Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт архитектуры, строительства и энергетики Кафедра химических технологий

Пикалов Евгений Сергеевич

ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Методические указания к практическим занятиям по дисциплине «Процессы и аппараты химической технологии» для студентов ВлГУ, обучающихся по направлению 18.03.01 -Химическая технология

Данные методические указания включают рекомендации по проведению практических занятий и варианты заданий, выполняемых на практических занятиях по дисциплине «Процессы и аппараты химической технологии» для студентов направления 18.03.01. «Химическая технология» ВлГУ.

Методические указания составлены на основе требований ФГОС ВО и ОПОП направления 18.03.01. «Химическая технология», рабочей программы дисциплины «Процессы и аппараты химической технологии».

Рассмотрены и одобрены на заседании УМК направления 18.03.01 «Химическая технология» Протокол №1 от 05.09.2016 г.

ОГЛАВЛЕНИЕ

Практическое занятие 1. Разработка технологических схем для проведения процессов
химической технологии
Практическое занятие 2. Расчет физических и тепловых свойств жидкостей, газов и
паров
Практическое занятие 3. Определение гидравлических сопротивлений установок и
аппаратов
Практическое занятие 4. Расчет и выбор оборудования для обеспечения жидкостных
и газовых потоков в установках
Практическое занятие 5. Определение плотности теплового потока через плоские и
цилиндрические стенки. Определение коэффициентов теплоотдачи и
теплопередачи
Практическое занятие 6. Расчёт поверхности теплообмена и выбор теплообменных ап-
паратов
Практическое занятие 7. Расчет материального баланса процесса ректификации
Практическое занятие 8. Определение скорости пара и диаметра колонных аппаратов
Практическое занятие 9. Гидравлический расчет тарелок в колонных аппаратах
Практическое занятие 10. Определение флегмового числа и числа теоретических
тарелок для проведения бинарной ректификации различных смесей
Практическое занятие 11. Тепловой расчет установок с колонными аппаратами
Практическое занятие 12. Определение начальных параметров сушильного агента
Практическое занятие 12. Определение начальных параметров сушильного агента
Определение температур мокрого термометра в начале и в конце процесса сушки
Практическое занятие 14. Определение основных размеров сушильного барабана
Практическое занятие 15. Расчет и выбор аппаратов для очистки отработанного
сущильного агента

Практическое занятие 1. Разработка технологических схем для проведения процессов химической технологии

Цель практического занятия: получить навык составления и разработки принципиальных технологических схем.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия преподаватель проводит беседу со студентами по тематике занятия для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 15 – 20 минут, преподаватель объясняет студентам общие принципы цели и задачи составления и разработки технологических схем.

Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задание по составлению блок-схемы в качестве примера, которое он выполняет у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык составления блок-схем и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по разработке и составлению блок-схемы. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение основных принципов составления технологических схем и выполнение задания по составлению блок-схемы отводится примерно 25 – 30 минут.

По завершении преподаватель объясняет студентам методику выполнения самой технологической схемы на основе выполненной блок-схемы и предъявляемые к технологическим схемам требования. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задание в качестве примера, которое он

выполняет у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык выполнения технологических схем и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по выполнению принципиальной технологической схемы. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики выполнения принципиальных технологических схем и выполнение заданий отводится примерно 25 – 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это

позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

На данном занятии студенту необходимо на основе заданного ему процесса вначале составить блок-схему технологических операций и потоков, а затем на ее основе выполнить принципиальную технологическую схему с отображением применяемого оборудования и вспомогательных устройств (вентилей, заслонок, гидрозатворов и т.д.). Выбор типов оборудования необходимо обосновать.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может задать следующие исходные данные:

Вари-	Процесс	Цель процесса	Дополнительно
ант			
1	сушка	сушка песка	прямоточная схема
2	сушка	сушка доломита	прямоточная схема
3	сушка	сушка глины	противоточная схема
4	сушка	сушка мела	противоточная схема
5	сушка	сушка глины	прямоточная схема
6	ректификация	разделение смеси бензол - толуол	периодическая схема
7	ректификация	разделение смеси этанол - вода	без дефлегмации
8	ректификация	разделение смеси метанол - этанол - вода	-
9	ректификация	разделение смеси вода - уксусная кислота	под вакуумом
10	ректификация	разделение смеси метанол - вода	-
11	дефлегмация	конденсация смеси бензол - толуол	многоходовый*
12	дефлегмация	конденсация смеси этанол - вода	вертикальный
13	дефлегмация	конденсация смеси метанол - вода	-
14	дефлегмация	конденсация смеси вода - уксусная кислота	многоходовый
15	дефлегмация	конденсация смеси бензол - толуол	вертикальный
16	экстракция	извлечение фенола из воды бензолом	распыливающий*
17	экстракция	извлечение ацетона из воды бензолом	тарельчатый
18	экстракция	извлечение диоксан из воды бензолом	насадочный
19	экстракция	извлечение фенола из воды бензолом	пульсационный
20	экстракция	извлечение ацетона из воды бензолом	вибрационный

Примечание: *для дефлегмации и экстракции дополнительно указаны конструктивные особенности основного аппарата (дефлегматора и экстрактора)

Вопросы для обсуждения

- 1. Цели и задачи составления принципиальных технологических схем;
- 2. Схемы движения потоков в химической технологии;
- 3. Типы основных аппаратов и оборудования химической технологии
- 4. Вспомогательное оборудование в установках химико-технологических процессов;
- 5. Вспомогательные устройства в установках химико-технологических процессов;
- 6. Обеспечение условий протекания процессов.

