Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

TBELXIAO

Проректор

учесно истолической работе

« 28 » 11

20 15 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МАТЕМАТИКА»

Направление подготовки - 43.03.01 Сервис

Профиль подготовки

Клиентоориентированный сервис автомобильного рынка

Уровень высшего образования - бакалавриат

Форма обучения - очная

	Трудоем-	Лек-	Практич.	Лаборат.	CPC,	Форма промежуточного	
Семестр	кость зач.	ций,	занятий,	работ,	час.	контроля	
	ед,час.	час.	час.	час.		(экз./зачет)	
1	4/144	36	36		72	Зачет	
2	5/180	36	36		72	Экзамен (36 час.)	
Итого	9/324	72	72		144	Зачет, экзамен (36)	

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Совершенствование деятельности в любой области экономики (управлении, финансово-кредитной сфере, маркетинге, учете, аудите) в значительной мере связано с применением в экономической науке и практике математических методов исследования.

Целью освоения дисциплины «Математика» является освоение необходимого математического аппарата, помогающего анализировать, моделировать и решать прикладные экономические задачи.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Математика» относится к базовой части. Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. В то же время математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного экономиста.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Выпускник программы бакалавриата должен обладать следующими общекультурными компетенциями (ОК):

- способность использовать основы экономических знаний при оценке эффективности результатов деятельности в различных сферах (ОК-2)

В результате освоения дисциплины обучающийся должен:

Знать: основные понятия и инструменты алгебры и геометрии, математического анализа, теории вероятностей, математической и социально-экономической статистики.

Уметь: решать типовые математические задачи, используемые при принятии управленческих решений; использовать математический язык и математическую символику при построении организационно-управленческих моделей; обрабатывать эмпирические и экспериментальные данные.

Владеть: математическими, статистическими и количественными методами решения типовых организационно-управленческих задач.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ «МАТЕМАТИКА» Общая трудоемкость дисциплины составляет 9 зачетных единиц, 324 часов.

CTDY	TTCT	A CTI F	TATIT	101
CTP3	/ K I	УРА	KVF	(``A

№ п/п	- wagest (Tema)		Неделя семестра	самос	иды учебно гоятельную г трудоемко	работу	Объем учебной работы, с применением интерактивных	промежу-		
				Лекции	Практические занятия	Лабораторные работы	CPC	KII / KP	методов (в часах / %)	
	Алгебра, аналитическая геометрия									
1.	Системы линейных уравнений. Метод Гаусса.	1	1	2	2		4		2/50%	
	Определители, правило Крамера.	1	2	, 2	2 .		4		2/50%	
	Матричное исчисление.	1	3	2	2		4		2/50%	
	Векторная алгебра.	1	4	2	2		4		2/50%	
	Прямая на плоскости. Прямая и плос- кость в пространстве	1	5	2	2		4		2/50%	
	Кривые второго порядка.	1	6	2	2		4		2/50%	PK1
	Введение в анализ									
	Предел последовательности	1	7	2	2		4		2/50%	
8.	Предел функции, замечательные пре- делы. Бесконечно малые, бесконечно большие.		8	2	2		4		2/50%	
٠.	Непрерывность. Основные теоремы о непрерывных функциях.	1	9	2	2		4		2/50%	
10.	Протиродина турфования П.		10	2	2	P	4		2/50%	
	Техника вычисления производных.	1	11	2	2		4		2/50%	** **
12.	Производные функций заданных параметрически. Логарифмическое дифференцирование.	1	12	2	2		4		2/50%	PK2
	Производные высших порядков	1	13	2	2		4		2/50%	4.5
17	Исследование функций (экстремумы, перегибы, асимптоты).	1	14	2	2		4		2/50%	
	Построение графиков.	1	15	2	2		4		2/50%	
	Функции многих переменных			,						
10.	Частные производные и дифференци- ал. Приложения.	1	16	2	2	1-	4		2/50%	
17.	Производная сложной функции. Частные производные высших порядков. Дифференциалы высших порядков.		17	2	2		4		2/50%	
10.	Экстремум функции многих переменных.	1	18	2	2				2/50%	РК3
	Всего за 1 семестр:			36	36		72		36/50%	зачет
IV.	Неопределенный интеграл									
1.	Первообразная и неопределенный интеграл, их свойства. Замена перемен-	2	1	2	2	e	4	¥	2/50%	

