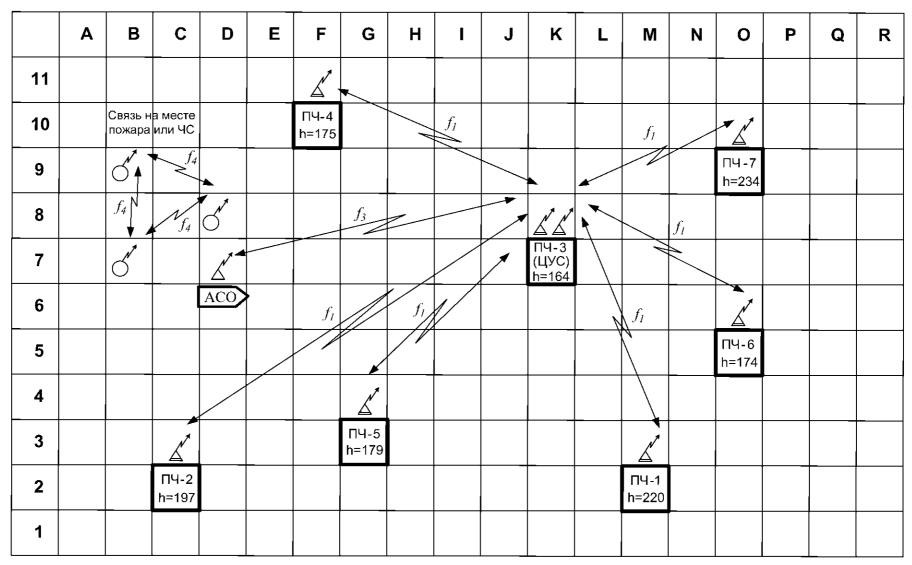


Рис.1.6. Схема организации радиосвязи в заданном гарнизоне ПО

Предположим, что радиостанции в сети радиосвязи заданного гарнизона пожарной охраны работают в диапазоне частот 172-173 *Ml'u*.

Тогда из графических зависимостей рис.1.7 для типа коаксиального кабеля РК 75-2-21 коэффициент погонного затухания $\beta = 0.16 \ \partial E M$.

Определяем величину напряженности поля полезного сигнала

$$\begin{split} E_n &= E_{mun} + B_{ocn} - B_M + \beta_1 l_1 - G_1 + \beta_2 l_2 - G_2 + \Delta E_{\partial on} = \\ &= 20 + 1 - 0 + 0.16 \cdot 20 - 1.5 + 0.16 \cdot 15 - 1.5 + 6 = 29.6 \, \partial B. \end{split}$$

По полученной величине напряженности поля полезного сигнала на входе приемника E_n = 29,6 ∂B и заданному удалению ПЧ-2 от ЦУС (заданной дальности радиосвязи) d-21,6 км с помощью графиков (см. рис.1.4) определяется произведение высот антенн $h_1h_2 = 120 M^2$. Из полученного произведения высот выбираются необходимые высоты стационарных антенн ЦУС - h_1 = 12M и удаленной ПЧ-2 - h_2 = 10M.

Пользуясь изложенным выше алгоритмом расчета, можно определить максимальную дальность радиосвязи между ЦУС и пожарными автомобилями. В этом случае высота установки антенны на пожарном автомобиле принимается равной 2*м*. Проведение данного расчета в задание не входит.

1.4. Разработка схемы организации и размещения средств связи на месте пожара

Связь на пожаре (см. рис.1.8) предназначена для управления силами и средствами, обеспечения их взаимодействия и обмена информацией [2]. Связь на пожаре организуется для управления пожарными подразделениями на месте пожара, обеспечения их взаимодействия и своевременной передачи информации с места пожара на ЦУС или ПЧ.

На месте пожара должны быть организованы следующие виды связи [2]:

- *связь управления* между руководителем тушения пожара (РТП), штабом пожаротушения (НШ), начальником тыла (НТ), боевыми участками (БУ) и подразделениями, работающими на пожаре при помощи возимых и носимых радиостанций, полевых телефонных аппаратов и переговорных устройств, громкоговорящих устройств и мегафонов;
- *связь взаимодействия* между начальниками боевых участков и подразделениями, работающими на пожаре, при помощи радиостанций, полевых телефонных аппаратов и сигнально-переговорных устройств;
- *связь информации* между оперативным штабом пожаротушения (РТП) и ЦУС с использованием телефонных аппаратов городской телефонной сети или с помощью радиостанции, установленной на автомобиле связи и освещения.

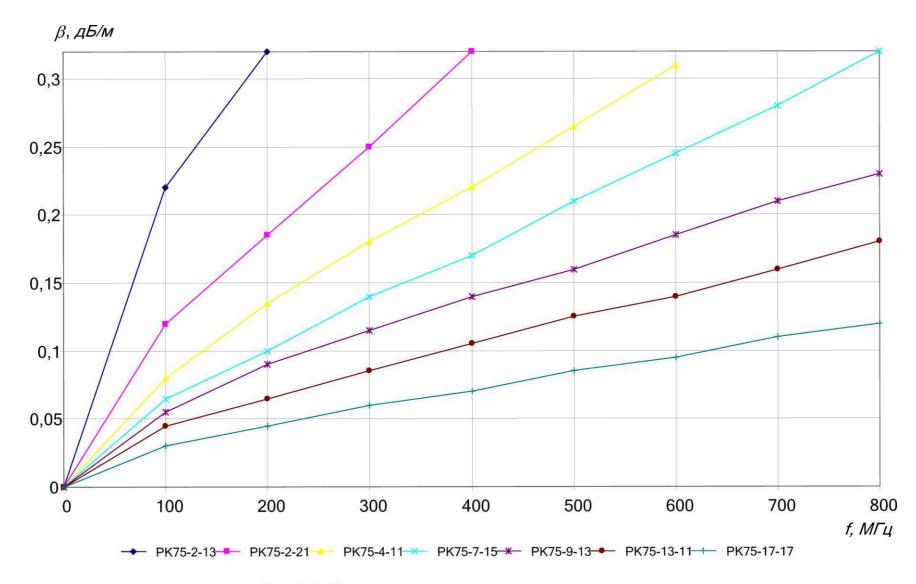


Рис.1.7. Кривые удельного затухания коаксиальных кабелей

Для организации проводной связи используется коммутатор оперативной связи (КОС), обеспечивающий подключение полевых телефонных аппаратов РТП и начальников боевых участков. Для организации телефонной связи РТП с диспетчером ЦУС в КОС предусмотрена возможность подключения к телефонной сети города через районную АТС.

Для осуществления громкоговорящего оповещения на месте пожара используется усилитель мощности (УМ), к которому подключаются громкоговорители по числу боевых участков. При этом РТП с помощью выносного микрофона (М) имеет возможность передачи циркулярной информации на все боевые участки.

Радиосвязь РТП с начальниками БУ и должностными лицами на пожаре осуществляется с помощью возимых (РВ) и носимых (РН) радиостанций, а радиосвязь РТП с диспетчером ЦУС - с помощью возимой радиостанции на автомобиле связи и освещения и стационарной радиостанции (РС) на ЦУС. [2].

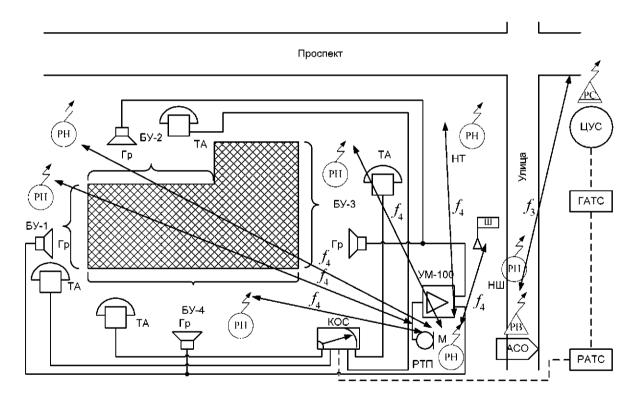


Рис. 1.8. Схема организации и размещения средств радио и проводной связи на пожаре

1.5. Разработка структурной схемы системы проводной связи гарнизона ПО

В соответствии с заданием разрабатывается координатная сетка (рис.1.9) расположения пожарных частей в заданном гарнизоне пожарной

