Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

<u>Педагогический институт</u> (наименование института)

	УТВЕРЖДАЮ:	
	Директор института	
	Артамонова М. В.	
«	» 20	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Биологическая химия

(наименование дисциплины)

направление подготовки / специальность

44.03.05 Педагогическое образование (с двумя профилями подготовки) (код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Биология. Химия (направленность (профиль) подготовки)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Биологическая химия» является приобретение студентами устойчивых знаний о химическом строении биомолекул и основных закономерностях формирования сложной системы химических реакций в организме, лежащих в основе жизнедеятельности.

Задачи: изучение соединений, входящих в состав живой материи, процессов их обмена, молекулярных механизмов наследственности, регуляции биохимических процессов в организме.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Биологическая химия» относится к части учебного плана, формируемой участниками образовательных отношений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций):

	П		
Формируемые	Планируемые результаты об	•	Наименование
компетенции	в соответствии с индикатором	оценочного	
(код, содержание	Индикатор достижения компетен-	Результаты обучения	средства
компетенции)	ции (код, содержание индикатора)	по дисциплине	•
УК-1. Способен	УК-1.1. Знает принципы сбора, от-	Знает: особенности системно-	Коллоквиумы,
осуществлять по-	бора и обобщения информации.	го и критического мышления.	защита лабора-
иск, критический	УК-1.2. Умеет соотносить разно-	Умеет: анализировать источ-	торных работ.
анализ и синтез	родные явления и систематизиро-	ники информации, давать им	
информации, при-	вать их в рамках избранных видов	оценку, формировать собст-	
менять системный	профессиональной деятельности.	венное суждение.	
подход для реше-	УК-1.3. Владеет навыками научно-	Владеет: способностью к	
ния поставленных	го поиска и практической работы с	обобщению и анализу научной	
задач.	информационными источниками;	информации.	
	методами принятия решений.		
ПК-3. Способен	ПК-3.1. Разрабатывает и реализует	Знает: структуру и содержа-	Коллоквиумы,
реализовывать об-	основные и дополнительные обра-	ние современных программ по	защита лабора-
разовательные про-	зовательные программы по своей	биологии и химии в средней	торных работ.
граммы различных	дисциплине с учетом современных	общеобразовательной школе.	
уровней в соответ-	методов и технологий.	Умеет: решать профессио-	
ствии с современ-	ПК-3.2. Применяет современные	нально-педагогические задачи	
ными методиками и	информационные технологии в	по развитию личности обу-	
технологиями, в	урочной и внеурочной деятельно-	чающегося посредством изу-	
том числе инфор-	сти сопровождения образователь-	чения биологии и химии.	
мационными, для	ного процесса.	Владеет: навыками решения	
обеспечения каче-	ПК-3.3. Применяет современные	практико-ориентированных	
ства учебно-	методики в организации воспита-	задач в области биологии и	
воспитательного	тельного процесса.	химии.	
процесса.	_		
ПК-6. Способен	ПК-6.1. Способен формировать и	Знает: современные образова-	Коллоквиумы,
проектировать со-	реализовывать программы развития	тельные технологии, методики	защита лабора-
держание образова-	универсальных учебных действий.	обучения биологии и химии.	торных работ.
тельных программ	ПК-6.2. Демонстрирует знание со-	Умеет: проектировать рабо-	1 1
и их элементов.	держания образовательных про-	чие программы по биологии и	
	грамм по своей дисциплине.	химии.	
	ПК-6.3. Способен проектировать	Владеет: категориально-	
	образовательные программы раз-	понятийным аппаратом со-	
	личных уровней и элементы обра-	временной теории и методики	
	зовательных программ в своей	обучения биологии, системой	
	предметной области.	проектирования содержания	
	•	учебного предмета «Биоло-	
		гия».	
		···	

4. ОБЪЁМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоёмкость дисциплины составляет 6 зачётных единиц, 216 часов.

Тематический план форма обучения — очная

	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником			-	ая	Формы
№ п/п				Лекции	Практические занятия	Лабораторные работы	в форме практиче- ской подготовки	Самостоятельная работа	текущего контроля успеваемости, форма промежуточной аттестации (по семестрам)
1	Введение	7	1	1					
2	Белки	7	2—4	3		8	2	8	
3	Ферменты	7	5—8	4		8	2	8	Рейтинг-контроль 1
4	Коферменты и витамины	7	9—10	2		6	1	8	
5	Нуклеиновые кислоты и их об- мен	7	11—14	4		6	2	8	Рейтинг-контроль 2
6	Обмен белков	7	15—18	4		8	2	8	Рейтинг-контроль 3
7	Методы исследования биополи- меров	7	4—12					14	
Всего	за 7-й семестр:			18		36			Экзамен (36)
8	Углеводы и их обмен	8	11—12	4		6	3	6	
9	Липиды и их обмен	8	13	2		6	1	6	Рейтинг-контроль 1
10	Биологическое окисление	8	14—15	4			2	6	
11	Водный и минеральный обмен	8	16—18					8	
12	Гормоны	8	16	2		4	1	6	Рейтинг-контроль 2
13	Взаимосвязь процессов обмена веществ	8	17	2			1	4	
14	Регуляция процессов жизнедеятельности	8	18	2			1	4	Рейтинг-контроль 3
Всего за 8-й семестр:				16		16		40	Зачёт с оценкой
Наличие в дисциплине КП/КР									
Итого по дисциплине				34		52		94	Экзамен (36), зачёт с оценкой

Содержание лекционных занятий по дисциплине

Тема 1. Введение

Предмет и задачи биохимии. Статическая, динамическая и функциональная биохимия. Методы биохимических исследований и их характеристика.

Химический состав организмов. Характеристика основных классов химических соединений, входящих в состав живой материи. Определение понятий об обмене веществ, энергии и информации: метаболизм, катаболизм, анаболизм, рецепторные системы, хранение и передача генетической информации.

Тема 2. Белки

Первичная структура. Доказательства полипептидной теории строения белка. Строение, изомерия и физико-химические свойства протеиногенных аминокислот.

Вторичная структура. Электронное и пространственное строение пептидной группы, его влияние на конформацию белков. Параметры α-спирали и β-структуры. Полипролиновая спираль. Нерегулярные вторичные структуры. Связь первичной и вторичной структур белковой молекулы.