Список литературы

- 1. Самарин О.Д. Гидравлические расчеты инженерных систем: Справоч. пособие. М.: Издательство Ассоциации строительных вузов, 2014. 112 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300140.html) стр. 22-38;
- 2. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: ACB, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 10-16;
- 3. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 18-32.

Практическое занятие 2. Расчет физических и тепловых свойств жидкостей, газов и паров

Цель практического занятия: изучить методику определения свойств веществ и смесей в жидком, газо- и парообразном состоянии.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить

примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета физических и тепловых свойств веществ в различных агрегатных состояниях. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы.

Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету физических и тепловых свойств веществ. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета физических и тепловых свойств веществ, а также решение задач по этой теме отводится примерно 30-40 минут.

По завершении преподаватель объясняет студентам методику расчета физических и тепловых свойств смесей в различных агрегатных состояниях. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету физических и тепловых свойств смесей. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета физических и тепловых свойств смесей и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также

эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.

- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Определить плотность, вязкость, теплоемкость и теплопроводность заданного вещества в жидком и газообразном состояниях при заданных условиях.

Вари-	Вещество	Температура	Условия для		
ант		в жидком со-	газообразного состояния		
		стоянии, °С	Температура, °С	Давление, кПа	
1	бензол	23	125	101,3	
2	толуол	69	92	112,0	
3	этанол	12	80	106,5	
4	метанол	47	78	169,0	
5	уксусная кислота	108	129	101,3	

Вари-	Вещество	Температура	Условия для		
ант		в жидком со-	газообразного состояния		
		стоянии, °С	Температура, °С	Давление, кПа	
6	вода	71	148	192,5	
7	фенол	102	159	109,4	
8	ацетон	61	133	117,0	
9	хлорбензол	43	127	172,2	
10	диоксан	21	137	127,4	
11	анилин	104	88	101,3	
12	серная кислота	53	300	142,1	
13	соляная кислота	73	129	198,2	
14	гидроксид натрия	44	126	151,4	
15	бутанол	87	112	101,3	
16	пропанол	36	100	123,3	
17	этилацетат	105	90	141,0	
18	аммиак	15	110	121,0	
19	сероуглерод	67	155	101,3	
20	нитробензол	85	138	101,3	

2. Определить плотность, вязкость, теплоемкость, теплопроводность и температуру конденсации заданной смеси при заданных условиях. Во всех случаях давление атмосферное. Исходные данные:

Вари-	Компоне	Компонент 1		Компонент 2		
ант	вещество	содержание,	вещество	содержание,	тура, °С	
		масс.%		масс.%		
1	бензол	65	толуол	35	86	
2	этанол	42	вода	58	39	
3	метанол	12	вода	88	82	
4	вода	70	уксус. кислота	30	40	
5	вода	6	фенол	94	118	
6	вода	61	ацетон	39	87	
7	вода	85	бензол	15	142	
8	вода	28	диоксан	72	112	
9	бензол	32	фенол	68	136	
10	хлорбензол	16	ацетон	84	124	

Вари-	Компоне	Компонент 1		Компонент 2		
ант	вещество	содержание,	вещество	содержание,	тура, °С	
		масс.%		масс.%		
11	бензол	51	толуол	49	109	
12	этанол	52	вода	48	135	
13	метанол	18	вода	82	41	
14	вода	66	уксус. кислота	34	74	
15	вода	26	фенол	74	22	
16	вода	57	ацетон	43	25	
17	вода	36	бензол	64	88	
18	вода	47	диоксан	53	33	
19	бензол	25	фенол	75	90	
20	хлорбензол	40	ацетон	60	144	

Вопросы для обсуждения

- 1. Цели и задачи расчета физических и тепловых свойств веществ и смесей;
- 2. Величины, характеризующие физические свойства вещества;
- 3. Величины, характеризующие тепловые свойства вещества;
- 4. Особенности определения свойств веществ в жидком и газообразном состояниях;
- 5. Особенности определения свойств веществ и смесей;
- 6. Конденсация и испарение веществ и смесей.

Список литературы

- 1. Самарин О.Д. Гидравлические расчеты инженерных систем: Справоч. пособие. М.: Издательство Ассоциации строительных вузов, 2014. 112 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300140.html) стр. 8-20;
- 2. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: ACB, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 22-32;
- 3. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 25-38.

Практическое занятие 3. Определение гидравлических сопротивлений установок и аппаратов

Цель практического занятия: изучить методику определения гидравлического сопротивления аппаратов; изучить методику определения гидравлического сопротивления систем трубопроводов.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершении беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета гидравлического сопротивления основных типов аппаратов химической технологии. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету гидравлического сопротивления аппарата. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета гидравлического сопротивления аппаратов и решение задач отводится примерно 25 - 30 минут.

