Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

«УТВЕРЖДАЮ»

Проректор

по образовательной деятельности

А.А. Панфилов

02 % 09 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Химия и физика полимеров

Направление подготовки	и 18.03.01 «Химическая технология»
Профиль подготовки	Технология и переработка полимеров
Уровень высшего образо	вания прикладной бакалавриат
Форма обучения заочн	

Семестр	Трудоемкость зач. ед,/час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС,	Форма промежуточной аттестации (экз./зачет/зачет с оценкой)
6	4/144	8		10	126	Зачет
7	6/216	10		12	167	Экзамен (27 ч)
Итого	10/360	18		22	293	Зачет, экзамен (27 ч)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения: развитие понимания сущности химических процессов получения полимерных материалов, разновидностей способов синтеза, особенностей строения высокомолекулярных соединений, уникальности их физических свойств.

Задачи: изучение теоретических аспектов физико-химии полимеров, приобретение и отработка практических навыков проведения экспериментов по получению полимеров различными способами, определению физических свойств полимеров, их растворов и расплавов в лабораторных условиях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРУ ОПОП ВО

Дисциплина «Химия и физика полимеров» относится к вариативной части учебного плана.

Пререквизиты дисциплины:

- 1. Органическая химия (теория строения органических соединений; химические свойства и реакции органических веществ: механизмы, промежуточные частицы радикалы, катионы, анионы, устойчивость промежуточных частиц).
- 2. Физическая и коллоидная химии
- 3. Физика (поляризованный свет, законы поглощения и отражения света).
- 4. Математика (симметрия и асимметрия).
- 5. Философия (категории и законы материалистической диалектики, теория познания).

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПОДИСЦИПЛИНЕ

Код формируемых компе-	Уровень освоения компе-	Планируемые результаты обучения
тенций	тенции	по дисциплине характеризующие
,	·	этапы формирования компетенций
		(показатели освоения компетенции)
1	2	3
ОПК-3	<u>-</u> частичный	Знать: классификацию и строение по-
OHK-3	чистичный	лимеров различных классов; способы
		получения полимеров и мономеры для
		их получения; механизмы реакций по-
		лучения полимеров и влияние различ-
		ных факторов на процессы получения и
		свойства полимеров; основные методы
		синтеза полимеров; фазовые и физиче-
		ские состояния полимеров; природу
		химических и физических связей в по-
		лимерах для понимания их свойств и
		механизма химических и физико-
		химических процессов в них.
		Уметь: применять знания о природе
		мономера, механизме и условиях реак-
		ции получения полимера для определе-
		ния возможных побочных процессов, структуры и свойств получаемого по-
		лимера; синтезировать основные про-
		мышленные полимеры в лабораторных
		условиях; обосновать выбор полимеров
		и композиций для использования в
		конкретных целях.
		Владеть: экспериментальными мето-
		дами синтеза полимеров; методиками
		расчета состава исходной смеси для
		получения полимеров и сополимеров
		заданного состава различными спосо-
		бами; навыками использования знаний
		по физике полимеров и композиций на

		их основе для понимания технологиче-
		ских процессов и свойств получаемых
		материалов и изделий из них.
ПК-1	частичный	Знать: теоретические аспекты влияния
		свойств исходных веществ (сырья) и
		технологических параметров процессов
		получения полимеров и реакций с их
		участием на свойства продуктов
		Уметь: осуществлять технологический
		процесс в соответствии с регламентом
		и устранять причины возникновения
		нештатных ситуаций, связанных с от-
		клонением от регламента и получением
		некачественной продукции
		Владеть: методиками измерения ос-
		новных параметров технологического
		процесса, свойств сырья и продукции

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 10 зачетных единиц, 360 часов.

№	Наименование тем и /или раз-	ттр	местра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				ой работы нтерактивных цов (7%)	го контроля лости жуточной ции
п/п	делов/тем дисциплины	Семестр	Семестр Неделя семестра		Практические занятия	Лабораторные работы	CPC	Объем учебной работы с применением интерактивных методов (в часах / %)	Формы текущего контроля успеваемости форма промежуточной аттестации
1	Введение. Основные понятия химии полимеров	6	19				10		
2	Основные способы получения полимеров	6	19				10		
3	Радикальная полимеризация	6	19	1		6	20	2/29	PK 1
4	Катионная полимеризация	6	20	1			10		
5	Анионная полимеризация	6	20	1			10		
6	Анионно-координационная полимеризация	6	20	1			6		
7	Полимеризация по карбо- нильной группе	6	20				6		
8	Полимеризация циклов	6	20				6		PK 2
9	Сополимеризация мономеров	6	21	2			18		
10	Поликонденсация	6	21	1		4	18	2/40	
11	Химические превращения полимеров	6	21	1			12		РК 3
	Всего за 6 семестр			8		10	126	4/22	Зачет
12	Молекулярная масса и мо- лекулярно-массовое распре- деление полимеров	7	19	2		4	20	2/33	
13	Гибкость цепей полимера	7	19				10		
14	Физические состояния, переходы и релаксация в полимерах	7	19	2			10		
15	Кристаллическое состояние полимеров. Надмолекулярные структуры в полимерах	7	19			4	20	2/50	PK 1