Третичная структура. Глобулярные и фибриллярные белки. Типы связей, обеспечивающих поддержание третичной структуры белковой молекулы. Гидрофобные ядра в молекулах глобулярных белков. Домены и структурные мотивы. Классификация пространственных структур. Значение третичной структуры белковой молекулы для проявления её биологической активности. Денатурация и ренатурация белков.

Четвертичная структура. Типы связей между субъединицами в эпимолекулах. Понятие о контактных площадках у субъединиц, их комплементарности и принципе самосборки эпимолекул. Кооперативные эффекты в олигомерных белках.

Высшие структуры фибриллярных белков. Особенности строения α-кератина, фиброина, коллагена.

Простые и сложные белки. Общая характеристика металлопротеинов, фосфопротеинов, гликопротеинов, хромопротеинов, липопротеинов, нуклеопротеинов.

Тема 3. Ферменты

Понятие о ферментативном катализе.

Строение каталитического центра ферментов. Понятие о субстратном и аллостерическом центрах в молекуле фермента, их взаимодействие в процессе ферментативного катализа.

Механизм действия ферментов. ES, ES' и EP-комплексы, роль их в понижении энергетического барьера реакции. Изменение третичной и четвертичной структуры молекул ферментов в процессе ферментативного катализа. Кинетика ферментативных реакций. Уравнение Михаэлиса — Ментен. Зависимость скорости ферментативной реакции от концентрации субстрата и фермента.

Свойства ферментов: термолабильность, зависимость активности от значения рН среды, ионной силы раствора, специфичность. Активаторы и ингибиторы ферментов. Конкурентное и неконкурентное торможение действия ферментов. Связь между конформацией ферментов и каталитической активностью.

Классификация и номенклатура ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы). Характеристика основных подклассов и подподклассов перечисленных классов ферментов.

Локализация ферментов в клетке. Пространственная разобщенность реакций распада и синтеза в клетке. Промышленное получение и практическое использование ферментов.

Тема 4. Коферменты и витамины

Коферменты. Типы связей между коферментами и апоферментами. Коферменты — переносчики водорода и электронов (ФМН, ФАД, НАД, НАДФ), переносчики групп (АТФ, НДФ-сахара, коэнзим А, S-аденозилметионин и др.); коферменты с иными функциями.

Роль витаминов в питании человека и животных. Авитаминозы, гиповитаминозы, гипервитаминозы. Взаимосвязь витаминов и коферментов. Классификация и номенклатура витаминов.

Жирорастворимые витамины. Витамин A (ретинол), его роль в зрительном акте. Витамины D_1 (кальциферол), D_2 (эргокальциферол) и D_3 (холекальциферол), их роль в фосфорнокальциевом обмене. Витамин E (токоферол), его участие в окислительно-восстановительных процессах. Витамин K (филлохинон), его отношение к системе свертывания крови.

Водорастворимые витамины. Витамины B_1 , B_2 , B_3 , B_5 , B_6 , B_{12} и их значение в обмене веществ. Витамин C (аскорбиновая кислота), строение и роль в обмене веществ. Витамин P (рутин). Взаимообусловленность действия витаминов C и P. Витамин H (биотин), его строение и роль в реакциях карбоксилирования.

Другие биоактивные соединения: антивитамины, антибиотики, ростовые вещества, фитонциды (важнейшие представители и механизмы действия).

Тема 5. Нуклеиновые кислоты и их обмен

Химический состав нуклеиновых кислот. Различия между ДНК и РНК по составу главных и минорных оснований, характеру углевода, молекулярной массе, локализации в клетке и функциям.

Первичная структура ДНК. Нуклеотидный состав ДНК; правила Е. Чаргаффа. Вторичная структура ДНК (модель Дж. Уотсона и Ф. Крика). Принцип комплементарности пуриновых и пиримидиновых оснований и его реализация в структуре ДНК. Природа сил, удерживающих молекулу ДНК в биспиральном состоянии. Третичная структура ДНК. Репликоны. Структура хроматина ядра и хромосомы. Нуклеосомы и их строение. Современные представления о структуре гена. Особенности молекулярной организации генома прокариот и эукариот. Генетическая инженерия, ее задачи и возможности.

Рибонуклеиновые кислоты, их классификация (тРНК, рРНК, мРНК). Первичная и вторичная структуры тРНК (модель «клеверный лист»). Виды рРНК и их функции. Первичная и вторичная структура 5S рРНК, 16S рРНК и 23S рРНК. Структура мРНК.

Пути распада нуклеиновых кислот до свободных нуклеотидов. Фосфодиэстеразы и их участие в деструкции нуклеиновых кислот. Механизм действия рибуноклеазы поджелудочной железы. Селективный характер действия эндорибонуклеаз. Дезоксирибуноклеазы I и II, характер их каталитической активности. Применение нуклеаз в медицине.

Обмен нуклеозидфосфатов. Механизм реакций распада пуриновых и пиримидиновых оснований.

Биосинтез нуклеозидфосфатов. Уридин-5'-монофосфат (УМФ) и инозин-5'-монофосфат (ИМФ) как первичные продукты биосинтеза пиримидиновых и пуриновых нуклеотидов.

Механизм биосинтеза ДНК. Ферменты (РНК-полимераза, гибридаза, ДНК-полимераза, лигаза) и белковые факторы (ДНК-раскручивающие и ДНК-связывающие белки), участвующие в репликации ДНК. Комплементарный механизм обеспечения специфичности воспроизведения первичной структуры при биосинтезе ДНК. Консервативный и полуконсервативный механизм репликации ДНК. Челночный механизм биосинтеза ДНК, фрагменты Оказаки. РНК-зависимая ДНК-полимераза (обратная транскриптаза или ревертаза). Репликация кольцевых форм ДНК. Регуляция биосинтеза ДНК в клетке. Природа спонтанного и искусственного мутагенеза.

Биосинтез РНК (транскрипция). Строение, свойства и механизм действия РНКполимераз. Локализация биосинтеза РНК в клетке. Полицистронный механизм биосинтеза РНК. Информосомы и информомеры как первичные формы существования новообразованных РНК. Метилирование интактных молекул РНК (тРНК) при посредстве РНК-метилаз. Регуляция биосинтеза РНК.