По завершении преподаватель объясняет студентам методику расчета гидравлического сопротивления системы трубопроводов. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве

примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету гидравлического сопротивления системы трубопроводов. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета гидравлического сопротивления системы трубопроводов отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать гидравлическое сопротивление аппарата при заданных условиях. Незаданные параметры выбрать самостоятельно

Исходные данные:

Для дефлегматора (варианты 1 - 5)

Вариант	1	2	3	4	5
Расход паров, кг/с	0,972	0,820	0,642	0,480	0,565
Теплота конденсации смеси, кДж/кг	2252	2458	856	2160	1470
Начальная температура воды, °С	8	12	10	14	16
Конечная температура воды, °С	28	32	26	30	34

Для сушилки кипящего слоя (варианты 6 – 10)

Вариант	1	2	3	4	5
Производительность по высушен-	0,560	0,674	0,488	0,876	0,724
ному материалу, кг/с					
Плотность частиц, кг/м ³	1500	1250	1600	1140	1420
Порозность псевдоожиженного слоя	0,486	0,366	0,624	0,548	0,762
Высота псевдоожиженного слоя, м	0,20	0,15	0,25	0,18	0,22

Для экстракционной колонны (варианты 11 – 15)

Вариант	1	2	3	4	5
Расход исходной смеси, м ³ /ч	5,0	5,5	4,5	6,0	7,0
Расход экстрагента, м ³ /ч	10,0	11,0	9,0	12,0	14,0
Размер капель, мм	6,16	6,48	5,82	7,00	6,12
Диаметр экстрактора, м	0,5	0,6	0,4	0,7	0,8
Рабочая высота экстрактора, м	8,5	8,5	8,0	9,0	9,5

Для ректификационной колонны (варианты 16 – 20)

Вариант	1	2	3	4	5
Производительность по дистилляту, т/ч	10	8	6,5	7,2	5,6
Диаметр колонны, м	1,8	1,6	1,4	1,6	1,2
Флегмовое число	1,78	1,46	1,82	1,66	1,72
Средняя мольная масса жидкости, кг/кмоль	81,4	76,4	86,2	90,1	82,2
Мольная масса дистиллята, кг/кмоль	78	68	74	86	77
Плотность жидкости, кг/м ³	800	850	740	920	820
Поверхностное натяжение жидкости, ·10-3 Н/м	20,5	22,2	24,6	18,8	20,0

2. Рассчитать гидравлическое сопротивление системы трубопровода для перекачивания заданной жидкости с расходом V при температуре t. Длина трубопровода l, количество колен n_1 , количество нормальных вентилей n_2 , количество внезапных расширений n_3 . Концентрацию жидкости принять равной $100\,\%$.

Вариант	жидкость	V, м ³ /ч	t, °C	1, м	n ₁ , шт	п2, ШТ	п3, ШТ
1	Вода	11	39	24	8	3	3
2	Серная кислота	10	28	26	1	4	2
3	Метанол	21	43	22	5	1	4
4	Бензол	7	19	30	6	4	3
5	Диэтиловый эфир	5	23	23	8	4	1
6	Вода	22	36	19	3	2	4
7	Толуол	25	35	20	8	4	4
8	Этанол	6	18	25	1	4	3
9	Хлорбензол	18	12	10	2	1	2
10	Уксусная кислота	9	15	11	8	2	2
11	Хлороформ	15	21	18	7	1	4
12	Вода	8	13	14	1	3	3
13	Фенол	20	14	27	5	4	1
14	Этилацетат	23	42	29	1	2	2
15	Октан	12	29	16	7	4	4
16	Муравьиная кислота	19	41	15	3	2	3
17	Вода	13	25	28	8	2	2
18	Гидроксид натрия	14	44	13	2	4	1

Вариант	жидкость	V, м ³ /ч	t, °C	1, м	n ₁ , шт	n2, шт	n 3, ШТ
19	Олеум, 20%	24	16	12	8	2	3
20	Вода	17	23	21	3	3	4

Вопросы для обсуждения

- 1. Причины возникновения гидравлических сопротивлений;
- 2. Гидравлические сопротивления трения;
- 3. Местные гидравлические сопротивления;
- 4. Зависимость гидравлических сопротивлений от режима движения жидкости;
- 5. Факторы, влияющие на гидравлические сопротивления;
- 6. Способы снижения гидравлических сопротивлений.

Список литературы

- 1. Самарин О.Д. Гидравлические расчеты инженерных систем: Справоч. пособие. М.: Издательство Ассоциации строительных вузов, 2014. 112 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300140.html) стр. 39-47;
- 2. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: ACB, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 34-46;
- 3. Кудинов В.А., Карташов Э.М. Гидравлика: Учеб. пособие М.: Абрис, 2012. 199 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN978543 7200452.html) стр. 62-76.

Практическое занятие 4. Расчет и выбор оборудования для обеспечения жидкостных и газовых потоков в установках

Цель практического занятия: изучить методику расчета и выбора насосов; изучить методику расчета и выбора компрессоров.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета и выбора насоса. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету и выбору насоса. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета и выбора насоса и решение задач отводится примерно $25-30\,\mathrm{Muhyt}$.