	ной и интегрирование по частям.					T		т
2.	Интегрирование рациональных функ-							
	ций. Интегрирование некоторых	2	2	2	2	4	2/50%	
3.	иррациональных и трансцендентных функций.	2	3	2	2	4	2/50%	
V.	Определенный интеграл				<u> </u>			
4.	Построение определённого интеграла, его свойства. Формула Ньютона- Лейбница.	2	4	2	2	4	2/50%	
5.	Замена переменных и интегрирование по частям.	2	5	2	2	4	2/50%	
6.	Геометрические, механические и физические приложения определенного интеграла. Несобственный интеграл.	2	6	2	2	4	2/50%	PK1
	Дифф. уравнения			-				
	Дифф. уравнения 1-го порядка	2	7	2	2	4	2/50%	
8.	Дифф. уравнения высших порядков, неполные уравнения.	2	8	2	2	4	2/50%	
9.	Линейные дифф. уравнения с постоян- ными коэффициентами.	2	9	2	2	4	2/50%	
	Теория вероятностей и мат. стати- стика							1
10.	Элементы комбинаторики.	2	10	2	2	4	2/50%	T
11.	Основные понятия теории вероятно- стей.	2	11	. 2	2	4	2/50%	
	Основные теоремы теории вероятно- стей.	2	12	2	2	4	2/50%	РК2
	Последовательные испытания.	2	13	2	2	4	2/50%	
14.	Дискретные случайные величины.	2	14	2	2	4	2/50%	
	Непрерывные случайные величины.	2	15	2	2	4	2/50%	
16.	Важнейшие законы распределения случайных величин	2	16	2	2	4	2/50%	
17.	Основные понятия и определения в задаче первичной обработки результа- тов наблюдения (выборка, вариацион- ный ряд, гистограмма, и т. д.).		17	2	2	4	2/50%	
18.	Точечные оценки параметров генеральной совокупности. Средняя величина, медиана, стандартное отклонение.		18	2	2	4	2/50%	PK3
	Всего за 2 семестр			36	36	72	36/50%	Экзамен (36)
	Итого:			72	72	144	72/50%	Зачет, экзамен. (36)

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1. лекционно-семинарская система обучения (традиционные лекционные и практические занятия);
- 2. обучение в малых группах (выполнение практических работ в группах из двух или трёх человек);
- 3. применение мультимедиа технологий (проведение лекционных и практических занятий с применением компьютерных презентаций и демонстрационных роликов с помощью проектора или ЭВМ);
- 4. технология развития критического мышления (прививание студентам навыков критической оценки предлагаемых решений);
- 5. информационно-коммуникационные технологии (применение информационных техноло-

гий для мониторинга текущей успеваемости студентов и контроля знаний);

Объем занятий, проводимых в интерактивной форме, составляет 50%.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

В рамках документа «Положение о рейтинговой системе комплексной оценки знаний студентов» разработан регламент проведения и оценивания контрольных действий. Процедура оценивания знаний, умений, навыков по дисциплине включает учёт успешности выполнения ряда мероприятий: текущего контроля (контрольных работ, рейтинг — контролей); самостоятельной работы (типовых расчетов, курсовых работ и др.) и промежуточной аттестации (зачёта, зачета с оценкой или экзамена).

Публикуемые компоненты ФОС:

- 1. Полный список теоретических вопросов промежуточной аттестации (несменяемая часть).
- 2. Типовые формы текущего контроля(КР).

3. Типовые формы самостоятельной работы (ТР).