Тема 6. Обмен белков

Пути распада белков. Характеристика ферментов, обеспечивающих осуществление гидролиза белков до пептидов и аминокислот. Селективный характер действия пептидпептидогидролаз (трипсина, химотрипсина, пепсина и др.). Объем и скорость обновления белков различных тканей и органов.

Метаболизм аминокислот. Активный перенос аминокислот через клеточные мембраны при посредстве γ-глутамилтрансферазы. Преобразование аминокислот по аминогруппе, карбоксильной группе и радикалу: механизм соответствующих реакций и характеристика ферментов, в них участвующих. Обмен аминокислот как источник возникновения биологически активных соединений. Конечные продукты распада аминокислот. Пути связывания аммиака в организме. Механизм биосинтеза мочевины (орнитиновый цикл). Роль аспарагина и глутамина в связывании аммиака. Пути новообразования аминокислот в природе и их соотношение у различных классов организмов.

Матричная теория биосинтеза белков. Общая схема матричного биосинтеза белков. Активирование аминокислот. Характеристика аминоацил-тРНК-синтетаз. Аминоацил-тРНК, их структура, свойства и функции. Роль рибосом в биосинтезе белка. Этапы трансляции: инициация, элонгация, терминация. Код белкового синтеза. Посттрансляционная модификация белков. Регуляция рибосомального биосинтеза белков.

Тема 8. Углеводы и их обмен

Общая характеристика углеводов. Моносахариды: изомерия, конформации, физические и химические свойства, представители. Дисахариды: типы строения, свойства, представители. Полисахариды: классификация, структура, свойства, представители.

Пути распада полисахаридов и олигосахаридов. Ферменты гидролиза полисахаридов. Гликозидазы. Фосфоролиз сложных углеводов: фосфорилазы, их строение и механизм действия. Активирование фосфорилаз при участии циклического АМФ и протеинкиназ. Метаболизм моносахаридов. Роль реакции фосфорилирования в активировании моносахаридов. Изомеразы фосфорных эфиров моносахаридов и нуклеозиддифосфатсахаров. Обмен глюкозо-6-фосфата (дихотомический и апотомический пути, их соотношение в организме). Обмен пировиноградной кислоты. Гликолиз и гликогенолиз. Химизм спиртового брожения. Окислительное декарбоксилирование пировиноградной кислоты при посредстве мультиэнзимного комплекса. Цикл трикарбоновых и дикарбоновых кислот.

Биосинтез углеводов. Механизм первичного биосинтеза углеводов в процессе фотосинтеза и хемосинтеза, его энергетическое обеспечение. Рибулозо-1,5-дифосфат как акцептор оксида углерода (IV) и источник 3-фосфоглицерииовой кислоты. Иные пути акцептирования оксида углерода (IV) при первичном биосинтезе органического вещества (фосфоенолпируватный и ацил-КоА-карбоксилазный). Схема превращения 3-фосфоглицериновой кислоты во фруктозо-6-фосфат. Особенности биосинтеза простых углеводов у гетеротрофов. Проблема асимметрического синтеза в живой природе. Трансгликозилирование и его роль в биосинтезе олиго- и полисахаридов. Сопряжение образования гликозидных связей в молекулах олиго- и полисахаридов с распадом связей в донорах гликозильных остатков.

Тема 9. Липиды и их обмен

Общая характеристика липидов. Классификация липидов.

Жиры (триглицериды), их структура и разнообразие в природе по качественному составу и соотношению высших жирных кислот. Простые и смешанные триглицериды. Геометрическая изомерия остатков непредельных высших кислот в составе триглицеридов и форма молекул триглицеридов. Физические и химические свойства триглицеридов.

Обмен триглицеридов. Гидролиз их при участии липазы и алиэстеразы. Регуляция активности липазы при участии цАМФ. Обмен глицерина. α- и β-окисление высших жирных кислот: механизм, локализация в клетке и соотношение в животном и растительном царстве. Обмен ацетил-КоА. Глиоксилевый цикл. Механизм биосинтеза высших жирных кислот. Малонил-КоА как акцептор ацильных остатков. Ферменты, обеспечивающие ускорение реакций на отдельных этапах ступенчатого удлинения радикала кислоты. Строение и механизм действия синтетазы высших жирных кислот. Локализация биосинтеза высших жирных кислот в клетке. Механизм биосинтеза триглицеридов.

Фосфолипиды, структура их молекул, характеристика высших жирных кислот, азотистых оснований и многоатомных спиртов, входящих в их состав. Пути распада фосфатидов в организме. Характеристика фосфолипаз A, B, C и D. Обмен холина. Механизм биосинтеза фосфатидов, роль цитидиндифосфатхолина в этом процессе.

Гликолипиды, их состав и строение. Цереброзиды и ганглиозиды, функции гликолипидов в тканях и органах. Обмен гликолипидов.

Тема 10. Биологическое окисление

Классификация процессов биологического окисления. Два типа оксидоредуктаз. Характеристика важнейших оксидоредуктаз первого типа: медьсодержащих оксидаз (аскорбатоксидаза, уриказа, цитохромоксидаза); флавопротеидов (оксидаза L-аминокислот, липоилдегидрогенеза, гликолатоксидаза); НАД- и НАДФ-протеидов; железосодержащих переносчиков электронов (негеминовой природы — ферредоксины и геминовой природы — цитохромы). Ансамбли оксидоредуктаз.

Оксигеназы и гидроксилазы. Свойства оксигеназ и механизм их действия. Пирокатехаза, вероятная модель ее активного центра. Триптофаноксигеназа (триптофанпирролаза), ее тройной комплекс с кислородом и триптофаном. Характеристика гидроксилаз; важнейшие представители: фенолаза, фенилаланин-4-гидроксилаза, скваленциклогидроксилаза.

Сопряжение биологического окисления с фосфорилированием на уровне субстрата (в процессах гликолиза и брожения) и на уровне электронотранспортной цепи (в митохондриальном аппарате). Дыхательная цепь ферментов, осуществляющих сопряжение окисления с фосфорилированием. Шкала редокспотенциалов компонентов электронотранспортной цепи.