По завершении преподаватель объясняет студентам методику расчета и выбора компрессора. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету и выбору компрессора. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета высоты псевдоожиженного слоя и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а

полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.

- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения залач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать и выбрать насос для подачи охлаждающей воды в дефлегматор для конденсации заданной смеси паров. Расход паров G_1 , массовая концентрация легколетучего компонента в паре \overline{X}_0 , Начальная температура охлаждающей воды $t_{2\text{H}}$, конечная температура воды $t_{2\text{K}}$. Длина трубопровода на линии всасывания l_1 , длина трубопровода на линии нагнетания l_2 , геометрическая высота подъема воды $h_{\text{геом}}$.

Вари-	Смесь	G_1 ,	\overline{X}_0 , %	t _{2H} , °C	t _{2k} , °C	l ₁ , м	l ₂ , м	h _{геом} ,
ант		т/ч						M
1	бензол - толуол	5,3	88,4	21	38	24	25	17

Вари-	Смесь	G ₁ ,	\overline{X}_0 , %	t _{2н} , °С	t _{2k} , °C	l ₁ , м	l ₂ , м	h _{геом} ,
ант		т/ч						M
2	этанол - вода	4,2	88,3	19	28	20	40	15
3	метанол - вода	3,9	89,6	10	33	14	36	16
4	вода - уксус. кислота	8,0	87,4	27	35	25	26	18
5	бензол - толуол	5,9	89,4	23	29	18	34	14
6	этанол - вода	3,2	85,0	14	36	27	27	27
7	метанол - вода	6,3	95,0	9	32	23	35	32
8	вода - уксус. кислота	6,5	94,2	28	37	11	37	21
9	бензол - толуол	7,8	92,3	13	31	21	33	23
10	этанол - вода	7,5	87,5	17	34	19	38	19
11	метанол - вода	6,9	90,3	15	30	16	32	20
12	вода - уксус. кислота	7,4	85,6	11	35	17	39	29
13	бензол - толуол	3,7	93,3	8	30	30	30	34
14	этанол - вода	5,1	88,6	24	29	10	29	13
15	метанол - вода	3,4	87,0	20	38	26	31	11
16	вода - уксус. кислота	4,7	88,9	12	31	29	28	35
17	бензол - толуол	6,2	94,3	18	33	13	34	31
18	этанол - вода	3,5	86,1	25	37	15	31	33
19	метанол - вода	7,7	85,1	22	34	22	29	30
20	вода - уксус. кислота	3,0	86,9	16	36	12	33	22

2. Рассчитать и выбрать компрессор для подачи воздушной смеси в количестве V разделение в абсорбер. Содержание извлекаемого из воздуха компонента на входе в абсорбер $y_{\text{н}}$, на выходе $y_{\text{к}}$. Температура в абсорбере t_{a} , давление P_{a} . В системе трубопровода между компрессором и абсорбером предусмотреть регулировочное устройство.

Вариант	Извлекаемый	V , M^3/c	y _н , %	ук, %	ta, °C	Ра, кПа
	компонент					
1	аммиак	5	6	0,9	25	141,5
2	хлористый водород	8	8	1,2	31	162,5
3	аммиак	6	4	0,6	37	128,9
4	хлористый водород	12	6	0,9	29	144,6
5	аммиак	12	8	1,2	34	150,3

Вариант	Извлекаемый	V, M ³ /c	ун, %	ук, %	ta, °C	Ра, кПа
	компонент					
6	хлористый водород	4	5	0,75	21	128,6
7	аммиак	10	7	1,05	30	145,7
8	хлористый водород	7	6	0,9	29	125,2
9	аммиак	9	8	1,2	35	120,5
10	хлористый водород	11	4	0,6	28	143,7
11	аммиак	12	6	0,9	23	127,2
12	хлористый водород	5	8	1,2	20	139,6
13	аммиак	8	5	0,75	31	132,5
14	хлористый водород	6	7	1,05	25	122,8
15	аммиак	12	6	0,9	22	128,4
16	хлористый водород	12	8	1,2	27	140,6
17	аммиак	4	4	0,6	26	128,1
18	хлористый водород	10	6	0,9	32	152,1
19	аммиак	7	8	1,2	33	140,0
20	хлористый водород	9	5	0,75	24	144,0

Вопросы для обсуждения

- 1. Вспомогательное оборудование химико-технологических установок;
- 2. Классификация, параметры работы и характеристики насосов;
- 3. Классификация, параметры работы и характеристики компрессоров;
- 4. Геометрическая высота подъема жидкости;
- 5. Степень сжатия газа в компрессорах;
- 6. Термодинамика компрессорного процесса;

Список литературы

- 1. Самарин О.Д. Гидравлические расчеты инженерных систем: Справоч. пособие. М.: Издательство Ассоциации строительных вузов, 2014. 112 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300140.html) стр. 86-102;
- 2. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: АСВ, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 202-224;

3. Кудинов В.А., Карташов Э.М. Гидравлика: Учеб. пособие – М.: Абрис, 2012. - 199 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN978543 7200452.html) – стр. 122-136.