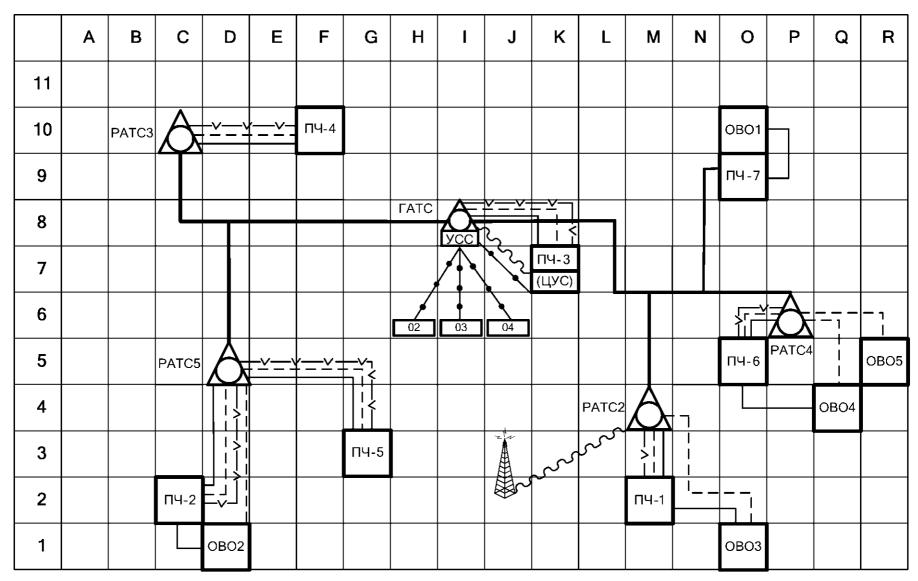


Рис.1.9. Структурная схема системы проводной связи в гарнизоне ПО

Таблица 1.8

Варнант	Число ПЧ	Число ОВО	Число АТС				И	нтен	сивн	ость	посту	лаю	щих	вызо	вов г	ю ча	сам с	уток	для (сети	прово	одно	й свя	зи			(a 1.6
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	7	5	8	10	12	18	8	l	11	12	10	3	1	0	4	1	4	5	19	15	15	7	0	14	18	9	11
2	7	7	6	9	14	2	17	2	12	4	10	15	16	7	14	2	11	6	16	2	17	17	4	4	10	19	0
3	13	7	6	3	7	0	2	1	17	4	7	17	6	10	0	4	3	16	17	18	15	3	8	3	4	1	14
4	11	9	5	1	15	13	10	2	1	19	17	10	3	16	7	4	-5	17	6	12	2	2	6	6	7	4	14
5	13	8	7	1	12	12	1	9	11	7	9	4	17	9	18	1	14	7	15	16	4	3	13	7	13	0	17
6	8	8	8	13	19	3	9	11	13	6	5	4	5	1	0	2	15	4	12	19	15	5	12	17	17	19	10
7	6	8	5	7	13	10	3	7	5	8	11	15	19	12	13	6	0	18	5	18	18	8	12	14	14	7	17
8	8	5	7	9	15	5	13	4	15	6	0	7	14	7	9	8	14	18	18	10	8	15	18	12	9	9	4
9	7	6	8	12	5	9	5	11	16	16	19	8	1	11	8	12	1	11	19	6	2	15	11	15	4	3	1
10	10	7	7	19	1	2	5	0	3	5	3	5	2	19	12	5	7	15	19	16	13	9	6	6	4	2	3
11	11	6	7	13	10	6	3	4	2	11	18	7	6	13	5	7	7	2	7	18	9	3	8	2	7	3	18
12	13	9	5	2	6	7	10	5	10	19	12	3	16	5	17	3	2	9	2	19	18	0	16	4	15	9	16
13	13	8	6	11	6	7	10	0	7	2	16	6	0	0	2	1	1	11	12	16	5	10	18	8	19	7	17
14	10	8	7	6	1	17	13	6	10	17	1	4	17	19	6	0	8	0	12	16	1	4	0	7	15	3	17
15	9	5	8	8	8	18	5	15	8	19	5	11	13	18	1	9	17	1	9	13	19	18	2	3	15	10	5
16	9	7	8	13	15	0	14	4	15	1	19	5	14	14	0	5	0	2	17	6	1	6	9	9	13	2	8
17	11	9	5	14	5	0	5	14	17	12	12	5	15	11	0	5	3	10	4	0	11	14	15	14	4	1	0
18	6	8	7	9	16	5	2	14	9	14	10	8	10	10	13	13	11	10	10	8	10	10	10	10	15	16	4
19	7	9	5	5	9	12	14	6	5	19	18	6	14	14	18	5	14	5	0	2	17	10	1	4	19	13	13
20	11	7	7	10	10	6	17	13	15	2	10	10	19	9	12	2	19	9	14	16	18	11	17	11	12	13	15
21	11	5	6	11	1	5	9	13	14	3	11	9	1	16	5	16	3	1	6	15	19	13	6	10	17	16	5
22	10	9	8	9	13	1	7	4	10	2	3	2	18	2	12	6	10	14	7	6	16	0	11	1	6	16	15
23	13	8	6	9	17	5	3	17	4	1	4	17	9	1	18	0	18	18	12	13	10	19	5	8	0	11	14
24	8	9	5	5	11	13	0	9	8	6	7	4	2	2	0	18	2	16	7	6	18	11	17	3	5	17	16
25	7	8	7	8	7	19	17	13	1	0	12	14	13	15	5	3	18	11	10	5	15	14	19	19	12	15	8
26	6	9	5	5	4	2	14	10	18	17	10	1	10	0	6	16	0	0	11	1	4	17	11	12	2	6	11
2 7	10	9	6	3	15	9	15	1	0	12	17	17	10	2	11	15	6	2	7	18	17	5	14	10	12	3	10
28	6	6	7	19	1	18	7	0	15	14	12	14	11	16	1	7	14	10	17	1	19	8	4	14	17	5	4
29	12	6	6	0	18	1	-5	8	11	3	0	12	11	14	6	5	0	11	9	16	10	3	12	9	10	6	13
30	7	6	6	5	16	19	6	8	13	1	10	13	14	0	16	17	9	12	16	14	19	3	10	0	9	7	14
31	10	8	5	7	5	9	12	13	6	5	5	4	0	8	7	11	11	13	10	1	5	2	0	11	6	6	5
32	11	6	7	0	6	2	8	19	8	12	6	13	14	0	5	6	2	7	13	10	4	8	8	5	14	9	2
33	13	8	6	15	1	14	6	7	18	0	8	3	9	4	10	16	18	2	2	6	1	16	0	7	9	3	19
34	8	6	8	11	14	10	1	14	3	17	16	16	7	1	3	0	14	18	9	10	10	2	6	10	7	6	0