Особенности строения дыхательной цепи у эукариот и прокариот. Ингибиторы ферментов дыхательной цепи. Локализация окислительного фосфорилирования в клетке. Гипотезы о механизме сопряжения окисления с фосфорилированием. Роль мембранного потенциала. Регуляция окислительного фосфорилирования в митохондриях. Разобщение окисления и фосфорилирования. Свободное окисление, переключение с окисления, сопряженного с фосфорилированием, на свободное окисление. Пероксисомы и их функции. Микросомальная дыхательная цепь, ее особенности.

Энергетический эффект распада углеводов; сопоставление брожения, гликолиза и дыхания по этому показателю. Энергетический эффект окисления триглицеридов и других липидов. Биологическое окисление в процессе эволюции живых организмов.

Тема 12. Гормоны

Номенклатура и классификация гормонов.

Стероидные гормоны: строение, свойства и функциональная активность кортикостерона, альдостерона, тестостерона, эстрадиола, экдизона. Механизм действия стероидных гормонов. Биосинтез стероидных гормонов и его регуляция. Роль цАМФ в регуляции биосинтеза стероидных гормонов.

Пептидные гормоны, структура и функции. Характеристика важнейших из них (ангиотензин, окситоцин, вазопрессин, гастрин, глюкагон, инсулин, адренокортнкотропный гормон, меланоцитостимулирующий гормон, паратгормон, тиреотропин, соматотропный гормон). Механизм действия пептидных гормонов и их биосинтез.

Прочие гормоны: адреналин, тироксин, ювенильный гормон насекомых, ауксин, гиббереллины, цитокинины, простагландины; их структура, механизм действия, биосинтез. Рилизинг-факторы и их роль в регуляции биосинтеза гормонов.

Тема 13. Взаимосвязь процессов обмена веществ

Общие положения о взаимосвязи обмена веществ в организме. Соотношение первичного и вторичного биосинтеза у автотрофных организмов. Взаимосвязь превращения веществ у гетеротрофных организмов.

Взаимосвязь обмена нуклеиновых кислот и белков. Первичность возникновения белков и вторичность появления нуклеиновых кислот в процессе развития живой материи. Конкретные формы взаимосвязи обмена белков и нуклеиновых кислот.

Взаимосвязь обмена нуклеиновых кислот и углеводов. Роль 5-фосфорибулозо-1пирофосфата в биосинтезе пуриновых и пиримидиновых нуклеотидов. Сопряжение окисления углеводов и биосинтеза нуклеозидтрифосфатов. Нуклеозиддифосфатсахара как коферменты. и субстраты в биосинтезе сложных углеводов.

Взаимосвязь обмена нуклеиновых кислот и липидов. Сопряженность фосфорилирования АДФ с окислением высших жирных кислот. Нуклеозиддифосфатхолин как центральный метаболит при биосинтезе фосфатидов.

Взаимосвязь белкового и углеводного обмена. Роль пировиноградной кислоты в осуществлении перехода от углеводов к белкам и обратно. Иные формы связи белкового и углеводного обмена.

Взаимосвязь обмена белков и липидов. Синтез аминокислот за счет превращения ацетил-КоА в глиоксилевом цикле и цикле трикарбоновых и дикарбоновых кислот. Липопротеидные мембраны и биосинтез белков.

Взаимосвязь обмена углеводов и липидов; роль ацетил-КоА в этом процессе.

Тема 14. Регуляция процессов жизнедеятельности

Уровни регуляции жизненных процессов в живой природе.

Метаболитный уровень регуляции. Регуляция ферментативных процессов, за счет изменения активности ферментов: неспецифической (температура, рН, ионная сила и т. п.) и специфической (изостерической и аллостерической); регуляция объема синтеза ферментов (индукция и репрессия).

Оперонный уровень регуляции. Понятие об опероне. Регуляция биосинтеза информационных макромолекул (природа репрессоров и индукторов, роль гормонов). Латентное и

активное состояние информационных макромолекул. Принцип обратной связи в регуляции обмена веществ.

Клеточный уровень регуляции процессов жизнедеятельности. Проницаемость плазматической и клеточной мембран. Транспорт метаболитов в клетке. Ядерно-цитоплазменные отношения в клетке. Пространственное разделение процессов синтеза и распада в клетке (компартментализация).

Организменный уровень регуляции. Гормональная регуляция биосинтеза информационных макромолекул. Регуляция биосинтеза гормонов при посредстве тропинов (кортикотропин и т. п.). Роль цАМФ в осуществлении действия кортикотропина и других гормонов. Нейрогормональная регуляция биосинтеза гормонов метаморфоза у насекомых.

Популяционный уровень регуляции. Антибиотики микробов, фитонциды растений, телергоны животных и их влияние на процессы жизнедеятельности. Биохимические основы спонтанной изменчивости в популяциях.

Белковый полиморфизм в популяциях различных видов и возможные механизмы его поддержания. Использование белкового полиморфизма в генетике и селекции сельскохозяйственных растений и животных.

Содержание лабораторных занятий по дисциплине

Тема 2. Белки

Лабораторная работа № 1. Цветные реакции на аминокислоты и белки.

Лабораторная работа № 2. Хроматографический метод определения аминокислот.

Лабораторная работа № 3. Высаливание и осаждение белков.

Тема 3. Ферменты

Лабораторная работа № 4. Влияние температуры на активность α-амилазы. Специфичность α-амилазы.

Лабораторная работа № 5. Определение активности пероксидазы и каталазы в продуктах питания.

Тема 4. Коферменты и витамины

Лабораторная работа № 6. Количественное определение витамина С по Тильмансу.

Лабораторная работа № 7. Количественное определение витамина Р в чае.

Тема 5. Нуклеиновые кислоты и их обмен

Лабораторная работа № 8. Гидролиз нуклеопротеинов дрожжей.

Лабораторная работа № 9. Количественное определение нуклеиновых кислот в сыворотке крови.

Тема 6. Обмен белков

Лабораторная работа № 10. Определение общего белка биуретовым методом.

Лабораторная работа № 11. Определение общего белка рефрактометрическим методом.

Тема 8. Углеводы и их обмен

Лабораторная работа № 12. Химические свойства углеводов.