16	Высокоэластическое состояние полимеров	7	20			10		
17	Стеклообразное состояние полимеров	7	20			10		
18	Вязкотекучее состояние полимеров	7	20			10		
19	Взаимодействие полимеров с жидкостями	7	20	2	4	20	1/17	PK 2
20	Механические свойства полимеров	7	21	2		20		
21	Электрические свойства полимеров	7	21	1		17		
22	Теплофизические свойства полимеров. Перспективы науки о полимерах	7	21	1		20		PK 3
	Всего за 7 семестр			10	12	167	5/23	Экз(27ч)
Итого	по дисциплине			18	22	179	9/23	Зачет Экз (27 ч)

Содержание лекционных занятий по дисциплине

Часть I. Химия полимеров (6 семестр)

Тема 1. Введение. Основные понятия химии полимеров.

Содержание темы. Классификация веществ: низкомолекулярные и высокомолекулярные; мономеры, олигомеры, полимеры. Особенности полимерного состояния вещества: цепное строение, гибкость, высокая молекулярная масса, полидисперсность. Особенности химического поведения макромолекул. Классификация полимеров: по происхождению, по химическому строению, по природе атомов основной цепи, по топологии, по отношению к нагреванию. Регулярность полимеров.

Тема 2. Основные способы получения полимеров.

Содержание темы. Полимеризация, поликонденсация, полимераналогичные превращения (определение). Полимеризация как наиболее распространенный способ получения полимеров. Способность мономеров к полимеризации: влияние термодинамического и кинетического факторов, деполимеризация и полимеризационно-деполимеризационное равновесие. Способность виниловых мономеров к полимеризации по различным механизмам (радикальная, ионная). Основные промышленные полимеры, мономеры для их получения и реакции образования.

Тема3. Радикальная полимеризация.

Содержание темы. Общие положения, основные стадии. Инициирование, инициаторы. Стадия роста цепи, обрыв цепи, передача цепи. Вывод кинетических уравнений скорости и степени полимеризации и зависимость этих параметров от различных факторов. Ингибирование радикальной полимеризации. Способность виниловых мономеров к радикальной полимеризации. Способы проведения радикальной полимеризации: в блоке, в растворе, в суспензии, в эмульсии.

Тема 4. Катионная полимеризация.

Содержание темы. Общие положения, основные стадии. Инициирование, инициаторы. Стадия роста цепи, обрыв цепи, передача цепи. Вывод кинетических уравнений скорости и степени полимеризации. Зависимость скорости полимеризации и молекулярной массы получаемого полимера от различных факторов проведения катионной полимеризации. Способность виниловых мономеров к катионной полимеризации. Особенности катионной полимеризации, определяющие ее промышленное применение.

Тема 5. Анионная полимеризация.

Содержание темы. Общие положения, основные стадии. Инициирование, инициаторы. Стадия роста цепи, обрыв цепи, передача цепи. «Живые» полимеры. Вывод кинетических уравнений скорости и степени полимеризации. Влияние различные факторов на анионную полимеризацию. Способность виниловых мономеров к анионной полимеризации.

Тема 6. Анионно-координационная полимеризация.

Содержание темы. Катализаторы, их специфическое действие. Стадии процесса. Катализаторы Циглера-Натта. Их природа, схемы полимеризации на катализаторах Циглера-Натта. Стереорегулярность образующихся полимеров. Вывод уравнения скорости полимеризации. Области применения катализаторов Циглера-Натта. π - Аллильные комплексы переходных металлов. Оксидно-металлические катализаторы.

Тема 7. Полимеризация по карбонильной группе.

Содержание темы. Мономеры для данного типа полимеризации, специфические особенности процесса, основные механизмы полимеризации по карбонильной группе: анионная, катионная, закономерности протекания. Полимеризация с двумя различными полимеризующимися группами.

Тема 8. Полимеризация циклов.

Содержание темы. Мономеры для данного типа полимеризации. Влияние размера цикла на способность мономера к полимеризации и легкость протекания процесса. Катионная и анионная полимеризация эпоксидов. Гидролитический и анионный механизмы полимеризации капролактама. Особенности течения процесса.

Тема 9. Сополимеризация.

Содержание темы. Вывод уравнения состава сополимера. Склонность мономеров к сополимеризации. Схема Алфрея-Прайса. Константы сополимеризации. Блок- и привитые сополимеры, способы их получения.

Тема 10. Поликонденсация.

Содержание темы. Общие положения. Исходные вещества для получения полимеров поликонденсацией: функциональные группы и типы полимеров. Реакционный центр, функциональная группа, функциональность Условия образования линейных и разветвленных полимеров. Средняя функциональность. Реакционная способность мономеров и олигомеров, принцип Флори. Стадии образования макромолекул. Степень конверсии, средняя степень полимеризации, уравнение Карозерса. Влияние различных факторов на скорость процесса и молекулярную массу. Способы проведения поликонденсации.

Тема 11. Химические превращения полимеров.

Содержание темы. Классификация реакций полимеров. Полимераналогичные превращения: превращения ПВС, получение эфиров целлюлозы. Реакции, приводящие к увеличению степени полимеризации: сшивка полимеров, блок- и привитая сополимеризация. Реакции, приводящие к уменьшению степени полимеризации: деструкция. Виды и примеры деструкции.