Практическое занятие 5. Определение плотности теплового потока через плоские и цилиндрические стенки. Определение коэффициентов теплоотдачи и теплопередачи

Цель практического занятия: изучить методику определения теплового потока через плоские стенки; изучить методику определения коэффициентов теплоотдачи и теплопередачи.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета теплового потока через плоские стенки. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету теплового потока через плоские стенки. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики теплового потока через плоские стенки и решение задач отводится примерно 25-30 минут.

По завершении преподаватель объясняет студентам методику определения коэффициентов теплоотдачи и теплопередачи. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по определения коэффициентов теплоотдачи и теплопередачи. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики определения коэффициентов теплоотдачи и теплопередачи и решение задач отводится примерно 25 - 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совмест-

ному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Определить тепловой поток через плоскую стенку из двух слоев, если температуры по обе стороны стенки равны t_1 и t_2 . Коэффициенты теплоотдачи по обе стороны стенки равны α_1 и α_2 . Толщины слоев равны δ_1 и δ_2 , а коэффициенты теплопроводности слоев λ_1 и λ_2 . Определить температуру между слоями стенки, если режим теплообмена стационарный.

Вари-	t ₁ , °C	t ₂ , °C	α_1 ,	α_2 ,	δ_1 , mm	δ_2 , MM	λ_1 ,	λ_2 ,
ант			$B_T/(M^2 \cdot K)$	$BT/(M^2 \cdot K)$			Вт/(м·К)	Вт/(м·К)
1	67	22	698	1171	41	73	1,56	0,81
2	57	23	561	952	27	39	1,26	0,78
3	81	20	935	1195	37	45	0,99	0,82
4	87	21	1864	846	45	38	1,06	0,26
5	59	22	1888	1090	29	58	1,11	0,73
6	50	25	1927	1100	32	79	0,64	0,38
7	74	22	527	820	26	57	0,80	0,68
8	54	25	762	1141	31	78	1,07	0,46
9	86	25	1972	1119	44	40	0,58	0,83
10	69	20	1361	907	49	37	0,92	0,64
11	76	20	776	801	46	43	0,46	0,50
12	73	23	970	895	22	76	1,05	0,86
13	68	20	1035	939	35	72	0,47	0,87
14	51	24	1603	1024	30	77	1,40	0,88
15	89	25	599	868	21	69	0,52	0,43
16	77	24	1118	959	36	56	1,47	0,53

Вари-	t ₁ , °C	t ₂ , °C	α1,	α2,	δ_1 , mm	δ ₂ , мм	λ_1 ,	λ_2 ,
ант			$BT/(M^2 \cdot K)$	$B\tau/(M^2 \cdot K)$			Вт/(м·К)	Вт/(м·К)
17	63	20	505	926	50	41	1,23	0,55
18	71	21	856	880	48	34	1,27	0,89
19	53	22	383	826	23	53	0,42	0,57
20	55	20	1183	1102	40	70	1,20	0,28

2. Определить коэффициенты теплоотдачи и теплопередачи для теплообмена заданной смеси паров и охлаждающей воды. Вода течет по стальным трубкам диаметром 25 мм и толщиной стенки 2 мм. Число трубок равно п. Температура воды на входе в трубки $t_{\rm B1}$, на выходе из трубок $t_{\rm 2B}$. Смесь паров конденсируется при температуре t. Скорость течения воды равна w. Исходные данные:

Вари-	Смесь	п, шт	t _{B1} , °C	t _{2B} , °C	t, °C	w, m/c
ант						
1	бензол-толуол	37	8	25	126	0,32
2	этанол-вода	62	18	28	122	0,54
3	метанол-вода	111	17	26	105	0,59
4	вода-уксус. кислота	257	15	27	126	0,40
5	бензол-толуол	465	16	32	114	0,64
6	этанол-вода	747	14	31	110	0,89
7	метанол-вода	1083	11	30	92	0,38
8	вода-уксус. кислота	56	18	37	114	0,48
9	бензол-толуол	100	10	32	93	0,46
10	этанол-вода	240	17	37	110	0,78
11	метанол-вода	442	12	22	98	0,36
12	вода-уксус. кислота	718	13	26	102	0,32
13	бензол-толуол	1048	10	23	125	0,50
14	этанол-вода	206	17	32	122	0,42
15	метанол-вода	404	18	34	128	0,26
16	вода-уксус. кислота	666	8	28	114	0,52
17	бензол-толуол	986	10	26	118	0,24
18	этанол-вода	196	18	34	108	0,85
19	метанол-вода	384	12	30	96	0,74
20	вода-уксус. кислота	642	16	36	98	0,88

Вопросы для обсуждения

- 1. Теплоотдача и теплопередача;
- 2. Способы распространения тепла внутри сред и тел;
- 3. Коэффициенты теплоотдачи и теплопередачи;
- 4. Величины, характеризующие способность веществ и материалов участвовать в теплообмене;
 - 5. Факторы, влияющие на теплообмен;
 - 6. Тепловой поток через стенки различных конфигураций.

Список литературы

- 1. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: АСВ, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 54-68;
- 2. Ягов В.В. Теплообмен в однофазных средах и при фазовых превращениях: учебное пособие для вузов М.: Издательский дом МЭИ, 2014. 542 с. (доступ по интернет-ссылке: http://www.studentlibrary.ru/book/MPEI220.html) стр. 76-90;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 36-48.