Лабораторная работа № 13. Определение глюкозы в крови о-толуидиновым методом.

Тема 9. Липилы и их обмен

Лабораторная работа № 14. Определение физико-химических показателей качества жиров.

Лабораторная работа № 15. Определение желчных кислот в моче.

Тема 12. Гормоны

Лабораторная работа № 16. Качественные реакции на адреналин.

Лабораторная работа № 17. Количественное определение адреналина по Фолину.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

7-й семестр

Рейтинг-контроль 1

- 1. Белки, растворимые в воде и растворах некоторых солей, называются:
- а) альбуминами; б) глобулинами.
- 2. В белках аминокислотные остатки связаны между собой:
- а) сложноэфирными связями; б) водородными связями; в) пептидными связями; г) ангидридными связями.
 - 3. Какие аминокислоты называют незаменимыми?
- а) аминокислоты, не синтезируемые в организме, а поступающие в него с пищей; б) аминокислоты, синтезируемые в организме в достаточном количестве.
 - 4. Из приведенных ниже названий укажите названия заменимых аминокислот:
 - а) цистеин; б) фенилаланин; в) метионин; г) аланин.
 - 5. Сколько пептидных связей содержится в гексапептиде?
 - а) 3; б) 4; в) 6; г) 5.
 - 6. Что представляют собой структуры белка? а) первичная; б) третичная:
- 1) структура, состоящая из определенного числа полипептидных цепей, занимающих строго фиксированное положение относительно друг друга; 2) порядок чередования аминокислотных остатков в полипептидной цепи; 3) способ укладки полипептидной цепи в упорядоченную структуру; 4) способ укладки полипептидной цепи в пространстве.
 - 7. Физиологический минимум белков равен
 - а) 100—120 г/сут, б) 30—45 г/сут, в) 120 г/сут.
 - 8. Какие пептидные связи расщепляет пепсин?
- а) образованные карбоксильной группой ароматических аминокислот; б) образованные карбоксильной группой основных аминокислот; в) образованные аминогруппой ароматических аминокислот.
 - 9. Какие пептидные связи расщепляет трипсин?
- а) образованные карбоксильной группой ароматических аминокислот; б) образованные карбоксильной группой основных аминокислот; в) образованные аминогруппой ароматических аминокислот.
 - 10. Какие пептидные связи расщепляет химотрипсин?
- а) образованные карбоксильной группой ароматических аминокислот; б) образованные карбоксильной группой основных аминокислот; в) образованные аминогруппой ароматических аминокислот.

Рейтинг-контроль 2

- 1. Ферменты это:
- а) катализаторы углеводной природы; б) катализаторы белковой природы; в) катализаторы неорганической природы; г) катализаторы липидной природы.
 - 2. Как называется небелковая часть сложного фермента, отвечающая за катализ?
 - а) кофермент; б) апофермент.
- 3. К какому классу относятся ферменты, катализирующие реакции переноса функциональных групп и молекулярных остатков с одной молекулы на другую?
 - а) гидролазы; б) трансферазы; в) оксидоредуктазы; г) изомеразы.
 - 4. Как называется центр фермента, в котором происходит присоединение суб-страта?
 - а) каталитический; б) аллостерический; в) субстратный; г) активный.
 - 5. Сродство фермента к субстрату характеризует:
 - а) константа седиментации; б) константа Михаэлиса; в) константа равновесия.

- 6. Ферменты, катализирующие расщепление химических связей без присоеди-нения воды, относятся к классу:
 - а) трансфераз; б) лигаз; в) лиаз; г) гидролаз; д) изомераз.
 - 7. К какому классу относится фермент алкогольдегидрогеназа с индексом КФ 1.1.1.1?
 - а) гидролазы; б) трансферазы; в) изомеразы; г) оксидоредуктазы.
- 8. Как называется участок молекулы фермента, ответственный одновременно и за присоединение вещества, подвергающегося ферментативному действию, и за осуществление ферментативного катализа?
- а) гидрофобный центр; б) каталитический центр; в) активный центр; г) адсорбционный центр; е) аллостерический центр.
 - 9. При каком рН большинство ферментов проявляют максимальную активность?
- а) кислом pH=1,5—2,0, б) щелочном, pH=8,0—9,0, в) близком к нейтральному; Γ) только при pH=7,0.
 - 10. Как ферменты влияют на энергию активации?
 - а) увеличивают; б) уменьшают; в) не изменяют.
- 11. К какому классу относятся ферменты, катализирующие внутримолекулярный перенос группы?
 - а) оксидоредуктазы; б) лиазы; в) изомеразы; г) трансферазы.

Рейтинг-контроль 3

1. Каковы функции РНК в клетке?

- а) хранение и передача наследственной информации, б) считывание и перенос информации с матрицы к месту синтеза белка, в) контроль за синтезом белка, г) «узнавание» участка и-РНК, д) деление клеток, е) регуляция биохимических процессов, ж) формирование частей рибосом.
 - 2. Какие вещества входят в состав нуклеотидов ДНК?
 - а) тимин, б) урацил, в) аминокислота, г) гуанин, д) рибоза, е) дезоксирибоза.
- 3. ТГЦЦЦГТАГЦАА, постройте молекулу иРНК, которая может быть синтезирована на этой цепи.
 - 4. Каковы функции ДНК в клетке?
- а) хранение и передача наследственной информации, б) считывание и перенос информации с матрицы к месту синтеза белка, в) контроль за синтезом белка, г) «узнавание» участка и-РНК, д) деление клеток, ж) транспорт аминокислот к месту синтеза белка.
 - 5. Какие вещества входят в состав нуклеотидов РНК?
 - а) аденин, в) урацил, д) остаток фосфорной кислоты, б) тимин, г) рибоза, е) дезоксирибоза.
 - 6. Структура одного белка определяется:
- а) группой генов, б) одним геном, в) одной молекулой ДНК, г) совокупностью генов организма.
 - 7. Один триплет ДНК несёт информацию о:
- а) последовательности аминокислот в молекуле белка, б) признаке организма, в) аминокислоте в молекуле синтезируемого белка, г) составе молекулы РНК.
 - 8. Понятие «транскрипция» относится к процессу:
- а) удвоения ДНК, б) синтеза и-РНК на ДНК, в) перехода и-РНК на рибосомы, г) создания белковых молекул на полисоме.
 - 9. Одна аминокислота кодируется:
- а) четырьмя нуклеотидами, б) двумя нуклеотидами, в) одним нуклеотидом, г) тремя нуклеотидами.
- 10. Триплету нуклеотидов ТАГ в молекуле ДНК будет соответствовать кодон молекулы и-РНК:
 - а) ТАГ, б) УАГ, в) УТЦ, г) ЦАУ.
 - 11. Трансляция это:
- а) переписывание генетической информации с ДНК на и-РНК; б) переписывание генетической информации с и-РНК на ДНК; в) перенесение информации с и-РНК в структуру синтезируемого белка.