Часть II. Физика полимеров (7 семестр)

Тема 12. Молекулярная масса и молекулярно-массовое распределение в полимерах.

Содержание темы. Понятие молекулярной массы и молекулярно-массового распределения в полимерах. Полидисперсность полимеров по молекулярной массе, ее происхождение. Способы усреднения молекулярной массы полимеров. Среднечисловая, средневесовая и средневязкостная молекулярная масса.

Экспериментальные методы определения молекулярной массы и молекулярно-массового распределения полимеров. Осмометрия, светорассеяние, вискозиметрия. Интегральные и

дифференциальные кривые молекулярно-массового распределения. Препаративные и аналитические методы изучения полидисперсности полимеров по молекулярной массе.

Тема 13. Гибкость цепей полимеров

Содержание темы. Геометрическая форма молекул. Конфигурация и конформация молекул. Внутреннее вращение атомных групп в молекулах. Потенциальный барьер вращения. Про-исхождение и сущность гибкости полимерных цепей. Понятие о термодинамической и кинетической гибкости. Характеристика конформаций макромолекул. Факторы, определяющие гибкость полимерной цепи. Сегмент - количественная мера гибкости цепи. Методы определения величины сегмента. Экспериментальная оценка размера и формы макромолекул в разбавленных растворах полимеров.

Тема 14. Физические состояния, переходы и релаксация в полимерах.

Содержание темы. Краткие сведения об агрегатных и фазовых состояниях вещества. Фазовые переходы первого и второго рода, кристаллизация и стеклование низкомолекулярных соединений.

Агрегатные и фазовые состояния полимеров. Физические состояния полимеров: стеклообразное, высокоэластическое, вязкотекучее и кристаллическое. Хрупкое и высокоориентированное состояния полимеров.

Переходы в полимерах. Температуры взаимных переходов физических, агрегатных и фазовых состояний. Термомеханический метод исследования полимеров. Термомеханические кривые полимеров (ТМК), их вид в зависимости от молекулярной массы, молекулярномассового распределения и гибкости цепей полимеров. ТМК пластифицированных и наполненных полимеров,

Понятие о релаксации и релаксационных переходах в химических веществах. Релаксационные процессы в полимерах. Время релаксации и его зависимость от температуры и вида релаксирующего элемента. Времена релаксации в полимерах. Полимер - неравновесная система.

Тема 15. Кристаллическое состояние полимеров. Надмолекулярные структуры в полимерах. Содержание темы. Способность полимеров к кристаллизации. Кинетика и механизм кристаллизации. Методы исследования кристаллизации. Температура плавления и кристаллизации полимеров, их взаимосвязь. Релаксация в кристаллизующихся полимерах. Кристаллизация и высокоэластичность. Термомеханические кривые кристаллизующихся полимеров. Особенности закристаллизованного состояния полимеров: специфика двухфазности, плотность упаковки цепей, полиморфизм, дефектность кристаллитов, влияние на механические и иные свойства.

Надмолекулярные структуры в закристаллизованных полимеров. Понятие надмолекулярных структур. Ранние представления о структуре полимеров. Монокристаллы полимеров: ламели, фибриллы, молекулярные кристаллы (глобулы). Кристаллизация в специфических условиях. Морфология монокристаллов. Сферолиты в полимерах и их строение. Надмолекулярные структуры в ориентированных и аморфных полимерах.

Тема 16. Высокоэластическое состояние полимеров.

Содержание темы. Гибкость цепей - основное условие существования высокоэластического состояния. Основы термодинамической и молекулярно-кинетической теории высокоэластичности. Релаксационная природа высокоэластичности: ползучесть и запаздывающая упругость, релаксация напряжения, гистерезисные явления. Моделирование высокоэластичности, роль механических моделей линейных полимеров в науке о полимерах.

Развитие деформации в зависимости от температуры и от времени приложения нагрузки. Принцип эквивалентности. Температурно-временная суперпозиция, уравнение ВЛФ. Спектр времен релаксации в полимерах.

Тема 17. Стеклообразное состояние полимеров.

Содержание темы. Температура стеклования и методы ее определения. Структурное и механическое стеклование. Релаксационный характер стеклования. Теории стеклования полимеров. Особенности полимерных стекол: свободный объем в полимерах, неравновесность состояния, зависимость свойств от предыстории полимера.

Тема 18. Вязкотекучее состояние полимеров.

Содержание темы. Понятие вязкости. Температура текучести и ее определение. Механизм течения полимеров: диффузионное и химическое течение. Особенности вязкотекучего состояния полимеров.

Реологические уравнения. Кривые течения полимеров. Аномалия вязкости и ее оценка. Теоретические и эмпирические реологические уравнения. Основные виды аномалии вязкости. Структурно-динамический и эласто-динамический механизм аномалии вязкости. Методы измерения вязкости полимеров. Инженерные методы оценки вязкости (текучести) полимеров: индекс расплава и формуемость.

Необычные эффекты при течении полимеров. Нормальные напряжения. Эффект Вассенберга. Эффект входа. Эластическое восстановление струи (разбухание экструдата). Эластическая турбулентность и эффект проскальзывания.