Практическое занятие 6. Расчёт поверхности теплообмена и выбор теплообменных аппаратов

Цель практического занятия: изучить методику расчета ориентировочной и требуемой поверхности теплообмена; изучить методику выбора теплообменного аппарата.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить

примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета ориентировочной поверхности теплообмена. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по ориентировочной поверхности теплообмена. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой. По результатам расчета каждый студент выбирает теплообменный аппарат.

На объяснение методики ориентировочной поверхности теплообмена и решение задач отводится примерно 25 – 30 минут.

По завершении преподаватель объясняет студентам методику расчета требуемой поверхности теплообмена. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету требуемой поверхности теплообмена. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета требуемой поверхности теплообмена и решение задач отводится примерно 25 – 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а

полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.

- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения залач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Определить ориентировочную поверхность теплообмена аппарата для конденсации заданной смеси паров в количестве G_1 , если массовая концентрация легколетучего компонента в паре равна X_0 , начальная температура охлаждающей воды t_{1h} , конечная — t_{1k} . Незаданные параметры принимаются студентом самостоятельно. По результатам расчета выбрать теплообменник.

Вариант	Смесь	G ₁ , т/ч	Х ₀ , масс. %	t _{1н} , °С	t _{1k} , °C
1	бензол - толуол	9,6	98,0	16	31
2	этанол - вода	7,2	92,5	18	35

Вариант	Смесь	G ₁ , т/ч	X ₀ , macc. %	t _{1H} , °C	t _{1k} , °C
3	хлороформ - бензол	6,4	89,0	15	29
4	вода - уксус. кислота	5,8	94,5	19	37
5	бензол - толуол	5,5	91,8	13	33
6	этанол - вода	6,3	95,3	9	43
7	метанол - вода	9,2	89,2	17	36
8	вода - уксус. кислота	7,2	94,5	12	41
9	бензол - толуол	8,7	95,0	10	46
10	этанол - вода	6,0	93,0	18	45
11	хлороформ - бензол	5,1	89,7	8	37
12	вода - уксус. кислота	5,6	90,9	15	38
13	бензол - толуол	5,4	97,6	20	32
14	этанол - вода	7,8	95,4	16	30
15	метанол - вода	6,8	90,2	19	44
16	вода - уксус. кислота	10,0	97,7	11	34
17	бензол - толуол	9,7	92,0	14	42
18	этанол - вода	7,3	93,2	12	40
19	хлороформ - бензол	8,2	90,6	8	35
20	вода - уксус. кислота	6,4	94,8	18	31

2. По результатам решения первой задачи провести расчет требуемой поверхности теплообмена. При необходимости провести перерасчет ориентировочной поверхности таким образом, чтобы запас площади поверхности был не более 15 %. Определить количество перегородок внутри теплообменника и расстояние между ними, диаметр штуцеров для трубного и межтрубного пространства.

Вопросы для обсуждения

- 1. Области применения теплообменных аппаратов в химической технологии.
- 2. Определение основных размеров теплообменных аппаратов;
- 3. Классификация теплообменных аппаратов;
- 4. Конструкция и принцип действия кожухотрубчатых теплообменников;
- 5. Особенности горизонтальных и вертикальных кожухотрубчатых теплообменников;
- 6. Особенности многоходовых кожухотрубчатых теплообменников;

Список литературы

- 1. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: АСВ, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 69-76;
- 2. Ягов В.В. Теплообмен в однофазных средах и при фазовых превращениях: учебное пособие для вузов М.: Издательский дом МЭИ, 2014. 542 с. (доступ по интернет-ссылке: http://www.studentlibrary.ru/book/MPEI220.html) стр. 91-108;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 49-60.

Практическое занятие 7. Расчет материального баланса процесса ректификации

Цель практического занятия: изучить методику расчета материального баланса ректификационной колонны; изучить методику вывода уравнений рабочих линий ректификационной колонны.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета материального баланса ректификации. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык

расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету материального баланса ректификации. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета материального баланса ректификации и решение задач отводится примерно 25-30 минут.

По завершении преподаватель объясняет студентам методику вывода уравнений рабочих линий ректификационной колонны. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по выводу уравнений рабочих линий ректификационной колонны. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики вывода уравнений рабочих линий ректификационной колонны и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.

3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать количество дистиллята и кубового остатка, получаемого при ректификации заданной бинарной смеси. Выразить состав исходной смеси, дистиллята и кубового остатка в мольных долях. Производительность ректификационной колонны G_F , содержание легколетучего компонента в исходной смеси x_F , в дистилляте x_D , в кубовом остатке x_W .