Продолжение табл. 1.8

Вариант		Инт	ген	сиві	ност	гь п	ост	упа	юш	ĮИХ	выз	ово	вп	э ча	сам	cy:	гок	для	cet	ги р	ади	IOCE	язи	Ī		Me	стопол	ожение	особо		х объек		,
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9
1	4	5	4	4	3	5	5	5	5	3	1	5	2	3	4	3	0	3	5	0	4	3	2	4	F/1	P/7	F/4	K/5	Q/11	-	-	-	-
2	4	4	1	4	0	4	1	2	0	1	3	0	1	0	0	3	3	0	0	3	1	0	0	3	C/1	0/11	K/11	C/11	M/7	L/6	A/11	-	-
3	5	5	3	3	3	5	0	0	1	1	1	1	4	4	2	5	2	0	2	2	2	4	2	0	A/8	M/9	F/1	A/5	II/2	M/4	R/7	-	-
4	5	3	0	2	5	2	2	0	4	3	4	0	0	1	5	3	3	1	0	0	2	3	4	0	G/10	B/8	F/2	O/10	Q/5	K/4	L/4	N/11	P/8
5	5	4	4	4	0	0	1	4	3	0	1	4	4	0	2	5	3	0	1	5	3	2	2	5	I/2	R/9	P/11	J/2	Q/11	B/4	P/4	K/9	ı
6	()	2	5	3	0	1	3	4	1	3	4	4	3	5	1	5	4	3	3	4	1	4	4	0	N/4	R/7	1./4	1/10	J/9	A/8	G/2	Q/2	1
7	1	3	5	5	5	4	5	0	5	4	4	5	4	0	5	5	4	0	1	1	0	3	1	2	G/10	Q/2	Q/11	K/9	A/10	L/7	P/8	M/4	-
8	2	1	3	5	4	3	3	2	2	2	5	3	2	4	1	1	3	3	1	5	5	5	2	3	O/8	N/5	B/10	A/8	D/3	-	-	-	-
9	3	4	3	0	5	2	4	2	5	5	4	0	5	0	1	4	3	0	0	1	5	3	2	0	J/6	K/1	N/5	G/11	E/4	C/8	-	-	-
10	2	3	2	4	3	3	2	3	3	0	2	l	3	0	5	4	5	5	4	5	4	1	3	1	C/11	F/3	D/9	N/9	P/5	K/10	C/9	-	-
11	5	5	2	2	3	4	4	1	3	3	2	2	3	5	2	2	5	0	1	0	5	0	2	2	C/1	Q/2	B/3	R/1	H/1	R/9	-	-	-
12	2	1	4	0	0	0	4	0	3	4	2	3	5	4	3	0	5	5	3	1	1	0	5	3	G/2	N/3	I/2	Α/3	N/6	A/1	Q/10	L/8	L/3
13	3	1	4	1	1	4	0	5	1	1	1	0	4	2	0	5	5	4	4	3	4	1	5	2	J/6	D/9	K/2	K/11	E/4	O/5	F/9	E/7	-
14	0	0	1	5	3	0	1	1	2	3	3	2	4	4	4	2	4	4	2	3	4	5	3	5	I/5	G/2	K/2	A/5	R/11	I/10	E/4	C/1	-
15	5	5	4	3	4	1	4	2	2	5	5	3	3	2	2	1	2	4	3	1	1	0	1	2	D/11	Q/5	C/10	B/11	B/5	-	-	-	-
16	1	0	2	1	4	3	2	5	5	1	1	3	1	3	0	4	3	4	5	1	4	0	0	4	G/1	J/9	A/6	B/3	F/6	E/3	E/1	-	-
17	5	1	4	3	2	5	1	5	2	1	1	4	4	4	2	2	2	3	5	2	3	5	0	3	K/8	R/8	K/9	1./4	1./9	N/10	1./8	N/1	A/6
18	5	5	2	2	0	4	0	3	2	3	1	5	5	1	3	4	0	3	4	5	1	0	4	3	H/3	F/8	Q/7	R/5	C/6	L/10	M/4	O/2	-
19	1	3	5	1	1	1	5	3	4	0	5	0	4	0	0	1	5	1	3	4	3	1	3	5	B/10	C/11	J/10	B/5	C/6	P/5	N/1	M/10	E/11
20	5	5	2	5	2	5	0	1	4	1	3	0	2	4	5	2	4	1	1	1	1	1	5	1	I/10	R/3	R/11	P/2	R/5	J/5	N/3	-	-
21	()	5	2	2	1	4	1	0	0	2	2	5	1	1	3	4	4	2	1	0	2	4	3	1	Q/8	G/10	A/11	D/1	M/4	-	-	-	-
22	()	3	2	3	1	3	2	5	2	3	2	2	5	4	5	4	5	2	5	3	4	4	2	2	N/3	Q/5	H/8	J/10	H/3	E/5	P/9	C/4	M/9
23	0	3	1	1	3	3	0	1	5	2	4	5	0	2	2	0	3	4	0	1	5	4	2	5	A/10	N/1	G/8	B/6	G/7	K/6	E/4	J/1	-
24	1	2	2	1	5	2	4	3	0	0	3	5	3	0	2	2	3	3	5	3	2	4	0	4	M/3	Q/3	G/11	M/10	J/5	P/7	M/1	B/6	D/9
25	3	5	3	2	0	5	5	2	2	1	5	4	2	5	1	1	4	1	0	2	2	3	1	5	R/10	A/8	P/2	C/9	E/7	B/5	B/6	D/10	-
26	3	2	2	1	2	2	2	0	0	0	3	2	0	1	0	1	3	1	0	1	2	5	1	0	R/2	O/4	J/11	Q/7	E/8	Q/6	II/6	B/3	I/5
27	3	3	4	3	1	3	3	0	3	0	2	4	5	1	0	2	4	2	4	5	2	1	5	2	R/11	R/2	P/3	O/10	F/7	E/1	M/8	A/11	P:9
28	5	()	0	3	1	0	2	3	4	4	4	4	0	5	1	5	1	2	4	3	1	3	2	0	1)/2	H/4	K/3	B/6	H/11	D/7	-	-	-
29	3	2	5	1	5	4	0	4	2	0	5	0	0	4	5	0	0	2	2	1	1	1	1	4	C/1	C/10	N/4	B/5	I/4	Q/11	-	-	-
30	0	5	1	5	3	0	1	0	3	5	0	2	3	4	2	5	4	4	0	2	3	2	3	0	K/2	L/10	B/2	F/3	P/1	C/9	-	-	-
31	2	0	4	3	4	3	5	2	3	3	2	1	0	5	3	3	0	2	3	5	4	3	5	5	E/4	J/10	P/2	E/2	A/3	G/8	G/11	A/7	-
32	4	2	3	2	4	5	3	3	5	2	5	1	1	2	4	1	3	5	3	5	2	2	5	4	1/10	G/6	K/9	P/2	A/8	Q/11	-	-	-
33	4	4	2	1]	4	0	3	3	0	3	0	3	3]	1	5	1	0	0	2	3	3	2	E/6	E/7	O/2	A/5	M/8	B/1	O/3	J/5	-
34	4	3	5	2	5	5	2	0	0	4	2	4	0	1	4	4	1	0	4	3	4	4	3	0	P/1	R/9	I/6	F/4	K/8	M/1	-	-	-