8-й семестр

Рейтинг-контроль 1

- 1. К моносахаридам относится:
- а) гепарин; б) глюкоза; в) сахароза; г) мальтоза; д) гликоген.
- 2. Фруктоза является:
- а) кетогексозой; б) кетопентозой; в) альдогексозой; г) альдопентозой; д) дисахаридом.
- 3. В состав лактозы входят остатки:
- а) двух молекул глюкозы; б) двух молекул фруктозы; в) глюкозы и фруктозы; г) галактозы и глюкозы.
 - 4. Физиологически важным гетерополисахаридом является:
 - а) гиалуроновая кислота; б) крахмал; в) гликоген; г) целлюлоза.
 - 5. Эмпирическая формула глюкозы:
 - a) $C_{12}H_{22}O_{11}$; б) $C_6H_{12}O_6$; в) $(C_6H_{10}O_5)_n$; г) $C_6H_{12}O_5$.
 - 6. Основные запасы гликогена сосредоточены в:
 - а) печени; б) крови; в) почках; г) сердце; д) мышцах.
 - 7. Биологические функции моносахаридов:
- а) энергетическая; б) опорная; в) пластическая; г) структурная; д) гидроосмотическая и ионрегулирующая.
 - 8. Какие функции выполняет целлюлоза в организме человека?
 - а) энергетическую; б) стимуляция перистальтики кишечника; в) пластическую.
 - 9. Цикл Кори это:
- а) цикл обращения глюкозы и лактата между печенью и мышцами (в мышцах гликолиз, в печени глюконеогенез); б) цикл обращения глюкозы и пирувата между печенью и органами; в) энергетический цикл, связывающий цикл трикарбоновых кислот и пентозо-фосфатный цикл.

Рейтинг-контроль 2

- 1. Липиды растворяются во всех перечисленных ниже веществах, кроме:
- а) эфира; б) воды; в) бензола; г) хлороформа.
- 2. К структурным липидам относятся все перечисленные ниже, кроме:
- а) фосфолипидов; б) гликолипидов; в) триглицеридов; г) стеридов.
- 3. В структурном отношении все липиды являются:
- а) простыми эфирами; б) высшими спиртами; в) сложными эфирами; г) полициклическими спиртами.
 - 4. В состав триглицеридов входят все перечисленные ниже элементы, кроме:
 - а) Н; б) О; в) S; г) С.
 - 5. Главными липидами мембран являются:
 - а) триглицериды; б) гликолипиды; в) воски; г) фосфолипиды.
 - 6. Сложные эфиры ВЖК и полициклических спиртов называются:
 - а) восками; б) стеридами; в) стеролами.
 - 7. Какие функции выполняет желчь?
- а) эмульгирует жиры, б) активирует липазу, в) способствует всасыванию гидрофобных продуктов переваривания, г) способствует всасыванию жирорастворимых витаминов.
 - 8. Наиболее распространённые насыщенные ВЖК, входящие в состав липидов:
 - а) пальмитиновая; б) уксусная; в) стеариновая; г) муравьиная.
 - 9. К какой группе липидов относится сфингомиелин?
- а) жиры, б) фосфолипиды, в) производное холестерина, г) производное арахидоновой кислоты.
 - 10. К какой группе липидов относится таурохолевая кислота?
- а) $T\Gamma$, б) фосфолипиды, в) производное холестерина, г) производное арахидоновой кислогы.
 - 11. Какие из перечисленных веществ являются незаменимыми факторами питания?
 - а) холестерин, б) витамин D, в) олеиновая кислота, г) линолевая кислота.

Рейтинг-контроль 3

- 1. В молекуле АТФ макроэргической является связь:
- а) гликозидная, б) фосфоэфирная, в) фосфоангидридная.
- 2. Какое соединение не относится к макроэргическим:
- а) фосфоеноилпируват, б) аденозинтрифосфат, в) 1,3-дифосфоглицерат, г) цитидинтрифосфат, д) глюкозо-6-фосфат.
- 3. Реакции биологического окисления, сопровождающиеся трансформацией энергии химических связей окисляемых субстратов в энергию АТФ, протекают путем:
- а) активации молекулярного кислорода, б) дегидрирования, с последующей передачей электронов на кислород, в) присоединения активированного кислорода к субстрату.
- 4. Реакция дегидрирования, в которой акцептором водорода служит не кислород, а химическое вещество, называется:
- а) тканевым дыханием, б) брожением, в) биологическим окислением, г) микросомальным окислением.
 - 5. Синтез АТФ в клетках эукариот протекает на:
- а) внутренней мембране митохондрий, б) мембранах ЭПР, в) наружной мембране митохондрий, г) плазматической мембране.
 - 6. Пиридинзависимые дегидрогеназы в качестве кофермента содержат:
 - а) гем, 2) ФМН, 3) НАД⁺, 4) ФАД, 5) НАДФ⁺.
 - 7. В состав НАД входят:
 - а) амид никотиновой кислоты, б) АМФ, в) изоаллоксазин, г) рибитол.
 - 8. Пиридинзависимые дегидрогеназы локализованы:
 - а) только в цитозоле, б) только в митохондриях, в) в цитозоле и в митохондриях.
- 9. Коферменты пиридинзависимых дегидрогеназ $HAД^+$ и $HAД\Phi^+$ являются динуклеотидами, в которых мононуклеотиды связаны между собой:
- а) 3',5'-фосфодиэфирной связью, б) 2',5'-фосфодиэфирной связью, в) 5',5'-фосфоангидридной связью.
- 10. Простетической группой первичных акцепторов водорода флавиновых дегидрогеназ является:
 - 1) НАДФ⁺, 2) ФАД, 3) ФМН.