Зависимость вязкости полимеров от температуры, давления, молекулярной массы и молекулярно-массового распределения полимеров, строения и гибкости полимерных цепей.

Тема 19. Взаимодействие полимеров с жидкостями.

Содержание темы. Растворимость полимеров. Механизм взаимодействия полимера и жидкости. Природа растворов полимеров. Набухание полимеров и его характеристика. Факторы, определяющие набухание и растворение полимеров. Особенности свойств растворов полимеров.

Взаимодействие молекул в растворах полимеров. Ассоциация и сольватация. Процесс структурообразования. Устойчивость полимерных материалов к растворителям. «Хорошие», «плохие» и ϑ - растворители. Понятие о диаграммах температура - состав систем полимер - растворитель с точки зрения правила фаз Гиббса. Критерии взаимодействия полимеров с растворителем.

Явление пластификации. Пластификаторы, их типы. Требования к пластификаторам как растворителям для полимеров. Совместимость в системе полимер - пластификатор и ее характеристика. Влияние пластификаторов на температуры стеклования и текучести. Методы введения пластификатора в полимер. Внутренняя пластификация. Антипластификация.

Взаимная растворимость полимеров. Совместимость в системе полимер- полимер.

Тема 20. Механические свойства полимеров.

Содержание темы. Характеристика упругих свойств полимеров. Особенности поведения полимеров в поле действия механических сил. Основные механические свойства и понятие о методах их изучения. Модули упругости и коэффициент Пуассона. Зависимость модуля упругости от температуры и параметров структуры полимера, других внешних и внутренних факторах.

Ползучесть и релаксация напряжения. Понятие ползучести и релаксации напряжения в полимерах. Времена релаксации в реальных полимерах. Принцип температурно-временной суперпозиции и уравнение ВЛФ. Зависимость ползучести и релаксации напряжения от структурных и иных параметров полимера, внешних и внутренних факторов.

Деформационно - прочностные свойства и разрушение полимеров. Деформационные кривые стеклообразных, закристаллизованных и высокоэластических полимеров. Вынужденная эластичность и ее предел. Прочность и относительное удлинение при разрыве. Зависимость вида деформационной кривой от температуры испытания и молекулярной массы полимера. Температура хрупкости полимеров и ее определение. Влияние на прочность и вид деформационных кривых полимера различных внешних и внутренних факторов, молекулярной и надмолекулярной структуры полимера.

Долговечность полимеров, ее зависимость от напряжения и температуры. Усталость полимеров. Разрушение кристаллических и аморфных полимеров, механизм разрушения. Флуктуационная теория прочности. Регулирование деформационно-прочностных свойств полимеров изменением надмолекулярной структуры, введением пластификаторов и наполнителей.

Динамические механические свойства полимеров. Поведение полимера в поле переменных механических сил. Принцип метода динамических механических испытаний. Динамический модуль и механические потери в полимерах, их зависимость от температуры, давления, структурных параметров полимера и иных факторов.

Технические свойства полимеров и пластмасс. Понятия теплостойкости, удельной ударной вязкости (прочности на удар) и устойчивости к раздиру. Твердость. Устойчивость к трению, истиранию и износу, процарапыванию. Усталость полимерных материалов.

Стандартные измерения механических свойств полимерных материалов.

Тема 21. Электрические свойства полимеров.

Содержание темы. Поведение полимеров в электрических полях. Понятие о диэлектриках, полупроводниках и полиэлектролитах. Поляризация диэлектриков. Диэлектрическая проницаемость и диэлектрические потери в полимерах. Диэлектрическая релаксация. Дипольносегментальные и дипольно-групповые потери. Время электрической релаксации и ее определение. Зависимость диэлектрических потерь полимеров от структурных и иных факторов.

Удельное электрическое сопротивление и электропроводность полимеров. Статическая электризация. Прочность на пробой, дугостойкость и трекингостойкость полимеров. Электреты и их применение.

Тема 22. Теплофизические свойства полимеров

Содержание темы. Поведение полимеров при тепловом воздействии. Теплофизические свойства: теплопроводность, теплоемкость, температуропроводность и тепловое расширение. Интерпретация этих свойств и измерение. Зависимость от температуры. Влияние релаксационных явлений и переходов.

Уравнения состояния полимеров и их применение. Соотношение теплофизических свойств полимеров и соответствующих мономеров.

Перспективы науки о полимерах. Основные тенденции развития физики, физикохимии, химии и технологии полимеров и пластмасс на их основе. Научные школы в науке о полимерах. Вклад советских и российских ученых в развитие полимерной науки.

Содержание лабораторных занятий по дисциплине

Тема 3. Радикальная полимеризация

Содержание лабораторных занятий. Полимеризация (стирола, метилметакрилата) в массе (блоке). Полимеризация (стирола) в эмульсии

Тема 10. Поликонденсация

Содержание лабораторных занятий. Получение сложного полиэфира

Тема 12. Молекулярная масса и молекулярно-массовое распределение полимеров *Содержание лабораторных занятий.* Определение молекулярной массы полимеров

Тема 15. Кристаллическое состояние полимеров. Надмолекулярные структуры в полимерах *Содержание лабораторных занятий*. Изучение надмолекулярных структур в полимерах

Тема 19. Взаимодействие полимеров с жидкостями *Содержание лабораторных занятий.* Изучение процесса набухания полимеров

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Химия и физика полимеров» используются разнообразные образовательные технологии как традиционные, так и с применением активных и интерактивных методов обучения.