Вариант	Смесь	G _F , т/ч	x _F , macc. %	XD, Macc. %	xw, macc. %
1	бензол - толуол	38	44	94	6
2	этанол - вода	36	55	98	5
3	метанол - вода	34	32	92	7
4	вода - уксус. кислота	32	42	91	8
5	бензол - толуол	22	39	85	12
6	этанол - вода	26	51	98	2
7	метанол - вода	28	43	95	5
8	вода - уксус. кислота	18	56	87	3
9	бензол - толуол	14	35	88	11
10	этанол - вода	12	45	94	7
11	метанол - вода	10	33	91	9

Вариант	Смесь	G _F , т/ч	XF, Macc. %	XD, Macc. %	хw, масс. %
12	вода - уксус. кислота	16	54	88	7
13	бензол - толуол	20	36	89	8
14	этанол - вода	30	60	95	5
15	метанол - вода	15	57	89	7
16	вода - уксус. кислота	25	47	89	11
17	бензол - толуол	35	38	92	5
18	этанол - вода	32	37	88	4
19	метанол - вода	16	58	90	4
20	вода - уксус. кислота	22	59	89	11

2. По результатам решения первой задачи и данным о равновесном составе заданной смеси построить фазовую диаграмму, определить рабочее флегмовое число и вывести уравнения рабочих линий для верхней и нижней частей ректификационной колонны.

Вопросы для обсуждения

- 1. Общие принципы ректификации;
- 2. Дефлегмация и ее влияние на параметры процесса;
- 3. Определение рабочего флегмового числа;
- 4. Материальный баланс ректификации;
- Вывод уравнений рабочих линий для нижней и верхней частей ректификационной колонны.
 - 6. Определение параметров процесса по фазовым диаграммам.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 215-240;
- 2. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 240-276;
- 3. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 120-139.

Практическое занятие 8. Определение скорости пара и диаметра колонных аппаратов

Цель практического занятия: изучить методику определения температуры и свойств пара и жидкости в ректификационной колонне; изучить методику определения скорости пара и диаметра колонных аппаратов.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета свойств пара и жидкости по высоте ректификационной колонны. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету свойств пара и жидкости по высоте ректификационной колонны. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета свойств пара и жидкости по высоте ректификационной колонны и решение задач отводится примерно 25 – 30 минут.

По завершении преподаватель объясняет студентам методику определения скорости пара и диаметра колонны. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его

желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по определению скорости пара и диаметра колонны. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики определения скорости пара и диаметра колонны и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Определить для пара и жидкости средние концентрации, средние мольные массы, средние температуры и среднюю плотность. Производительность колонны G_F , содержание легколетучего компонента в исходной смеси x_F , в дистилляте x_D , в кубовом остатке x_W .

Вариант	Смесь	G _F , т/ч	x _F , macc. %	x _D , macc. %	xw, macc. %
1	бензол - толуол	12,2	45	95	6
2	этанол - вода	17,8	41	93	5
3	метанол - вода	8,3	59	89	9
4	вода - уксус. кислота	9,5	51	98	10
5	бензол - толуол	15,0	58	89	6
6	этанол - вода	11,2	54	93	10
7	метанол - вода	11,5	47	95	8
8	вода - уксус. кислота	12,6	43	96	7
9	бензол - толуол	10,4	53	90	5
10	этанол - вода	12,1	40	94	8
11	метанол - вода	14,7	48	94	4
12	вода - уксус. кислота	12,7	56	97	10
13	бензол - толуол	14,2	57	92	5
14	этанол - вода	12,5	60	93	4
15	метанол - вода	6,3	50	88	10
16	вода - уксус. кислота	12,0	42	95	5
17	бензол - толуол	14,3	49	98	8
18	этанол - вода	16,3	46	97	7
19	метанол - вода	15,2	52	91	6
20	вода - уксус. кислота	9,6	55	89	8

2. По результатам решения первой задачи определить скорость пара и диаметр колонны, если расстояние между тарелками равно h.

Исходные данные:

Вариант	Тип тарелки	h, мм	Вариант	Тип тарелки	h, мм
1	ситчатые	300	11	колпачковые	300
2	колпачковые	500	12	колпачковые	500
3	колпачковые	300	13	ситчатые	300
4	ситчатые	500	14	ситчатые	500
5	ситчатые	300	15	колпачковые	300
6	колпачковые	500	16	колпачковые	500
7	колпачковые	300	17	ситчатые	300
8	ситчатые	500	18	ситчатые	500
9	ситчатые	300	19	колпачковые	300
10	колпачковые	500	20	колпачковые	500

Вопросы для обсуждения

- 1. Конструкция тарельчатых ректификационных колонн;
- 2. Верхняя и нижняя части ректификационной колонны;
- 3. Ситчатые тарелки и их особенности;
- 4. Колпачковые тарелки и их особенности;
- 5. Режимы работы ректификационной работы;
- 6. Параметры работы ректификационных колонн.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 215-240;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 120-139;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 240-276.

Практическое занятие 9. Гидравлический расчет тарелок в колонных аппаратах

Цель практического занятия: изучить методику расчета гидравлического сопротивления тарелок; изучить методику проверки равномерности работы тарелок.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета гидравлического сопротивления тарелок. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету гидравлического сопротивления тарелок. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета гидравлического сопротивления тарелок и решение задач отводится примерно 25-30 минут.