Продолжение табл. 1.8

Варнант					Коор	динать	і пожар	эных ча	астей							Mec	ополог	жение	ATC		
	1	2	3	4	5	6	7	8	9	10	11	12	13	1	2	3	4	5	6	7	8
1	J/8	J/2	E/8	Q/10	F/2	M/4	H/9	-	-	-	-	-	-	1./9	K 2	F 8	O/7	C/4	N/3	J/7	J/4
2	G:8	L/3	C 9	M/8	B/3	O/5	J/9	-	-	-	-	-	-	K/9	Н3	D:10	N/9	C/5	O/3	1	-
3	I/7	J/4	D/10	O:7	B/3	P/3	K 9	I 4	C/7	Q/8	C/3	0/5	G/10	II 9	G/3	D/9	N/9	F/4	N/4	ı	-
4	F10	G/2	F/10	O:8	C/3	P/4	J:9	1./5	F/8	N/8	B/5	-	-	1./7	K./5	C/7	P/7	B/3	-	-	-
5	H:8	H/4	D/10	M/10	D :5	N/4	I/8	L/3	D:7	Q/9	B/5	N/3	I:7	J/7	J/5	E/9	P:7	D/3	N/2	J/10	-
6	I:9	K/2	D 7	O/8	D:5	N/5	I/8	K/3	-	-	-	-	-	H.7	H 3	E/8	M/10	B/5	N/3	L 8	I 5
7	K/7	J-2	E 8	M/8	C/4	P/3	-	-	-	-	-	-	-	G-7	I/2	B/7	P/9	B/2	-	-	-
8	J/8	F4	C/8	N/9	F/2	Q/3	1/8	J/2	-	-	-	-	-	J/10	L 3	E/7	N/7	F/4	O/2	K 7	-
9	G:8	G/4	F.7	P:9	C/2	N/2	1/7	-	-	-	-	-	-	H:8	K 2	E/7	M/8	C:4	Q/2	H/10	H:5
10	K/9	K/5	D 7	P/8	E/5	O:3	K 7	K/4	B:9	P/9	-	-	-	G/10	I/3	Г9	N/10	E/4	M 4	L 7	-
11	K/8	K-2	D:10	Q:8	D/3	O 2	J 7	I/5	C/8	N/8	D/5	-	-	H-9	I. 2	B/9	N/7	D/2	N/4	J/9	-
12	K/7	K/3	C/9	Q/8	F/5	N/5	K 9	I/4	D/10	M/9	C/5	O:5	K/9	L/10	L 2	E/10	N/10	D/5	-	-	-
13	L/9	K/5	C/9	P/9	D/4	Q:3	G/8	L/2	F/7	O/10	F/3	N/3	J/7	H/10	G/3	B/7	M/7	B/4	M/5	-	-
14	G/9	L/4	D:10	Q:7	E/3	O/3	L 8	H/2	B:8	P/10	-	-	-	1/7	K/3	E/8	0.9	E/5	M/3	H-8	-
15	K/10	L/3	В 9	M/7	E/2	P/2	J. 7	H/3	D/10	-	-	-	-	I/9	L 2	F/10	N/7	B:4	M/4	J:9	I/5
16	G/7	II/2	F/9	M:7	C/2	N/5	H/10	K/3	D/7	-	-	-	-	К 7	G/3	Г7	O/10	B/4	O/3	L 7	II/5
17	1:7	H/5	B.9	P/10	D/4	P:4	K 7	K/2	B/8	M/10	C/5	-	-	H-9	J/4	D/9	Q/10	F/4	-	-	-
18	L:7	G/5	E 9	M/9	B/4	Q/2	-	-	-	-	-	-	-	J/10	H 5	F/10	N/10	B:5	P/4	J:8	-
19	K/10	J/2	E 9	M/7	D/4	P/2	I/10	-	-	-	-	-	-	I/8	II 2	C/8	0/7	F/5	-	-	-
20	G-9	L/3	D.7	M/10	B/2	P:4	H/8	J/3	B/7	O:7	E/2	-	-	G/10	I. 4	C/8	Q:9	E/5	Q/5	1.8	-
21	J:8	H/5	F.7	P/9	D:5	P/3	K 10	J/3	B/8	N/8	C 5	-	-	L/9	Н3	C/7	Q:9	D/3	Q/2	-	-
22	G/7	I/4	F/10	O 10	E/4	M/3	K 8	L/4	C/10	N/8	-	-	-	J:9	II 4	D 9	M/7	D/4	Q/4	H/10	II 2
23	F10	G/5	F/10	O/9	E/5	P/3	L/8	K/5	C/7	Q:10	E/3	N/2	L/10	H/8	H 2	B 10	O/10	B/4	M/2	-	-
24	H:9	I/4	F.8	P:10	E/5	M/2	H 8	G/3	-	-	-	-	-	J/9	H 2	E/7	Q:9	F/4	-	-	-
25	L/10	I/2	F 8	N/8	C/2	M/3	G 8	-	-	-	-	-	-	L/8	I 3	E 8	N/9	E/5	M/5	G 7	-
26	K/10	K/5	C-9	P/10	F/5	N/3	-	-	-	-	-	-	-	J/9	L/3	F-9	Q/10	F/2	-	-	-
27	H/10	G/5	C/7	N/10	B/3	P/4	J/8	L/2	E/9	0.9	-	-	-	K/7	H 4	B/8	N/7	D/2	M/3	-	-
28	I/9	L/5	В 9	Q:9	E/3	O/4	-	-	-	-	-	-	-	J/8	II3	E/7	Q/10	F/3	P/4	I/10	-
29	I:7	K/5	D:10	M/8	F/2	0.2	I/10	I/5	D/7	Q:9	F 4	N/3	-	I/8	I 2	D/9	N/7	13/2	P. 5	-	-
30	1/7	I/4	C 7	M/7	F/5	N/4	L/7	-	-	-	-	-	-	K/7	H 2	E/9	Q/10	C/3	M/3	-	-
31	G/10	G/2	C/7	N/9	D/3	N/3	K-9	L/4	B:10	Q/7	-	-	-	L/7	L 2	C/9	M/10	C/2	-	-	-
32	G/7	L/4	D 8	P:8	B/3	М 3	II 8	L/5	C/9	O/10	C 3		-	J/10	II 4	B:9	O/8	D/3	Q/5	G/10	-
33	G:9	L/5	В 7	N/10	E/5	P/3	L.7	K/2	F/10	N. 7	D 2	O:5	K/9	I:9	H.3	E-10	0:9	D/5	Q:4	-	-
34	I/9	K/4	В 9	N/8	D/2	N/5	II 8	L/3	-	-	-	-	-	L/7	G 2	F/10	N/10	C:4	N/3	II 9	K/5

Продолжение табл. 1.8

Вариант	Р_треб	Т_раб	2 _повр	Е_доп	К_г	К_д	Т_п	Тобе1	Т_п_р	Т_неп_р	Е_мип	Тип кабеля	Длина каб. ЦУС, / ₁	Длина каб. 11Ч, l_2
1	0.848	791	0.0008	6	0.41	0.50	1.51	4.53	1.76	0.16	20	PK75-17-17	20	15
2	0.832	810	0.0008	7	0.44	0.59	1.20	4.59	0.38	0.16	20	PK75-13-11	20	15
3	0.973	844	0.0008	6	0.53	0.51	1.23	4.71	0.34	0.27	20	PK75-13-11	20	15
4	0.905	834	0.0008	4	0.33	0.66	1.45	4.59	0.40	0.10	20	PK75-13-11	20	15
5	0.876	853	0.0008	3	0.86	0.50	1.73	4.32	0.36	0.25	20	PK75-17-17	20	15
6	0.976	788	0.0008	3	0.69	0.46	1.34	4.00	0.55	0.35	20	PK75-17-17	20	15
7	0.921	767	0.0008	4	0.39	0.42	1.96	4.32	1.49	0.57	20	PK75-9-13	20	15
8	0.800	832	0.0008	1	0.62	0.61	1.81	4.74	1.52	0.59	20	PK75-17-17	20	15
9	0.857	621	0.0008	2	0.69	0.30	1.34	4.28	0.42	0.53	20	PK75-2-21	20	15
10	0.800	866	0.0008	1	0.73	0.50	1.77	4.26	0.91	0.29	20	PK75-17-17	20	15
11	0.888	995	0.0009	1	0.61	0.66	1.56	4.94	1.14	0.14	20	PK75-4-11	20	15
12	0.951	851	0.0009	4	0.54	0.50	1.59	4.87	1.00	0.62	20	PK75-13-11	20	15
13	0.997	800	0.0009	5	0.81	0.50	1.77	4.15	0.80	0.20	20	PK75-7-15	20	15
14	0.885	779	0.0009	1	0.88	0.41	1.95	4.09	1.29	0.21	20	PK75-9-13	20	15
15	0.969	729	0.0009	4	0.57	0.46	1.99	4.30	1.52	0.36	20	PK75-2-13	20	15
16	0.880	674	0.0009	8	0.84	0.66	1.83	4.46	1.59	0.60	20	PK75-2-21	25	15
17	0.969	909	0.0009	1	0.30	0.64	1.80	4.61	1.35	0.43	20	PK75-13-11	25	15
18	0.958	617	0.0009	5	0.67	0.50	1.12	4.05	0.67	0.10	20	PK75-4-11	25	15
19	0.912	719	0.0009	7	0.75	0.55	1.74	4.29	0.46	0.16	20	PK75-7-15	25	15
20	0.810	965	0.0009	6	0.65	0.65	1.78	4.66	1.09	0.65	20	PK75-2-21	25	15
21	0.902	751	0.001	8	0.44	0.51	1.28	4.80	0.58	0.60	20	PK 75-2-13	25	15
22	0.920	690	0.001	4	0.88	0.50	1.86	4.56	1.32	0.16	20	PK75-2-13	25	15
23	0.895	691	0.001	5	0.37	0.65	1.79	4.56	0.94	0.31	20	PK75-17-17	25	15
24	0.970	631	0.001	5	0.53	0.51	1.13	4.84	1.75	0.15	20	PK75-17-17	25	15
25	0.831	798	0.001	2	0.41	0.60	1.75	4.07	0.30	0.46	20	PK75-9-13	25	15
26	0.953	861	0.001	1	0.37	0.50	1.89	4.72	0.44	0.62	20	PK75-17-17	25	15
2 7	0.839	736	0.001	6	0.80	0.56	1.19	4.45	0.56	0.32	20	PK75-7-15	25	15
28	0.877	985	0.001	6	0.31	0.49	1.45	4.97	0.35	0.31	20	PK75-2-13	25	15
29	0.842	626	0.001	4	0.50	0.63	1.67	4.22	1.37	0.57	20	PK75-4-11	25	15
30	0.919	771	0.001	6	0.65	0.50	1.01	4.14	1.00	0.11	20	PK75-2-21	25	15
31	0.830	704	0.0007	3	0.81	0.53	1.27	4.94	0.60	0.56	20	PK75-4-11	20	20
32	0.808	657	0.0007	7	0.53	0.31	1.72	4.00	0.78	0.43	20	PK75-4-11	20	20
33	0.845	867	0.0007	8	0.40	0.50	1.29	4.47	1.47	0.65	20	PK75-4-11	20	20
34	0.835	880	0.0007	1	0.87	0,59	1.26	4.93	0.85	0.55	20	PK75-2-13	20	20