Активные и интерактивные методы обучения:

- Тренинг (тема №12, 15)
- Анализ ситуаций (тема №19)
- Разбор конкретных ситуаций (тема№ 3,10)

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Текущий контроль осуществляется три раза за семестр (рейтинг-контроль 1, 2, 3) по результатам проведения следующих контрольных мероприятий:

№	Контролируемый раздел дисциплины	Наименование оценочного средства	Период проведения
	6 семе	стр	
1	Введение. Основные понятия химии полимеров.	Тест 1	PK 1
	Основные способы получения полимеров.		
2	Радикальная полимеризация	Контрольная работа 1	PK 2
3	Ионная полимеризация. Анионно-	Тест 2	
	координационная полимеризация. Полимериза-		
	ция по карбонильной группе. Полимеризация		
	циклов		
4	Сополимеризация мономеров	Контрольная работа 2	PK 3
5	Поликонденсация. Химические превращения полимеров	Контрольная работа 3	
	7 семе	естр	
1	Молекулярная масса и молекулярно-массовое распределение полимеров	Контрольная работа 4	PK 1
2	Физические состояния, переходы и релаксация в полимерах	Контрольная работа 5	PK 2
3	Свойства полимеров	Контрольная работа 6 Защита реферата	PK 3

Варианты тестов и заданий для контрольных работ представлены в фонде оценочных средств УМК.

Самостоятельная работа студента

В процессе освоения курса «Химия и физика полимеров» СРС заключается в следующем:

- 1. Подготовка к лекциям с использованием конспектов и рекомендованной литературы.
- 2. Подготовка к лабораторным занятиям и оформление отчетов по лабораторным работам с использованием рекомендованной литературы.
- 3. Подготовка к текущему контролю тестированию. Выполнение контрольных работ.
- 4. Изучение некоторых разделов курса, которые в лекционном курсе рассмотрены недостаточно полно. При этом используется рекомендованная литература.
- 5. Написание и защита реферата.
- 6. Подготовка к промежуточной аттестации (зачет, экзамен) с использованием рекомендованной литературы, конспектов лекций, отчетов по лабораторным работам и согласно перечню вопросов для проведения промежуточной аттестации.

Более полно методические указания для СРС представлены в составе УМК.

Вопросы для самостоятельной работы студентов 6 семестр

С использованием материала лекций и учебно-методической литературы для следующих наиболее важных промышленных полимеров рассмотреть: возможные способы получения, реакции получения, возможные механизмы реакций, побочные процессы, варианты катализа и ингибирования.

- 1. Полиэтилен (ПЭВД,ПЭНД)
- 2. Полипропилен
- 3. Полистирол
- 4. Поливинилхлорид
- 5. Полиметилакрилат
- 6. Полиметилметакрилат
- 7. Полибутадиен
- 8. Полиизопрен
- 9. Полиакрилонитрил
- 10. Поливинилацетат
- 11. Фенолоформальдегидный олигомер
- 12. Полиэтилентерефталат
- 13. Полиамид 6
- 14. Полиамид 66
- 15. Полиуретан

7 семестр

- 1. Изучение молекулярной массы полимеров: среднечисловая ММ; средневесовая ММ; средневязкостная ММ.
- 2. Изучение молекулярно-массового распределения в полимерах: дробное осаждение, светорассеяние, гель-проникающая хроматография.
- 3. Изучение вязкости расплавов полимеров капиллярными вискозиметрами.
- 4. Изучение вязкости расплавов полимеров ротационными вискозиметрами.
- 5. Дифференциальный термический анализ полимеров.
- 6. Термогравиметрический анализ полимеров.
- 7. Дериваграфия для исследования полимеров.
- 8. Дифференциальная сканирующая калориметрия.
- 9. Рентгеноскопия полимеров.
- 10. Малоугловая рентгенография полимеров.
- 11. Нейтронография полимеров.
- 12. Электронный парамагнитный резонанс в исследовании полимеров.
- 13. Ядерный магнитный резонанс в полимерах.
- 14. Электронная микроскопия в исследовании полимеров: метод реплик, метод ультратонких срезов.

- 15. Инфракрасная спектроскопия полимеров.
- 16. Ультразвуковые исследования полимеров.
- 17. Полярография для исследования полимеров.
- 18. Механические маятники для изучения свойств полимеров: свободные колебания, вынужденные резонансные колебания; вынужденные нерезонансные колебания.
- 19. Теплофизические свойства полимеров: теплопроводность, теплоемкость, тепловое расширение.
- 20. Электрические свойства полимеров: электропроводность, диэлектрические потери, электреты, статическое электричество, прочность на пробой.

Вопросы для проведения зачета (6 семестр)

- 1. Основные понятия химии полимеров: ВМС, НМС, мономер, олигомер, полимер, способы получения олигомеров и полимеров. Особенности полимерного состояния вещества.
- 2. Классификация полимеров по различным признакам: по происхождению, по химическому строению, по природе атомов основной цепи, по топологии (строению основной цепи). Регулярные полимеры. Термопласты и реактопласты.
- 3. Основные стадии осуществления полимеризации. Мономеры для осуществления полимеризации основных промышленных полимеров. Способность виниловых мономеров к полимеризации.