Для генерирования сменяемой части оценочных средств (задач), используются материалы библиотеки ВлГУ и указанных там же специальных сайтов.

I CEMECTP

Текущий контроль в форме рейтинг -контроля

Рейтинг-контроль 1. «Линейная алгебра и геометрия» Контрольная работа к рейтинг-контролю

Типы задач

- 1. Элементы векторной алгебры; скалярное, векторное и смешанное произведения.
- 2. Линейные объекты на плоскости и в пространстве. Вычисление основных параметров линейных объектов. Характеристики их взаимного расположения.
- 3. Свойства определителей. Различные способы вычисления.
- 4. Правило Крамера. Метод Гаусса.
- 5. Линейные операции над матрицами. Обратная матрица.

Рейтинг-контроль 2. «Введение в анализ: пределы, производные». Контрольная работа к рейтинг-контролю Типы задач

- 1. Предел последовательности.
- 2. 1-й и 2-й замечательные пределы; следствия Техника бесконечно малых.
- 3. Общая техника дифференцирования. Специальные приемы дифференцирования: логарифмическое дифференцирование; дифференцирование функции, заданной параметрически; дифференцирование функции, заданной неявно.
- 4. Правило Лопиталя.
- 5. Исследование на возрастание убывание; экстремумы. Исследование на выпуклостьвогнутость; перегибы. Асимптоты.

Рейтинг-контроль 3. «Функции многих переменных». Контрольная работа к рейтинг-контролю №3 Типы задач

- 1. Вычислить частные производные, дифференциал.
- 2. Вычислить производную сложной функции и функции, заданной неявно.

- 3. Исследовать функцию на экстремум.
- 4. Найти градиент. Вычислить производную по направлению.
- 5. Найти дивергенцию и ротор.

Промежуточная аттестация в форме зачета

Вопросы к зачету

- 1. Матрицы. Действия с матрицами. Обратная матрица. Ранг матрицы.
- 2. Определители. Свойства определителей. Алгебраические дополнения и миноры. Вычисление определителя разложением по строке (столбцу).
- 3. Системы линейных уравнений. Метод Гаусса. Теорема Кронекера-Капелли. Формулы Крамера.
- 4. Однородные системы линейных уравнений. Фундаментальная система решений.
- 5. Общее решение системы линейных уравнений в векторной форме.
- 6. Векторы. Линейные операции над векторами. Направляющие косинусы и длина вектора. Условие коллинеарности двух векторов.
- 7. Скалярное произведение векторов и его свойства. Длина вектора и угол между двумя векторами. Условие ортогональности двух векторов.
- 8. Система векторов. Разложение вектора по системе векторов. Линейная зависимость и независимость, базисы и ранг системы векторов. Пространство R^n . Ортогональность.
- 9. Уравнение линий на плоскости. Различные формы уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой.
- 10. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их геометрические свойства и уравнения.
- 11. Уравнения плоскости и прямой в прямоугольной системе координат. Условия параллельности и перпендикулярности. Углы между двумя плоскостями, между двумя прямыми, между прямой и плоскостью. Прямые и плоскости в аффинном пространстве.
- 12. Евклидово пространство. Неравенство Коши Буняковского. Ортогональный базис. Процесс ортогонализации. Разложение вектора по ортогональному базису.
- 13. Собственные значения и собственные векторы матриц и их свойства. Теорема о базисе пространства R^n из собственных векторов матрицы. Собственные векторы симметрической матрицы.
- 14. Производная функции, ее геометрический смысл и смысл в прикладных задачах (скорость, плотность).
- 15. Правила нахождения производной. Производная сложной и обратной функции. Дифференцирование функций, заданных неявно и параметрически.
- 16. Понятие функции, дифференцируемой в точке, дифференциал функции и его геометрический смысл.
- 17. Производные и дифференциалы высших порядков.
- 18. Теоремы Ферма, Ролля, Лагранжа, Коши, их применение. Правило Лопиталя.
- 19. Многочлен и формула Тейлора. Представление функций $\exp(x)$, $\sin(x)$, $\cos(x)$, $\ln(1+x)$, $(1+x)^{\alpha}$ по формуле Тейлора.
- 20. Условия монотонности функции. Экстремумы функции, необходимое условие. Достаточные условия. Отыскание наибольшего и наименьшего значений функции, дифференцируемой на отрезке.
- 21. Исследование выпуклости функции. Точки перегиба.
- 22. Асимптоты функций.
- 23. Общая схема исследования функции и построения ее графика. Уравнение касательной и нормали к плоской кривой в данной точке.
- 24. Элементы топологии в R^n . Функции многих переменных.
- 25. Частные производные. Дифференциалы.
- 26. Экстремумы функций многих переменных.