5.2. Промежуточная аттестация

7-й семестр

Вопросы к экзамену

- 1. Строение, классификация и физико-химические свойства протеиногенных аминокислот. Первичная структура белков.
 - 2. Вторичная структура белков и её основные типы.
 - 3. Третичная структура белков, типы связей её стабилизирующие.
 - 4. Четвертичная структура белков. Примеры строения олигомерных белков.
 - 5. Физико-химические свойства белков и методы их выделения.
 - 6. Классификация и номенклатура ферментов.
 - 7. Кофакторы, коферменты, простетические группы.
 - 8. Активный центр ферментов. Характеристика, биологическая роль.
 - 9. Общие представления о механизме ферментативного катализа.
 - 10. Кинетика ферментативных реакций.
 - 11. Специфичность действия ферментов.
 - 12. Влияние ингибиторов и активаторов на активность ферментов.
 - 13. Водорастворимые витамины.
 - 14. Жирорастворимые витамины.
 - 15. Состав, строение и биологическая роль нуклеозидмоно-, ди- и трифосфатов.
 - 16. Структура и биологическая роль циклических мононуклеотидов.
 - 17. Биологическая роль и пути биосинтеза АТФ.
 - 18. Первичная структура нуклеиновых кислот.

- 19. Рибосомные, транспортные и матричные РНК.
- 20. Генетический код и его свойства.
- 21. Состав, строение и биологическая роль ДНК. Правила Чаргаффа.
- 22. Структурная организация ДНК.
- 23. Репликация ДНК. Полуконсервативный тип репликации ДНК.
- 24. Репликация ДНК в клетках про- и эукариот.
- 25. Синтез РНК на матрице ДНК транскрипция.
- 26. Синтез белка трансляция.
- 27. Ферментативный гидролиз белков в пищеварительном тракте.
- 28. Дезаминирование аминокислот, его типы.
- 29. Трансаминирование аминокислот. Непрямое дезаминирование аминокислот.
- 30. Декарбоксилирование аминокислот. Биогенные амины: образование, биологическая роль и инактивация.
 - 31. Пути использования и обезвреживания аммиака в организме.
 - 32. Распад нуклеиновых кислот в пищеварительном тракте и тканях.
 - 33. Распад и синтез пуриновых нуклеотидов.
 - 34. Распад и синтез пиримидиновых нуклеотидов.

8-й семестр

Вопросы к зачету с оценкой

- 1. Глюкоза как важнейший энергетический субстрат и метаболит углеводного обмена: общая схема источников и путей расходования глюкозы в организме.
- 2. Катаболизм глюкозы. Сравнительная характеристика основных путей распада глюкозы.
 - 3. Гликолиз. Энергетический баланс этого процесса.
 - 4. Гликогенолиз и гликогенез, связь с гликолизом.
 - 5. Аэробное окисление глюкозы.
 - 6. Окислительное декарбоксилирование пировиноградной кислоты.
 - 7. Цикл трикарбоновых кислот.
 - 8. Пентозофосфатный путь превращения глюкозы, основные этапы.
 - 9. Глюконеогенез. Регуляция этого процесса в абсортивный и постабсортивный период.
 - 10. Классификация и биологическая роль липидов.
 - 11. Окисление жирных кислот. Баланс энергии окисления.
- 12. Депонирование и мобилизация жиров в жировой ткани, регуляция синтеза и распада жиров.
 - 13. Биосинтез жирных кислот.
 - 14. Сложные липиды организма (фосфолипиды, сфинголипиды).
 - 15. Холестерин: функции, обмен.
 - 16. Принципы, схема и структурная организация дыхательной цепи.
- 17. Ферменты и компоненты неферментной природы дыхательной цепи. Химическое строение их простетических групп.
 - 18. Окислительное фосфорилирование.
 - 19. Механизмы сопряжения и фосфорилирования в дыхательной цепи.
 - 20. Регуляция биологического окисления и окислительного фосфорилирования.
- 21. Классификация гормонов. Общая характеристика метаболизма гидрофильных и липофильных гормонов.
- 22. Сравнительная характеристика механизма действия интра- и экстраклеточных гормонов.
- 23. Тиреоидные гормоны: структура, биосинтез, влияние на обмен веществ. Изменение метаболизма при гипо- и гипертиреозе.
- 24. Гормоны мозгового вещества надпочечников: структура, биосинтез, биологическая роль.
 - 25. Кортикостероиды: структура, биологическая роль.
 - 26. Гормоны поджелудочной железы (структура, синтез, биологическая роль).

- 27. Интеграция метаболизма. Взаимосвязь обмена белков, жиров и углеводов.
- 28. Роль гормонов в регуляции обмена веществ в организме.

5.3. Самостоятельная работа обучающегося

7-й семестр

Самостоятельная работа студентов в решении ситуационных задач и подготовке к коллоквиумам по темам «Аминокислоты, пептиды, белки», «Ферменты, коферменты и витамины», «Нуклеозиды, нуклеотиды, нуклеиновые кислоты».

На самостоятельное изучение вынесена

тема 7. Методы исследования биополимеров.

Методы выделения белков из биологического материала. Способы гомогенизации материала. Экстракция белков растворами солей, буферными, органическими растворителями, смесями фенола, уксусной кислоты и воды. Методы фракционирования белков: высаливание, осаждение органическими растворителями, осаждение солями тяжелых металлов, электрофорез, изоэлектрическое фокусирование, гельфильтрация с помощью сефадексов, сефарозы и биогелей, хроматография (ионообменная — на ДЭАЭ и КМ-целлюлозах и сефадексах; распределительная — на крахмале, целлюлозе, силикагеле). Способы очистки белковых препаратов от низкомолекулярных примесей: диализ, электродиализ, кристаллизация, гельфильтрация и ультрафильтрация. Методы определения гомогенности белковых препаратов.

Методы определения молекулярной массы белков: седиментационный, вискозиметрический, осмометрический, гельфильтрационный, электрофоретический.