Параметры рельефа местности

Nº1	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	
11	245	191	193	190	236	166	239	178	153	188	161	227	230	179	214	184	156	207	11
10	148	223	175	166	153	175	149	241	238	156	164	228	154	196	208	181	195	245	10
9	159	207	213	202	241	247	154	186	160	194	197	154	215	239	234	239	244	158	9
8	157	153	164	179	197	175	193	171	168	240	184	173	210	174	199	241	194	153	8
7	203	173	176	185	155	156	197	235	235	239	164	241	222	225	165	202	216	224	7
6	190	225	179	238	180	166	219	246	216	201	159	219	213	216	153	180	194	195	6
5	155	194	152	152	238	151	228	232	222	165	158	176	170	232	174	232	247	184	5
4	156	244	159	154	173	164	210	238	157	166	153	212	208	150	218	241	209	171	4
3	240	190	203	232	227	230	179	221	234	183	241	188	241	168	172	184	242	227	3
2	222	213	197	152	171	167	210	237	150	149	223	229	220	198	152	152	149	174	2
1	189	221	227	169	162	184	214	148	224	148	209	236	201	173	190	213	231	162	1
	Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	

Nº2	Α	В	O	D	Е	F	G	Η	I	J	K	L	М	N	0	Р	α	R	
11	141	118	151	120	138	161	214	142	148	175	174	172	199	160	126	210	119	137	11
10	116	198	148	151	125	155	133	145	152	210	164	192	146	188	210	143	175	156	10
9	147	138	125	154	196	171	169	153	116	118	157	121	118	166	203	188	185	206	9
8	184	135	128	167	165	165	115	212	120	214	126	127	121	115	157	166	198	121	8
7	160	132	209	160	172	119	158	171	214	127	164	132	125	144	158	208	174	145	7
6	170	150	175	148	123	137	176	146	151	151	130	183	118	205	132	159	184	182	6
5	200	171	162	147	143	133	153	143	116	130	162	181	186	193	124	188	138	210	5
4	189	165	194	201	161	183	146	131	176	207	202	128	167	122	206	135	155	130	4
3	185	123	158	195	122	130	116	198	175	200	166	213	170	157	211	197	158	121	3
2	181	194	205	153	174	164	151	193	115	199	163	122	184	186	166	165	199	129	2
1	131	212	150	144	145	134	119	176	205	203	139	120	190	161	173	130	130	193	1
	Α	В	С	D	Е	F	G	Н	Ī	J	K	L	М	N	0	Р	Q	R	

Параметры рельефа местности

Nº3	Α	В	C	D	Е	F	G	Н	l 1	J	К		М	N	0	Р	Q	R	
11	151	177	157	134	110	188	144	164	149	143	122	140	139	140	193	131	192	131	11
10	180	132	140	204	172	201	152	194	123	194	153	187	120	191	191	203	133	191	10
9	177	163	114	126	167	194	129	112	191	200	206	139	126	126	153	174	168	191	9
8	191	123	174	144	175	177	153	200	116	142	133	145	137	120	142	107	205	200	8
7	174	154	131	169	126	157	133	161	132	108	201	186	125	123	113	132	107	137	7
6	180	110	204	173	130	197	141	163	158	195	162	136	194	108	175	199	180	107	6
5	110	185	135	135	197	151	178	175	129	120	119	171	156	135	133	196	109	155	5
4	203	189	174	195	165	205	162	121	117	164	125	126	159	187	131	162	180	142	4
3	203	203	120	159	166	151	147	173	172	126	159	203	190	199	180	193	189	154	3
2	111	150	140	182	165	170	120	161	186	131	198	165	145	199	129	193	145	173	2
1	193	138	194	159	148	123	116	160	191	158	118	120	135	128	133	148	163	192	1
·	A	В	C	D	E	F	G	H	1	J	K	1	M	N	0	P	Q	R	
Nº4	Α	В	С	D	Е	F	G	Н	l 1	J	K		М	N	0	Р	Q	R	
11	322	276	230	247	257	290	231	281	265	239	276	282	255	273	233	257	245	285	11
10	315	283	292	306	297	242	276	302	265	245	286	294	319	303	283	313	237	250	10
9	321	284	294	249	244	287	259	314	313	245	240	233	312	245	243	292	243	262	9
8	252	311	317	283	275	250	280	226	281	261	254	297	241	275	276	245	251	256	8
7	247	309	281	260	253	249	304	292	298	313	276	231	265	303	280	276	313	308	7
6	264	239	241	235	320	268	315	258	291	303	311	259	310	275	234	240	293	313	6
5	314	311	253	312	280	310	304	287	283	289	265	307	294	274	298	284	319	299	5
4	316	271	289	256	268	277	238	311	287	321	258	286	228	275	303	313	272	260	4
3	279	284	249	310	241	281	304	310	290	252	228	272	231	249	309	306	247	277	3
2	286	306	284	287	303	246	270	236	302	266	300	285	305	292	264	307	267	316	2
1	304	242	296	233	320	291	286	302	266	267	298	300	302	232	293	263	301	277	1
	Α	В	С	D	F	F	G	Н	<u> </u>	J	K	i .	М	N	0	Р	Q	R	

Методика выполнения 2-го раздела

Задано:

Гарнизон пожарной охраны имеет ЦУС и $N_{H'I}$ = 7 пожарных частей; максимальная нагрузка за смену на одного диспетчера — Y_{IMAKC} = 12ч- зан. (для всех вариантов);

среднее время переговора $\tau_{11} = \overline{T}_{11} = 1,5$ мин;

время от начала возникновения пожара до момента его обнаружения – $\tau_{01} = 10$ мин (без АСОУПО) и $\tau_{02} = 6$ мин (с применением АСОУПО; на объекте загорания установлены дымовые извещатели);

время обработки сообщения (заявки) с учетом выработки управленческого решения на высылку техники для тушения пожара — $\tau_{\rm вур1}$ = 3 мин (без АСОУПО) и $\tau_{\rm вур2}$ = 1,5 мин (с применением АСОУПО; за это время диспетчер анализирует принятый вызов, определяет номер выезда пожарной техники и вводит эти данные в ПЭВМ, которая осуществляет выбор пожарной техники, а диспетчер анализирует выработанное ПЭВМ решение);

время передачи приказа в пожарные части — $\tau_{11111} = 5$ мин (без АСОУПО) и $\tau_{11112} = 1,3$ мин (с применением АСОУПО);

время от момента выезда пожарных автомобилей до начала тушения – $\tau_{\rm rpl}=12$ мин (без АСОУПО) и $\tau_{\rm rp2}=8$ мин (с применением АСОУПО);

линейная скорость распространения пламени – $V_{JI} = 2.3 \cdot 10^{-3} \, \text{м/c};$

коэффициент удельной стоимости материалов на единицу площади горения – $\gamma = 480 \text{ руб/m}^2$;

среднее число крупных пожаров за исследуемый период времени (например, за месяц) – $\alpha = 2$;

средние значения материального ущерба от пожара без АСОУПО $C_{TH1}=70$ тыс. руб. и с применением АСОУПО $C_{TH2}=40$ тыс. руб.;

средние значения косвенного материального ущерба от пожара без АСОУПО $C_{\kappa y1} = 90$ тыс. руб.и с применением АСОУПО $C_{\kappa y2} = 40$ тыс. руб.;

капитальные затраты на построение и установку на ЦУС АСОУПО $K_{\Pi} = 200$ тыс. руб.;

затраты на эксплуатацию АСОУПО (техническое обслуживание, ремонт и другие эксплуатационные расходы) – $C_{3K} = 8,4$ тыс. руб.;

вероятность безотказной работы технических средств АСОУПО – $P_{\text{тс}} = 0.9$;

вероятность безотказной работы диспетчера ЦУС – P_{μ} = 0,7.

2.1. Расчет характеристик пропускной способности и показателей экономической эффективности АСОУПО

2.1.1. Определение необходимого количества диспетчеров на центре АСОУПО

Время занятости диспетчера обслуживанием одного вызова (заявки) при внедрении АСОУПО определяется выражением:

$$\tau_{obc2} = \tau_{11} + \tau_{BVD2} + \tau_{1III2} = 1,5 + 1,5 + 1,3 = 4,3$$
 мин = 0,072ч.