Самостоятельная работа в форме типового расчета

Типовой расчет №1 «Линейная алгебра и геометрия»

1. Элементы векторной алгебры; скалярное, векторное и смешанное произведения.

2. Применения векторной алгебры для вычисления базовых геометрических характеристик геометрических фигур (длина, площадь, объем).

3. Линейные объекты на плоскости и в пространстве. Различные формы задания линейного объекта.

- 4. Вычисление основных параметров линейных объектов. Характеристики их взаимного расположения.
- 5. Свойства определителей. Различные способы вычисления.
- 6. Правило Крамера. Метод Гаусса.
- 7. Линейные операции над матрицами.
- 8. Обратная матрица.
- 9. Нахождение характеристического уравнения и его корней.
- 10. Построение собственных векторов.

Типовой расчет №2 «Пределы и дифференциальное исчисление»

- 1. Предел последовательности.
- 2. Число «е»; следствия. 1-й и 2-й замечательные пределы; следствия. Техника бесконечно малых.
- 3. Односторонние пределы, исследование разрывов.
- 4. Приложения; приближенные вычисления.
- 5. Общая техника дифференцирования. Специальные приемы дифференцирования: логарифмическое дифференцирование; дифференцирование функции, заданной параметрически; дифференцирование функции, заданной неявно.
- 6. Производные высших порядков.
- 7. Дифференциал, техника вычисления. Приложения: приближенные вычисления, касательная нормаль к графику.
- 8. Правило Лопиталя.
- 9. Исследование на возрастание убывание; экстремумы. Исследование на выпуклостьвогнутость; перегибы. Асимптоты.
- 10. Схема полного исследования графика функции

II CEMECTP

Текущий контроль в форме рейтинг -контроля

Рейтинг контроль №1 «Техника интегрирования, определенный интеграл» Контрольная работа к рейтинг -контролю

Типы задач

- 1. Базовая техника интегрирования (использование таблицы). Изменение переменной интегрирования. Интегрирование по частям.
- 2.Интегрирование рациональных функций.
- 3. Интегрирование тригонометрических выражений. Универсальная подстановка.
- 4. Техника вычисления определенного интеграла. Формула Ньютона-Лейбница.
- 5. Вычисление площадей плоских фигур. Вычисление длин кривых. Вычисление объемов.

Рейтинг контроль №2 «Дифференциальные уравнения» Контрольная работа к рейтинг -контролю Типы задач

1. Уравнения в разделяющимися переменными. Однородные уравнения.

- 2. Линейные уравнения, уравнения Бернулли. Уравнения в полных дифференциалах.
- 3. Уравнения высших порядков. Некоторые виды уравнений, допускающие понижение порядка.
- 4. Линейные однородные уравнения с постоянными коэффициентами.
- 5. Линейные неоднородные уравнения со специальной частью.

Рейтинг- контроль 3 «Основы теории вероятностей» Контрольная работа к рейтинг-контролю Типы залач

- 1. Задача на использование классической и геометрической вероятности.
- 2. Теорема сложения. Условные вероятности, теорема умножения.
- 3. Формула полной вероятности. Формула Байеса.
- 4. Дискретные случайные величины. Закон распределения. Числовые характеристики; математическое ожидание, дисперсия.
- 5. Непрерывные случайные величины, плотность распределения, функция распределения. Числовые характеристики.