Схема установления первичной структуры белка: установление аминокислотного состава, фрагментация полипептидных цепей и разделение фрагментов, установление структуры *N*- и *C*-концевых аминокислот, секвенирование пептидов, сравнение последовательностей перекрывающихся пептидов. Масс-спектрометрическое определение чередования аминокислотных остатков в пептидах. Физико-химические методы исследования пространственной структуры белка: дисперсия оптического вращения, рентгеноструктурный анализ, ИК- и ЯМР-спектроскопия, электронная микроскопия.

Методы белковой химии, используемые для выделения и очистки ферментов. Особые приемы, применяемые при выделении ферментов (аффинная хроматография, экстракция водно-глицериновыми смесями при низких температурах, метод ацетоновых порошков и др.). Предохранение ферментов от денатурации в процессе их выделения. Экспресс-методы обнаружения ферментов (энзим-электрофорез в блоке крахмала и полиакриламида). Иммобилизация ферментов.

Методы экстракции ДНК из биологического материала и способы депротеинизации. Фракционирование ДНК посредством ультрацентрифугирования в градиенте плотности хлорида цезия и колоночной хроматографии. Методы определения молекулярной массы ДНК и исследования ее пространственной структуры.

8-й семестр

Самостоятельная работа студентов в решении ситуационных задач и подготовке к коллоквиумам по темам «Углеводы: строение и обмен», «Липиды: строение и обмен», «Биологическое окисление. Биоэнергетика».

На самостоятельное изучение вынесена

тема 11. Водный и минеральный обмен.

Содержание и распределение воды в организме и клетке. Состояние воды в тканях. Положительный и отрицательный эффект гидратации ионов на степень структурирования воды. Регуляция водного обмена.

Участие минеральных веществ в формировании третичной и четвертичной структуры биополимеров. Ферменты-металлопротеиды. Становление ферментов-мультимеров в присутствии ионов Mg^{2+} , Mn^{2+} , Zn^{2+} , Ca^{2+} . Ионы металлов и возникновение фермент-субстратных комплексов. Минеральные соединения и обмен нуклеиновых кислот. Роль ми-

неральных элементов в обмене белков. Участие минеральных соединений в обмене углеводов и липидов. Обмен минеральных веществ.

Бионеорганическая химия, ее проблемы и перспективы развития.

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид		КНИГООБЕСПЕЧЕННОСТЬ		
издания, издательство	изда - ния	Наличие в электронном каталоге ЭБС		
Основная	я литера	тура		
1. Комов, В. П. Биохимия: учебник для вузов по направлению 655500 Биотехнология / В. П. Комов, В. Н. Шведова. — 3-е изд., стер. — М.: Дрофа. — 639 с. — ISBN 978-5-358-04872-0.	2008	15 экз.		
2. Кнорре, Д. Г. Биологическая химия: учебник для химических, биологических и медицинских специальностей вузов / Д. Г. Кнорре, С. Д. Мызина. — Изд. 3-е, испр. — М: Высшая школа. — 479 с. — ISBN 5-06-003720-7.	2000	24 экз.		
3. Пустовалова, Л. М. Практикум по биохимии: учебное пособие для вузов / Л. М. Пустовалова. — Ростов-на-Дону: Феникс. — 541 с. — ISBN 5-222-00829-0.	1999	13 экз.		
4. Глухова, А. И. Биохимия с упражнениями и задачами [Электронный ресурс]: учебник / под ред. А. И. Глухова, Е. С. Северина — М.: ГЭО-ТАР-Медиа. — 384 с. — ISBN 978-5-9704-5008-6.	2019	http://www.studentlibrary.ru/book/ISBN978597 0450086.html		
Дополнительная литература				
1. Нуклеиновые кислоты: от А до Я: пер. с англ. / Б. Аппель [и др.]; ред. С. Мюллер; перевод под ред. А. А. Быстрицкого, Е. Г. Григорьевой. — М.: Бином. Лаборатория знаний. — 413 с. — ISBN 978-5-9963-0376-2.	2012	http://www.studentlibrary.ru/book/ISBN978599 6324064.html		
2. Северин, Е. С. Биохимия [Электронный ресурс]: учебник / под ред. Е. С. Северина. — 5-е изд., испр. и доп. — М.: ГЭОТАР-Медиа. — 768 с. — ISBN 978-5-9704-3762-9.	2016	http://www.studentlibrary.ru/book/ISBN978597 0437629.html		
З Губарева, А. Е. Биологическая химия. Ситуационные задачи и тесты [Электронный ресурс]: учеб. пособие / А. Е. Губарева [и др.]; под ред. А. Е. Губаревой. — М.: ГЭОТАР-Медиа. — 528 с. — ISBN 978-5-9704-3561-8.	2016	http://www.studentlibrary.ru/book/ISBN978597 0435618.html		

6.2. Периодические издания

- 1. «Биохимия».
- 2. «Биотехнология».
- 3. «Вестник МГУ: химия».

6.3. Интернет-ресурсы

- 1. http://sci-lib.com
- 2. http://www.med-edu.ru/index.php?id=biohim/

- 3. https://biokhimija.ru/
- 4. http://www.hij.ru
- 5. http://www.xumuk.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лабораторные работы проводятся в лаборатории органической и биологической химии (403-7).

Учебно-методические материалы — учебники, методические пособия, тесты. Аудиовизуальные средства обучения — слайды, презентации, видеофильмы.

Лабораторное оборудование — центрифуги, весы аналитические, фотометр, рефрактометр, вытяжные шкафы, термостаты.

Расходные материалы: химические реактивы, химическая посуда.

Рабочую программу составила доцент кафедры биологического и географического
образования Петрова Е. В. <i>Пето</i>
Рецензент (представитель работодателя): директор МБОУ СОШ № 29 г. Владимир Плышевская Е. В.
. Программа рассмотрена и одобрена на заседании кафедры биологического и географи
ческого образования.
Протокол № 1 от 27.08.2021 г.
Заведующий кафедрой доцент Грачёва Е. П.
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комис
сии направления 44.03.05 Педагогическое образование (с двумя профилями подготовки).
Протокол № 1 от 31.08.2021/г/
Председатель комиссии директор ПИ ВлГУ Артамонова М. В.