По определенной в первом разделе курсового проекта интенсивности входного потока вызовов $\lambda=0.1$ выз./мин., поступающих в центр АСОУПО, и величине времени обслуживания одного вызова диспетчером центра $\tau_{oбc2}=0.072$ ч определяем полную нагрузку на всех диспетчеров за смену (например, за смену длительностью 12 ч):

$$Y_{\pi} = \lambda \cdot 60 \cdot \tau_{obc2} \cdot 12 = 0.1 \cdot 60 \cdot 0.072 \cdot 12 = 5.18$$
 4-3aH.,

где 60 – количество минут в 14 (при переводе λ в выз./ч).

Допустимая нагрузка на одного диспетчера за смену с учетом коэффициента его занятости

$$Y_{\rm l,non} = K_{\pi} \cdot Y_{\rm l,make} = 0,4 \cdot 12 = 4,8$$
 ч-зан.

Необходимое число диспетчеров

$$n_{_{\rm A}} = \frac{V_{_{\rm A}}}{V_{_{\rm A}}} = \frac{5.18}{4.8} = 1.08$$
.

Принимаем два диспетчера на центре АСОУПО.

2.1.2. Определение количества каналов связи для передачи приказов в ПЧ и получения подтверждений выполнения приказов

Учитывая, что имеется 7 пожарных частей, для передачи приказов от диспетчеров ЦУС в ПЧ и получения диспетчерами подтверждений о выездах пожарных подразделений необходимо иметь как минимум 7 каналов связи (некоммутируемых прямых линий связи).

2.1.3. Оценка характеристик пропускной способности АСОУПО

Вероятность того, что два диспетчера будут свободны, определяется по следующей формуле:

$$P_o = \frac{1}{\sum_{k=0}^{n} \frac{y^k}{k!}} = \frac{1}{1 + \frac{y^1}{1!} + \frac{y^2}{2!}} = \frac{1}{1 + \frac{0.42^1}{1} + \frac{0.42^2}{2}} = 0.63,$$

где y — нагрузка на диспетчеров при обслуживании одной поступившей заявки, которая определяется как:

$$y = \lambda \cdot \tau_{ofc}$$
, = 0,1 · 4,3 = 0,43 мин-зан.

Вероятность одновременной занятости всех диспетчеров (вероятность отказа в обслуживании) определяется по следующей формуле:

$$P_n = \frac{y^n}{n!} P_o = \frac{y^2}{2!} P_o = \frac{0.42^2}{2} = 0.0882$$
.

Вероятность обслуживания вызова определяется по формуле:

$$P_{o6c}$$
=1 - P_n = 1 - 0,0882 = 0,9118.

Таким образом, в установившемся режиме будет обслужено 91,2 % поступивших заявок.

Абсолютная пропускная способность АСОУПО определяется следующим выражением:

$$A = \lambda \cdot P_{o \circ c} = 0.1 \cdot 0.9118 = 0.0918$$
 выз./мин.,

т.е. система способна обработать поступающую заявку в среднем за время около 11 минут.

2.1.4. Расчет показателей экономической эффективности АСОУПО

В качестве обобщенного показателя экономической эффективности АСОУПО может быть использовано отношение так называемого «предотвращенного материального ущерба» — Э, т.е. уменьшения потерь от пожара за счет применения АСОУПО, к приведенным затратам - C на ее построение и эксплуатацию:

$$E_o = \Im / C$$
.

Предотвращенный материальный ущерб от пожара может быть оценен по следующей формуле:

$$\mathcal{J} = \alpha \left[(C_{\text{rrd}} - C_{\text{rrd}}) + (C_{\text{rnl}} - C_{\text{rn2}}) + (C_{\text{sy1}} - C_{\text{sy2}}) \right],$$

где C_{1171} , C_{1712} — средние значения материального ущерба от пожара до начала его тушения без АСОУПО и с применением АСОУПО соответственно.

Размер материального ущерба от пожара до прибытия пожарных подразделений и начала его тушения зависит от условий возникновения и характера развития пожара, времени его обнаружения, выработки управленческого решения (выбора состава техники и формирования приказа на выезд пожарных подразделений), обоснованности (правильности) выбранного управленческого решения (приказа на выезд) и удельной стоимости самих материальных ценностей.

В общем виде размер материального ущерба от пожара до начала его тушения вычисляется по формуле:

$$C_{\rm ur} = S_{\rm u} \cdot \gamma$$
,

где S_{π} — площадь горения пожара в момент начала тушения; γ — коэффициент удельной стоимости материалов на единицу площади горения.

Увеличение площади пожара определяется выражением:

$$S_{\pi} = \pi (\tau_{\rm cp} \cdot V_{\pi})^2,$$

где τ_{cp} – время свободного развития пожара.

Время свободного развития пожара рассчитывается по следующей формуле

$$\tau_{\rm cp} = \tau_{\it o} + \tau_{\rm Byp} + \tau_{\rm min} + \tau_{\rm Tp} \,, \label{eq:tcp}$$

где τ_o — время от начала возникновения пожара до момента его обнаружения; $\tau_{\rm вур}$ — время обработки сообщения (заявки) с учетом выработки управленческого решения на высылку пожарных подразделений; $\tau_{\rm пп}$ — время передачи приказа пожарным частям; $\tau_{\rm тр}$ — время от момента выезда пожарных подразделений до начала тушения (транспортное время) с учетом времени боевого развертывания.

Применение АСОУПО позволяет сократить значения величин $\tau_{вур}$ и τ_{mn} за счет автоматизации приема и обработки заявки, автоматизировано выработки управленческого решения и одновременной передачи приказов на высылку пожарных подразделений всем задействованным пожарным частям.

Применение АСОУПО снижает материальный ущерб от пожара за счет того, что пожарные подразделения прибывают на место пожара раньше и, следовательно, тушение начинается при меньшем размере площади пожара, а также за счет автоматизированного программно-обоснованного выбора соответствующих пожарных частей гарнизона, номенклатуры и количественного состава пожарной техники и средств тушения, обеспечивающих повышение эффективности тушения пожара.

Следует отметить, что размер предотвращенного ущерба в случае применения АСОУПО особенно ощутим при организации одновременного тушения нескольких пожаров, при сложной оперативной обстановке, когда для тушения пожаров требуются дополнительные средства и техника. В этой обстановке без АСОУПО даже опытный диспетчер допускает существенные ошибки в выборе нужной пожарной части и требуемого состава техники, в учете задействованной и имеющейся в боевом резерве гарнизона техники, что отрицательно сказывается на правильности выбора состава дополнительной пожарной техники при возрастании номера какого-либо пожара. Кроме того, при наличии АСОУПО сокращается время, затрачиваемое диспетчером на управленческие операции, особенно в период сложной оперативной обстановки, когда несколько раз требуется высылать дополнительные силы, средства и технику, что, в конечном счете, приводит к снижению материального ущерба.

В общем случае ущерб от пожаров включает непосредственный ущерб от пожара на объектах производственного и непроизводственного назначения и косвенный ущерб, вызванный простоем производственного предприятия вследствие пожара.

В общий объем входит: заработная плата персоналу за время простоя; доплата персоналу, привлеченному для ликвидации последствий пожара; оплата работ по демонтажу, расчистке и уборке строительных конструкций; потери от снижения выпуска продукции за время простоя; оплата штрафов за недопоставку продукции; потери от капитальных вложений на восстановление основных фондов и т.д.

Величина косвенного ущерба может быть самой различной в зависимости от назначения объектов и размеров пожара. С учетом этих факторов величина косвенного ущерба может составить от 10 до 300% от величины непосредственного ущерба от пожаров [13].

При проведении практических расчетов разница значений косвенного материального ущерба без АСОУПО и с применением АСОУПО (предотвращенный материальный ущерб за счет применения АСОУПО) может быть установлена по среднестатистическим данным для соответствующих классов объектов. Точный расчет величины косвенного ущерба может быть приведен по методике, изложенной в работе [14].

Приведенные затраты на построение и эксплуатацию АСОУПО определяются по формуле

$$C = C^{2K} + E^{H}K^{H},$$

где $C_{\text{эк}}$ — затраты на эксплуатацию системы (техническое обслуживание, профилактика, ремонт); $E_{\text{п}}$ — нормативный коэффициент эффективности капитальных вложений; $K_{\text{п}}$ — затраты на построение АСОУПО (капитальные вложения).

Экономическая эффективность АСОУПО зависит также от вероятности безотказной работы технических средств системы и вероятности безотказной работы диспетчера, который является одним из функциональных звеньев системы. С учетом этого обобщенный показатель экономической эффективности АСОУПО может быть определен по следующей формуле:

$$E = \frac{\Im \cdot P_{\pi c} \cdot P_{\pi}}{C},$$

где P_{rc} – вероятность безотказной работы технических средств АСОУПО; P_{π} – вероятность безотказной работы диспетчера.