Радикальная полимеризация

- 1. Инициирование радикальной полимеризации: термическое, фотоинициирование, радиационное инициирование, окислительно-восстановительное инициирование (примеры инициаторов и механизм образования свободных радикалов из них). Эффективность инициирования.
- 2. Стадия роста цепи. Способы присоединения мономеров к макрорадикалу: Г-Х, Х-Г, Г-Г, Х-Х (рассмотреть на примере конкретного мономера).
- 3. Обрыв цепи: реакции рекомбинации и диспропорционирования (рассмотреть на примере полимеризации конкретного мономера).
- 4. Передача цепи, на мономер, полимер, инициатор, растворитель (рассмотреть на примере полимеризации конкретного мономера).
- 5. Вывод уравнения скорости роста цепи в радикальной полимеризации. Длина кинетической цепи и ее зависимость от различных факторов. Основное уравнение кинетики полимеризации (без вывода).
- 6. Способы ингибирования радикальной полимеризации.
- 7. Влияние основных факторов на процесс полимеризации виниловых мономеров: температура, давление, концентрации исходных веществ. Гель-эффект.
- 8. Строение и реакционная способность виниловых мономеров к радикальной полимеризации. Правило антибатности.
- 9. Способы проведения радикальной полимеризации: в блоке, в растворе, в суспензии, в эмульсии.

Катионная полимеризация

- 1. Инициирование катионной полимеризации: основные инициаторы протонные кислоты и апротонные кислоты.
- 2. Стадия роста цепи в катионной полимеризации (рассмотреть на примере полимеризации конкретного мономера).
- 3. Обрыв и передача цепи в катионной полимеризации (рассмотреть на примере полимеризации конкретного мономера).
- 4. Вывод уравнения скорости роста цепи. Степень полимеризации (без вывода уравнения).
- 5. Влияние различных факторов на скорость полимеризации и молекулярную массу при катионной полимеризации: условия проведения, стехиометрический состав реагентов, присутствие примесей.

6. Реакционная способность виниловых мономеров в катионной полимеризации.

Анионная полимеризация

- 1. Инициирование анионной полимеризации свободными анионами и полярными соединениями основного характера.
- 2. Стадия роста цепи в анионной полимеризации (рассмотреть на примере полимеризации конкретного мономера).
- 3. Обрыв и передача цепи в анионной полимеризации (рассмотреть на примере полимеризации конкретного мономера).
- 4. Вывод уравнения скорости роста цепи. Степень полимеризации (без вывода уравнения).
- 5. Влияние различных факторов на скорость катионной полимеризации: условия проведения, концентрация реагентов.
- 6. Реакционная способность виниловых мономеров в анионной полимеризации.

Анионно-координационная полимеризация

- 1. Виды катализаторов анионно-координационной полимеризации.
- 2. Состав катализаторов Циглера-Натта. Особенности полимеризации на катализаторах Циглера-Натта.

Полимеризация по карбонильной группе

- 1. Анионная полимеризация
- 2. Катионная полимеризация
- 3. Особенности полимеризации диметилкетена
- 4. Особенности полимеризации акролеина

Полимеризация циклов

- 1. Термодинамические особенности процесса
- 2. Полимеризация эпоксидов
- 3. Гидролитическая полимеризация капролактама
- 4. Анионная полимеризация капролактама
- 5. Катионная полимеризация капролактама

Сополимеризация мономеров

- 1. Вывод уравнения состава сополимера
- 2. Зависимость состава сополимера от состава смеси мономеров и соотношения констант сополимеризации
- 3. Реакционная способность виниловых мономеров в радикальной сополимеризации. Схема Алфрея-Прайса.
- 4. Способы получения блок- и привитых сополимеров

Поликонденсация

- 1. Мономеры для осуществления поликонденсации.
- 2. Реагенты для получения сложных и простых полиэфиров, полиамидов, полиуретанов, полимочевины, полиаминов, фенолоформальдегидных олигомеров.
- 3. Расчет средней функциональности вещества. Зависимость строения поликонденсационного полимера от средней функциональности исходных веществ.
- 4. Реакционная способность функциональных групп: принцип Флори и отклонения от него.
- 5. Побочные реакции и прекращение роста при образовании поликонденсационных макромолекул
- 6. Влияние различных факторов на скорость процесса и молекулярную массу полимера Химические реакции полимеров
- 1. Полимераналогичные превращения с участием ПВС
- 2. Полимераналогичные превращения с участием целлюлозы
- 3. Сшивка и отверждение полимеров
- 4. Процессы, происходящие при термической деструкции полимеров.
- 5. Особенности фотохимической, радиационной деструкции.
- 6. Механическая деструкция. Химическая и термоокислительная деструкция

Вопросы для проведения экзамена (7 семестр)