Промежуточная аттестация в форме экзамена

Вопросы к экзамену.

Часть I

- 1. Первообразная функция. Неопределенный интеграл и его свойства. Таблица интегралов.
- 2. Методы интегрирования. Замена переменной, интегрирование по частям. Интегрирование рациональных выражений, тригонометрических функций, некоторых иррациональных функций. Понятие о не берущихся интегралах.
- 3. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, его геометрический смысл и свойства.
- 4. Формула Ньютона-Лейбница, ее применение для вычисления определенных интегралов. Замена переменной в определенном интеграле, интегрирование по частям.
- 5. Приложения определенных интегралов.
- 6. Дифференциальные уравнения первого порядка. Основные понятия: определение, решение, общее решение, частное решение дифференциального уравнения первого порядка. Теорема Коши о существовании и единственности решения (без доказательства). Интегральная кривая. Начальные условия задача Коши. Особые точки. Геометрический смысл уравнения первого порядка.
- 7. Дифференциальные уравнения первого порядка. Виды уравнений и методы решения. Уравнения с разделяющимися переменными. Неполные уравнения. Линейные уравнения, однородные и неоднородные.
- 8. Дифференциальные уравнения второго порядка. Основные понятия. Теорема Коши о существовании и единственности решения (без доказательства). Задача Коши. Уравнения, допускающие понижение порядка.
- 9. Дифференциальные уравнения второго порядка. Линейные уравнения, однородные и неоднородные.
- 10. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Краевая задача.

Часть II

- 1. Случайные события. Алгебра событий. Классическое и статистическое определение вероятности события.
- 2. Теоремы сложения и умножения вероятностей. Теорема сложения вероятностей несовместных событий. Условная вероятность. Теорема умножения вероятностей. Теорема сложения вероятностей совместных событий.
- 3. Основные формулы для вероятностей событий. Формула полной вероятности. Формула

Байеса.

- 4. Виды случайных величин. Распределение дискретной случайной величины. Математическое ожидание и дисперсия числа появления события в независимых испытаниях. Начальные и центральные моменты.
- 5. Непрерывные случайные величины. Функция и плотность распределения вероятностей. Квантиль. Математическое ожидание и дисперсия. Мода и медиана. Моменты.
- 6. Равномерное распределение. Экспоненциальное распределение. Нормальное распределение. Функция Лапласа.
- 7. Системы случайных величин. Распределение двумерной случайной величины. Ковариация и коэффициент корреляции.
- 8. Статистические методы обработки экспериментальных данных. Генеральная совокупность и выборка. Типы выборок. Статистическое распределение выборки. Эмпирическая функция распределения. Гистограмма.
- 9. Статистические оценки. Несмещенные, эффективные и состоятельные оценки. Выборочная средняя и выборочная дисперсия. Анализ смещенности выборочной средней и выборочной дисперсии.
- 10. Точечная оценка. Метод моментов и метод наибольшего правдоподобия для точечной оценки параметров распределения.

Самостоятельная работа в форме типовых расчетов

Типовой расчет №1 «Интегральное исчисление»

- 1. Базовая техника интегрирования (использование таблицы). Изменение переменной интегрирования.
- 2. Интегрирование по частям.
- 3. Интегрирование рациональных функций.
- 4. Интегрирование тригонометрических выражений. Универсальная подстановка.
- 5. Интегрирование некоторых специальных выражений.
- 6. Интегрирование иррациональных выражений. Тригонометрические подстановки.
- 7. Техника вычисления определенного интеграла. Формула Ньютона-Лейбница.
- 8. Вычисление площадей плоских фигур. Вычисление длин кривых.