Таким образом, на основании заданных исходных данных вычислим следующие показатели:

Время свободного развития пожара без АСОУПО:

$$au_{cp1} = au_{o1} + au_{Byp1} + au_{mn1} + au_{mp1} = 10 + 3 + 5 + 12 = 30$$
 мин.

Площадь горения (площадь пожара) без АСОУПО:

$$S_{\pi 1} = \pi (\tau_{\text{cp1}} V_n)^2 = 3,14 (1800 \cdot 2,3 \cdot 10^{-3})^2 = 53,8 \text{ m}^2$$

Материальный ущерб от пожара до начала его тушения без АСОУПО:

$$C_{\rm HT1} = S_{\rm H1} \gamma = 53.8 \cdot 480 = 25.8$$
 тыс. руб.

Время свободного развития пожара с применением АСОУПО:

$$au_{cp2} = au_{o2} + au_{Byp2} + au_{im2} + au_{ip2} = 6 + 1,5 + 1,3 + 8 = 16,8$$
 мин.

Площадь горения (пожара) с применением АСОУПО:

$$S_{\text{m2}} = \pi (\tau_{\text{cp2}} V_{\text{A}})^2 = 3,14 (1008 \cdot 2,3 \cdot 10^{-3})^2 = 16,7 \text{ m}^2.$$

Материальный ущерб от пожара до начала его тушения с применением АСОУПО определяется следующим выражением:

$$C_{\text{пт2}} = S_{\text{п2}} \gamma = 16,7 \cdot 480 = 8$$
 тыс. руб.

Предотвращенный материальный ущерб от пожара за счет применения АСОУПО определяется по следующей формуле:

$$\exists = \alpha [(C_{\text{rr}1} - C_{\text{rr}2}) + (C_{\text{rr}1} - C_{\text{rr}2}) + (C_{\text{ку}1} - C_{\text{ку}2})] =
= 2[(28 - 8) + (70 - 40) + (90 - 40)] = 195,6$$
 тыс. руб.

Приведенные затраты на построение и эксплуатацию АСОУПО рассчитываются как:

$$C = C_{9K} + E_H K_H = 8,4 + 0,15 \cdot 200 = 38,4$$
 тыс. руб.,

где $K_{\rm H}$ — капитальные затраты на приобретение и установку всей аппаратуры АСОУПО, в том числе ПЭВМ со всеми периферийными устройствами; $C_{\rm 9K}$ — эксплуатационные расходы (в том числе заработная плата трех диспетчеров и двух работников технического персонала, осуществляющих настройку и ремонт ПЭВМ и другой аппаратуры; $E_{\rm H}$ — нормативный коэффициент эффективности капитальных затрат ($E_{\rm H}$ = 0,15 — для всех вариантов).

Обобщенный показатель экономической эффективности АСОУПО определяется по следующей формуле:

$$E = \frac{\mathcal{P}_{TC} P_{\mu}}{C} = \frac{195,6 \cdot 0,9 \cdot 0,7}{38,4} = 3,2.$$

Как видно из полученного результата, экономическая эффективность АСОУПО достаточно высока, поскольку размер предотвращенного материального ущерба за счет применения АСОУПО в 3,2 раза больше затрат на ее эксплуатацию и построение.

Варианты выполнения второго раздела курсового проекта приведены в табл. 2.2.

Таблица 2.2

No	Параметры	Вариант										
п/п	Параметры	1	2	3	4	5 5	6	7	8	9	10	
1.	Prong of Houses Howens to Monores ore of Honores	10	11	12	13	14	15	16	17	18	19	
1,	Время от начала пожара до момента его обнаружения без АСОУПО - τ_{01} , мин.	10	11	12	13	14	13	10	1 /	10	19	
2.	Время от начала пожара до его обнаружения с	7	8	9	10	11	12	13	14	15	16	
	АСОУПО - τ_{02} , мин.	•			'`		2		. ,	10		
3.	Время обработки заявки без АСОУПО - т вур1, мин.	3,0	3,5	1,0	1,5	2,0	2,5	3,0	3,5	1,0	1,5	
4.	Время обработки заявки с АСОУПО - $\tau_{\text{вур2}}$, мин.	1,3	0,9	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	
5.	Время передачи приказа без АСОУПО - т ип., мин.	3	3,5	4	4,5	5	5,5	6	5,5	5	4,5	
6.	Время передачи приказа с АСОУПО - т пп2, мин.	0,8	0,4	0,5	0,4	0,6	0,8	0,7	0,6	1,3	1,4	
7.	Время с момента выезда до нач. тушения без	13	12	11	10	7	8	9	10	11	12	
	АСОУПО - τ 1p1, мин.											
8.	Время с момента выезда до нач. тушения с АСОУПО -	9	8	7	6	6	7	8	8	9	9	
	τ _{тр2} , мин.											
9.	Линейная скорость распространения пламени -	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9	
	$v_{_{\rm J}} \cdot 10^{-3}$, m/c											
10.	Коэфф-т удельной стоимости материалов на ед.	1000	1100	800	1300	1400	1500	1600	1700	1400	900	
	площади горения - γ , руб/м ²											
11.	Среднее число пожаров - α	2	3	4	5	6	7	8	7	6	5	
12.	Матер. ущерб от пожара без ACOУПО - C _{тп1} , тыс.руб.	90	95	100	90	85	80	75	70	65	60	
13.	Матер. ущерб от пожара с АСОУПО – Спи2, тыс.руб.	80	80	85	75	70	65	60	55	50	45	
14.	Косвенный матер. ущерб от пожара без АСОУПО –	42	44	46	48	50	52	50	48	46	44	
	Ску1, тыс.руб.											
15.	Косвенный матер. ущерб от пожара с АСОУПО – С	24	26	28	30	35	40	45	40	35	30	
	_{ку2} , тыс.руб.											
16.	Затраты на построение АСОУПО – К _п , тыс.руб.	400	450	500	550	600	550	500	450	400	350	
17.	Затраты на эксплуатацию АСОУПО – C_{9K} , тыс.руб.	5	6	7	8	9	10	11	12	13	14	
18.	Вероятность безотказной работы технических средств	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	0,8	0,8	
	ACOУПО - P _{re}											
19.	Вероятность безотказной работы диспетчера - Рд	0,6	0,7	0,8	0,9	0,3	0,4	0,5	0,6	0,7	0,6	

Продолжение табл.2.2

No	Параметры	Вариант										
п/п	• •	11	12	13	14	15	16	17	18	19	20	
1.	Время от начала пожара до момента его обнаружения	20	10	11	12	13	14	15	16	17	18	
	без АСОУПО - т ₀₁ , мин.											
2.	Время от начала пожара до его обнаружения с	17	7	8	9	10	11	12	13	14	15	
	АСОУПО - τ ₀₂ , мин.											
3.	Время обработки заявки без АСОУПО - т вур1, мин.	2,0	2,5	3,0	2,5	1,0	1,5	2,0	2,5	3,0	3,5	
4.	Время обработки заявки с АСОУПО - $\tau_{\text{вур2}}$, мин.	1,4	1,3	1,2	1,1	1,0	1,1	1,2	1,3	1,4	1,5	
5.	Время передачи приказа без АСОУПО - τ пп1, мин.	4	3,5	3	3,5	4	4,5	5	5,5	6	5,5	
6.	Время передачи приказа с АСОУПО - т пп2, мин.	1,2	0,6	0,7	0,8	0,5	0,3	0,6	0,8	1,0	1,2	
7.	Время с момента выезда до нач. тушения без	13	14	15	14	13	12	11	10	7	8	
	АСОУПО - τ _{тр1} , мин.											
8.	Время с момента выезда до нач. тушения с АСОУПО	10	10	10	9	8	7	7	6	6	7	
	- т _{тр2} , мин.											
9.	Линейная скорость распространения пламени -	4,0	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	
	$v_{_{\rm I}} \cdot 10^{-3}$, m/c											
10.	Коэфф-т удельной стоимости материалов на ед.	900	700	1100	1300	1400	650	1400	1300	1100	1200	
	площади горения - γ, руб/м²											
11.	Среднее число пожаров - а	4	3	2	3	4	5	6	7	8	9	
12.	Матер. ущерб от пожара без АСОУПО - Сти, тыс.руб.	55	50	20	25	30	35	40	45	50	55	
13.	Матер. ущерб от пожара с АСОУПО – Стп2, тыс.руб.	40	35	10	15	20	20	25	25	30	35	
14.	Косвенный матер. ущерб от пожара без АСОУПО –	42	40	15	20	25	30	32	34	36	38	
	Ску1, тыс.руб.											
15.	Косвенный матер. ущерб от пожара с АСОУПО – С	28	22	10	12	14	15	18	20	22	24	
	_{ку2} , тыс.руб.											
16.	Затраты на построение АСОУПО – К _п , тыс.руб.	300 15	250	200	250	300	350	400	450	500	550	
17.	Затраты на эксплуатацию АСОУПО – Сэк, тыс.руб.		14	13	12	11	10	3	2	3	4	
18.	Вероятность безотказной работы технических средств АСОУПО - Р _{те}	0,82	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,9	0,9	
19.	Вероятность безотказной работы диспетчера - Рд	0,9	0,3	0,4	0,5	0,6	0.7	0,8	0,9	0,3	0,4	