- 1. Происхождение и сущность гибкости полимерных цепей.
- 2. Теории термодинамической и кинетической гибкости цепей полимера.
- 3. Сегмент как мера гибкости реальной Цепи. Методы определения сегмента.
- 4. Факторы, определяющие гибкость цепей полимера.
- 5. Конформационные характеристики гибкости полимерных цепей и их нахождение по характеристической вязкости растворов полимеров.
 - 6. Молекулярная масса полимеров и методы ее определения.
 - 7. Молекулярно-массовое распределение в полимерах и методы его изучения.
- 8. Агрегатные, фазовые и физические состояния и температурные переходы в полимерах.
- 9. Релаксационные процессы в природе и их характеристика. Специфика релаксационных процессов в полимерах.
- 10. Термодинамическая и молекулярно-кинетическая теории высокоэластичности полимеров.
- 11. Ползучесть, релаксация напряжения и упругий гистерезис у линейных (несшитых) и сшитых полимеров доказательство релаксационной природы эластичности полимеров.
 - 12. Термомеханические кривые (ТМК) аморфных и закристаллизованных полимеров.
 - 13. Стеклообразное состояние полимеров.
 - 14. Механизм течения полимеров и необычные эффекты при течении полимеров.
- 15. Реологические уравнения (теоретические и эмпирические). Кривые течения полимеров.
 - 16. Аномалия вязкости полимеров. Основные виды аномалии вязкости.
- 17. Вязкость полимеров и ее экспериментальное определение. Технические способы оценки вязкости полимеров: индекс расплава и формуемость полимеров и пластмасс.
- 18. Зависимость вязкости расплавов полимеров от температуры, давления и молекулярных характеристик полимеров.
- 19. Температура плавления и кристаллизации полимеров. Их определение и взаимосвязь.
 - 20. Способность полимеров к кристаллизации.
 - 21. Механизм и кинетика кристаллизации полимеров.
 - 22. ТМК кристаллических полимеров с разной степенью кристалличности.
- 23. Монокристаллы в полимерах ламели, фибриллы, шиш-кебабы, глобулярные монокристаллы.
 - 24. Сферолиты в полимерах.
 - 25. Структура аморфных и ориентированных полимеров.
- 26. Растворители и Пластификаторы для полимеров. Свойства растворов полимеров. Факторы, определяющие растворимость полимеров. «Хорошие», «плохие» и 9-растворители.
- 27. Пластификаторы для полимеров. Совместимость полимера с пластификатором. Критерии совместимости. Теории пластификации полимеров.
- 28. Механизм взаимодействия полимера и жидкости. Качество растворителя. Характеристика набухания полимеров.
- 29. Модули упругости полимеров и их зависимость от различных внутренних и внешних факторов.
- 30. Зависимость ползучести и релаксации напряжения полимеров от внешних и внутренних факторов.
 - 31. Кельвина-Фоггта, Бюргерса.
- 32. Принцип изучения свойств полимеров при приложении к ним переменных механических нагрузок (динамические механические свойства).
- 33. Механические потери в полимерах и их зависимость от внутренних и внешних факторов.
 - 34. Деформационные кривые стеклообразных и высокоэластических полимеров.

- 35. Деформационные кривые закристаллизованных и хрупких полимеров.
- 36. Прочность полимеров и ее зависимость от различных факторов.
- 37. Долговечность полимеров и ее зависимость от напряжения и температуры.
- 38. Механизм разрушения полимеров.
- 39. Технические свойства пластмасс.
- 40. Диэлектрическая поляризация полимеров и ее механизм. Диэлектрическая проницаемость и диэлектрические потери в полимерах.
- 41. Электреты. Электризуемость И электропроводность полимеров. Дугостойкость и трекингостойкость полимеров. Прочность на пробой.
 - 42. Теплофизические свойства полимеров.

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Книгообеспеченность

Наименование литературы:	Год	КНИГООБЕСІ	ТЕЧЕННОСТЬ
автор, название, вид издания, издательство	издания	Количество эк- земпляров изда- ний в библиоте- ке ВлГУ в соот- ветствиии с ФГОС ВО	Наличие в элек- тронной биб- лиотеке ВлГУ
1	2	3	4
Основная лите	ература		
1. Семчиков, Юрий Денисович. Высокомолекулярные соединения: учебник для вузов по специальности 011000 "Химия" и направлению 510500 "Химия" / Ю. Д. Семчиков. — 2-е изд., стер. — Москва: Академия, 2005. — 367 с.	2005	24	
2. Козлов, Николай Андреевич. Физика высокомолекулярных соединений: конспект лекций / Н. А. Козлов; Владимирский политехнический институт (ВПИ), Кафедра технологии переработки пластмасс. — Владимир: Владимирский политехнический институт (ВПИ), 1979. — 56 с.	1979	7	
3. Козлов, Николай Андреевич . Лабораторные работы по дисциплине "Высокомолекулярные соединения": методические указания: в 2 ч. / сост. Н. А. Козлов; Владимирский государственный университет (ВлГУ); Кафедра технологии переработки пластмасс. — Владимир: Владимирский государственный университет (ВлГУ), 2004-2006. Ч. 1. — 2004. — 47 с.	2004		http://e.lib.vlsu. ru/bitstream/12 3456789/850/3/ 00330.pdf>
4. Козлов, Николай Андреевич . Лабораторные работы по дисциплине "Высокомолекулярные соединения": методические указания: в 2 ч. / сост. Н. А. Козлов; Владимирский государственный университет (ВлГУ); Кафедра технологии переработки пластмасс. — Владимир: Владимирский государственный университет (ВлГУ), 2004-2006. Ч. 2. — 2006. — 67 с.	2006		http://e.lib.vlsu. ru/bitstream/12 3456789/1487/3 /00361.pdf>.
Дополнительная		45	
1. Козлов, Николай Андреевич. Контрольные за-	1998	45	