Типовой расчет № 2 «Дифференциальные уравнения»

- 1. Уравнения в разделяющимися переменными.
- 2. Однородные уравнения.
- 3. Линейные уравнения, уравнения Бернулли.
- 4. Уравнения в полных дифференциалах.
- 5. Уравнения высших порядков. Некоторые виды уравнений, допускающие понижение порядка.
- 6. Линейные уравнения. Метод вариации произвольных постоянных.
- 7. Линейные однородные уравнения с постоянными коэффициентами.
- 8. Линейные неоднородные уравнения со специальной частью.

Типовой расчет №3 «Теория вероятностей»

- 1. Классические и геометрические вероятности.
- 2. Теорема сложения. Условные вероятности, теорема умножения.
- 3. Формула полной вероятности и формула Байеса.
- 4. Последовательные испытания. Формула Бернулли. Приближение Пуассона. Приближения Лапласа.
- 5. Дискретные случайные величины. Закон распределения. Непрерывные случайные величины, законы распределения.
- 6. Нормальный и равномерный законы распределения.

- 7. Основные числовые характеристики; математическое ожидание, дисперсия.
- 8. Совместный закон распределения пары случайных величин; дискретный случай.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Основная литература

1. Краткий курс высшей математики [Электронный ресурс] / Балдин К.В. - М. : Дашков и К. - 512 с. 2013- ISBN 978-5-394-02103-9.

http://www.studentlibrary.ru/book/ISBN9785394021039.html

2. Высшая математика в вопросах и ответах [Электронный ресурс] : учеб. пособие / Л.В. Крицков, под ред. В.А. Ильина. - М. : Проспект - 176 с. 2014- ISBN 978-5-392-14372-6. http://www.studentlibrary.ru/book/ISBN9785392143726.html

3. Высшая математика. Руководство к решению задач. Т. 1 [Электронный ресурс] / Лунгу К.Н., Макаров Е.В - М.: ФИЗМАТЛИТ - 216 с. 2013 - ISBN 978-5-9221-1500-1. http://www.studentlibrary.ru/book/ISBN9785922115001.html

b) Дополнительная литература

- 1. Высшая математика. Руководство к решению задач. Ч. 2. [Электронный ресурс] / Лунгу К. Н., Макаров Е. В. М. : ФИЗМАТЛИТ 384 с. 2009 ISBN 978-5-9221-0756-3. http://www.studentlibrary.ru/book/ISBN9785922107563.html
- 2. Высшая математика [Электронный ресурс] / С.Н. Дорофеев. М.: Мир и образование, 592 с.: ил. (Полный конспект лекций). 2011 ISBN 978-5-94666-622-0. http://www.studentlibrary.ru/book/ISBN9785946666220.html
- 3. Высшая математика. Краткий курс [Электронный ресурс]: учеб. пособие / Лакерник А.Р. М.: Логос, 528 с. (Новая университетская библиотека). 2008 ISBN 978-5-98704-523-7. http://www.studentlibrary.ru/book/ISBN9785987045237.html
 - в) Периодические издания
 - 1. Успехи математических наук, Журнал РАН (корпус 3, ауд. 414)
 - 2. Автоматика и телемеханика, Журнал РАН (корпус 3, ауд. 414)

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ.

Лекционные аудитории, оснащённые доской (для мела или маркера), экраном для проекционных систем, проектором и ноутбуком. Аудитории для проведения лабораторных занятий, оснащённые современными персональными компьютерами, объединёнными в локальную вычислительную сеть и укомплектованными необходимым системным и прикладным программным обеспечением аудитории вычислительного центра.

программа составлена в соответствии с треоованиями ФГОС ВО по направлению
43.03.01 Сервис
Рабочую программу составил доцент кафедры ФАиП Звягин М.Ю
Рецензент интектор по маркетингу ЗАО Инвестиционная фирма «ПРОК –Инвест» ————————————————————————————————————
Программа рассмотрена и одобрена на заседании кафедры
Заведующий кафедрой
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комис-
сии направления
протокол \mathbb{N}_{2} $2/4$ от $2f.11.245$ года.
Председатель комиссии