Продолжение табл.2.2

No	Параметры	Вариант										
п/п	· ·	21	22	23	24	25	26	27	28	29	30	
1.	Время от начала пожара до момента его обнаружения без АСОУПО - τ_{01} , мин.	19	20	19	18	17	10	11	12	13	14	
2.	Время от начала пожара до его обнаружения с $ACOУ\PiO$ - τ_{02} , мин.	16	17	16	15	14	7	8	9	10	11	
3.	Время обработки заявки без АСОУПО - т _{вур1} , мин.	1,0	1,5	2,0	2,5	3,0	1,0	1,5	2,0	2,5	3,0	
4.	Время обработки заявки с АСОУПО - $\tau_{вvp2}$, мин.	1,4	1,3	1,2	1,1	1,0	0,9	1,0	1,1	1,2	1,3	
5.	Время передачи приказа без АСОУПО - т пп1, мин.	5	4,5	4	3,5	3	6	5,5	5,0	4,5	4,0	
6.	Время передачи приказа с АСОУПО - т пп2, мин.	0,5	0,4	0,5	0,6	0,7	0,9	0,8	0,7	0,6	0,5	
7.	Время с момента выезда до нач. тушения без $ACOУ\PiO$ - $ au_{ au p1}$, мин.		10	11	12	13	17	8	9	10	11	
8.	Время с момента выезда до нач. тушения с АСОУПО - τ_{1p2} , мин.	8	8	9	9	10	6	7	8	8	9	
9.	Линейная скорость распространения пламени - $\upsilon_{_{\rm J}} \cdot 10^{-3}$, м/с	2,9	3,0	3,1	3,2	3,3	2,5	2,6	2,7	2,8	2,9	
10.	Коэфф-т удельной стоимости материалов на ед. площади горения - γ , руб/м ²	1000	900	800	1700	1600	1000	500	1000	550	1200	
11.	Среднее число пожаров - α	10	3	4	5	6	9	10	9	8	7	
12.	Матер. ущерб от пожара без АСОУПО - Стп1, тыс.руб.	60	65	70	75	80	20	25	30	35	40	
13.	Матер. ущерб от пожара с АСОУПО – C_{m2} , тыс.руб.	40	45	50	55	60	10	15	20	20	25	
14.	Косвенный матер. ущерб от пожара без АСОУПО – $C_{\kappa y1}$, тыс.руб.	40	42	44	46	48	15	20	25	30	35	
15.	Косвенный матер. ущерб от пожара с АСОУПО – С _{ку2} , тыс.руб.	26	28	30	35	40	10	12	14	16	18	
16.	Затраты на построение АСОУПО – К _п , тыс.руб.	600	550	500	450	400	300	350	400	450	500	
17.	Затраты на эксплуатацию АСОУПО – Сэк, тыс.руб.		6	7	6	5	10	9	8	7	6	
18.	Вероятность безотказной работы технических средств АСОУПО - P_{rc}	0,92	0,93	0,94	0,95	0,96	0,8	0,81	0,82	0,83	0,8 4	
19.	Вероятность безотказной работы диспетчера - Рд	0,5	0,6	0,7	0,8	0,9	0,3	0,4	0,5	0,6	0,7	

Литература

- 1. Зыков В.И., Командиров А.В., Мосягин А.Б., Тетерин И.М., Чекмарев Ю.В. Автоматизированные системы управления и связь. Учебник. // Под редакцией Зыкова В.И. М.: АГПС, 2006. 665 с.
- 2. Наставление по службе связи Государственной противопожарной службы Министерства внутренних дел Российской Федерации.// Приложение к приказу МВД России от 30.06.2000 г. № 700. М.: МВД РФ, 2000. 133 с.
- 3. Концепция развития системы связи МЧС России на период до 2010 года. М.: ВНИИ ГОЧС, 2001. 52 с.
 - 4. Федеральный закон «О пожарной безопасности». М.: РФ, 1995. 48 с.
- 5. Концепция развития системы связи в Государственной противопожарной службе МВД России на период до 2005 г. М.: МВД России, 1999.
- 6. Абчук В.А. u ∂p . Введение в теорию выработки решений. М.: Воениздат, 1972. 344 с.
- 7. Балакии А.С., Матлин Г.М., Яхиис Л.Н. Связь на промышленных предприятиях. М.: Связь, 1975.-176 с.
- 8. *Грущинский А.Г.*, Дятлов В.В., Зыков В.И. Новые коммуникационные технологии в деятельности пожарной охраны: Состояние и перспективы использования. М.: ВНИИПО МВД РФ, 1999. 126 с.
- 9. Докучаев В.А., Средства и системы электросвязи. // Справочник. М.: Радио и связь, Телесофт, 1998. 56 с.
- 10. Зыков В.И. Методические указания и контрольные задания на расчетнографические работы по курсу «АСУ и связь». Для слушателей факультета заочного обучения. М.: МИПБ МВД РФ, 1997 77 с.
- 11. Зыков В.И., Нечаев Д.Ю., Мосягин А.Б. Методическое пособие по дипломному проектированию и преддипломной практике по дисциплине «АСУ и связь». М.: Академия ГПС МЧС России, 2002.-45 с.
- 12. Зыков В.И., Кимстач Л.И., Чекмарев Ю.В. Методические указания и контрольные задания на расчетно-графические работы по курсу «АСУ и связь». // Под редакцией Зыкова В.И. М.: МИПБ МВД РФ, 1997. 124 с.
- 13. Зыков В.И. Методологические основы моделирования и построения сетей оперативной связи в системах управления пожарной охраной. Диссертация на соискание ученой степени доктора технических наук. М.: Академия ГПС МВД России, 2001. 321 с.
- 14. Инструкция по определению экономической эффективности новой пожарной техники, пожарно-профилактических мероприятий, изобретений и рационализаторских предложений в области пожарной защиты. М.: ВНИИПО МВД СССР, 1980. 110с.
- 15. *Корпышев Ю.Н.*, *Фань Г.Л.* Теория распределения информации. М.: Радио и связь, 1989. 184 с.
- 16. *Лившиц Б.С.*, *Фидлин Я.В.*, *Харкевич А.Д*. Теория телефонных и телеграфных сообщений. М.: Связь, 1971. 304 с.
- 17. *Ловцов Д.А.* Введение в информационную теорию АСУ. М.: Военная академия им. Ф.Э. Дзержинского, 1996. 435 с.
- 18. Международный стандарт. // Международный электротехнический словарь. Электросвязь, каналы. Термины и определения. СТ. МЭК 50 (701)-88.
- 19. Мешалкин Е.А., ЗыковВ.И. Создание единой службы связи ГПС МВД России // «Пожарная безопасность 2001». Приложение к журналу «Системы безопасности, связи и телекоммуникаций». 2000. № 12. С. 27-28.

- 20. *Модин А.А.*, *Яковенко Е.Г.*, *Погребной Е.П.* Справочник разработчика АСУ. М.: Экономика, 1978. 583 с.
- 21. *Шилов О.С.* Измерение параметров телефонного сообщения. // Учебное пособие по курсу «Тория телетрафика». Одесса: ОЭИС, 1976. 30 с.
- 22. Электронная коммутационная аппаратура оперативной связи для органов внутренних дел. Специальные технические требования. // ОСТ 78.01.0005-2000.-M.: МВД России, 2001.-50 с.
 - 23. Якуб Ю.А. Дальняя связь. М.: Связь, 1971. 336 с.
 - 24. *Яхнис Л.Н.* Автоматизация оперативной связи. М.: Связь, 1976. 120 с.