дания и вопросы для самостоятельной работы студентов по дисциплине "Физико-химия полимеров", раздел "Свойства полимеров" / сост. Н. А. Козлов, Л. В. Фанова; Владимирский государственный университет (ВлГУ), Кафедра технологии переработки университет (ВлГУ), 1998. — 48 с.			
2. Браун, Дитрих. Практическое руководство по синтезу и исследованию свойств полимеров : пер. с нем. / Д. Браун, Г. Шердрон, В. Керн ; под ред. В. П. Зубова .— Москва : Химия, 1976 .— 256 с.	1976	4	
3. Торопцева, Антонина Михайловна. Лабораторный практикум по химии и технологии высокомолекулярных соединений: учебное пособие для химико-технологических специальностей вузов / А.М. Торопцева, К.В. Белогородская, В.М. Бондаренко; под ред. А.Ф. Николаева. — Ленинград: Химия, 1972. — 415 с.	1972	13	

7.2. Периодические издания

- 1. Журнал «Высокомолекулярные соединения. Серия С». СПб.: Наука. ISSN (PRINT): 2308-1147 . Импакт-фактор (РИНЦ): 0,848
 - 7.3. Интернет-ресурсы
- 1. https://pcgroup.ru/blog/polimery-svojstva-i-primenenie/
- 2. https://www.plastmass-group.net/
- 3. http://lkmprom.ru/clauses/issledovaniya/osnovnye-svoystva-polimerov/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа. Лабораторные работы проводятся в специализированной лаборатории химии и физики полимеров.

Лаборатория химии и физики полимеров оснащена следующим оборудованием: шкаф вытяжной, весы аналитические, весы технические, установка Геплера для определения термомеханического поведения полимеров, прибор для измерения влажности материалов testo 606-2, автоматический потенциометрический титратор «Титрион-Профи», автотрансформаторы, наборы химической посуды и реактивов, пресс гидравлический, металлические пресс-формы, комплект химической посуды и реактивы.

Перечень лицензионного программного обеспечения: Windows 7; Microsoft Open License 62857078; MS Office 2010 Microsoft Open License 65902316

Рабочую программу составил: к.т.н., доцент Ермолаева Е.В.
Рецензент: ген.директор ООО «ЭластПУ» Романов С.В.
Программа рассмотрена и одобрена на заседании кафедры химических технологий протокол № от
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 18.03.01 «Химическая технология» протокол №

Репензия

на рабочую программу дисциплины «Химия и физика полимеров» для студентов направления 18.03.01 «Химическая технология» (автор доцент Ермолаева Е.В.)

На рецензирование представлена рабочая программа дисциплины «Химия и физика полимеров» доцента кафедры химических технологий Ермолаевой Е.В. для студентов направления 18.03.01 «Химическая технология».

В рабочей программе четко сформулирована цель освоения студентами данной дисциплины и задачи, выполнение которых позволяет достигнуть обозначенную цель.

В соответствии с ФГОС ВО в программе перечислены компетенции, в формировании которых участвует данная дисциплина. Определены и четко согласованы с соответствующими компетенциями результаты образования.

Объем дисциплины (в зачетных единицах и часах) соответствует учебному плану направления. Тематический план дисциплины представлен с разбиением по неделям, с указанием количества всех форм занятий, в том числе в интерактивной форме. Перечислены контрольные мероприятия текущей и промежуточной аттестации по итогам освоения дисциплины. В части содержания дисциплины тематический план представлен достаточно подробно, что позволяет составить представление о материале лекционного курса, тематике лабораторных занятий и сделать вывод о том, что содержание дисциплины полностью соответствует современным тенденциям развития науки и техники в области химических технологий.

В рабочей программе содержатся оценочные средства в виде вопросов к зачету, экзамену, тематики лабораторных работ, которые позволяют преподавателю объективно оценить результаты освоения дисциплины в процессе и в конце обучения. Даны методические указания и учебно-методическое обеспечение самостоятельной работы студента как неотъемлемой составной части образовательного процесса.

Описаны технологии обучения, применяемые автором для активизации образовательного процесса для всех форм занятий: лекций, лабораторных занятий, самостоятельной работы.

В рабочей программе перечислена учебно-методическая литература, рекомендованная автором для изучения дисциплины: основная, которая формирует основные результаты образования и заявленные компетенции, и дополнительная (в том числе интернет-ресурсы), необходимая для более глубокого освоения основных положений дисциплины и развития творческих и интеллектуальных способностей студентов.

Заявленное в рабочей программе материально-техническое обеспечение позволяет реализовать заявленные задачи дисциплины и достигнуть поставленную цель.

Таким образом, представленная рабочая программа дисциплины «Химия и физика полимеров» доцента кафедры химических технологий Ермолаевой Е.В. составлена в полном соответствии с требованиями ФГОС ВО и может быть использована при подготовке бакалавров направления 18.03.01 «Химическая технология».