По завершении преподаватель объясняет студентам методику проверки равномерности работы тарелок. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают

начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по проверке равномерности работы тарелок. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики проверки равномерности работы тарелок и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это

позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Провести гидравлический расчет тарелок в колонне для ректификации смеси бензола и толуола, если диаметр отверстий равен d_0 , высота сливной перегородки равна 40 мм, свободное сечение тарелки составляет F_c , скорость пара равна w, температура в верхней части колонны $88\,^{\circ}$ C, а в нижней $103\,^{\circ}$ C. Расход исходной смеси G_F , расход дистиллята G_D , флегмовое число равно 1,78. Незаданные параметры выбрать самостоятельно.

Вариант	тип тарелок	G _F , т/ч	G _D , т/ч	d ₀ , мм	F _c , %	w, m/c
1	ситчатые	13,5	7,5	3	5,30	0,47
2	колпачковые	13,9	5,3	4	10,53	0,60
3	ситчатые	10,3	5,9	5	5,65	0,35
4	колпачковые	12,5	5,5	8	19,20	0,39
5	ситчатые	8,2	4,3	4	4,40	0,64
6	колпачковые	12,9	5,5	5	14,50	0,51
7	ситчатые	9,3	4,0	3	4,85	0,49
8	колпачковые	13,3	6,7	8	17,70	0,58
9	ситчатые	14,0	6,8	8	5,06	0,57
10	колпачковые	13,2	7,4	5	16,70	0,56
11	ситчатые	12,0	6,2	3	4,25	0,63
12	колпачковые	15,3	7,6	5	15,00	0,41
13	ситчатые	15,2	8,1	8	6,90	0,43
14	колпачковые	11,1	5,8	4	17,00	0,55
15	ситчатые	11,7	5,2	3	4,88	0,42
16	колпачковые	12,4	6,4	8	4,20	0,44
17	ситчатые	9,9	4,7	5	18,00	0,54
18	колпачковые	14,7	7,9	4	4,70	0,61
19	ситчатые	10,6	4,5	8	18,70	0,53
20	колпачковые	15,9	7,7	5	4,15	0,48

2. По результатам решения первой задачи определить оптимальное расстояние между тарелками и проверить равномерность работы тарелок при заданной скорости пара. При необходимости подобрать оптимальную скорость пара.

Вопросы для обсуждения

- 1. Гидравлическое сопротивление аппаратов;
- 2. Тарелки колонных аппаратов, их преимущества и недостатки;
- 3. Режимы работы тарельчатых колонн;
- 4. Особенности провальных тарелок и тарелок с переточными устрйоствами;
- 5. Конструкция и принцип действия ситчатых тарелок;
- 6. Конструкция и принцип действия колпачковых тарелок.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 215-240;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 120-139;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 240-276.

Практическое занятие 10. Определение флегмового числа и числа теоретических тарелок для проведения бинарной ректификации различных смесей

Цель практического занятия: изучить методику определения рабочего флегмового числа и числа ступеней изменения концентрации; изучить методику определения числа тарелок в ректификационной колонне.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику определения рабочего флегмового числа и числа ступеней изменения концентрации. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по определению рабочего флегмового числа и числа ступеней изменения концентрации. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики определения рабочего флегмового числа и числа ступеней изменения концентрации и решение задач отводится примерно 25 – 30 минут.

По завершении преподаватель объясняет студентам методику определения числа тарелок в ректификационных колоннах. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по определению числа тарелок в ректификационных колоннах. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики определения числа тарелок в ректификационных колоннах и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Определить рабочее флегмовое число и число ступеней изменения концентрации в колонне для ректификации заданной бинарной смеси. Производительность колонны G_F , содержание легколетучего компонента в исходной смеси x_F , в дистилляте x_D , в кубовом остатке x_W . Коэффициент полезного действия тарелок принять равным η .

Вариант	Смесь	G _F , т/ч	x _F , macc. %	х _D , масс. %	xw, macc. %
1	бензол - толуол	10,5	53	94	10
2	этанол - вода	7,7	51	90	5
3	метанол - вода	7,5	55	98	5
4	вода - уксус. кислота	12,1	54	89	12
5	бензол - толуол	17,8	53	94	9
6	этанол - вода	7,6	45	90	11
7	метанол - вода	11,3	46	94	9
8	вода - уксус. кислота	15,2	45	95	6
9	бензол - толуол	12,4	54	91	8
10	этанол - вода	9,5	50	88	8
11	метанол - вода	8,6	54	88	4
12	вода - уксус. кислота	11,4	55	98	6
13	бензол - толуол	6,5	46	93	11
14	этанол - вода	13,9	48	88	7
15	метанол - вода	10,8	53	88	9
16	вода - уксус. кислота	14,7	49	95	6
17	бензол - толуол	12,9	50	96	11
18	этанол - вода	13,6	47	92	7
19	метанол - вода	15,9	49	94	6
20	вода - уксус. кислота	17,3	45	96	11

2. По результатам решения первой задачи и значению коэффициента полезного действия тарелок η определить их число в колонне для ректификации заданной бинарной смеси. Исходные данные:

Вариант	η	Вариант	η	Вариант	η	Вариант	η
1	0,56	6	0,54	11	0,53	16	0,65
2	0,61	7	0,62	12	0,68	17	0,70
3	0,58	8	0,66	13	0,63	18	0,55
4	0,59	9	0,51	14	0,64	19	0,67
5	0,69	10	0,57	15	0,60	20	0,50

Вопросы для обсуждения

- 1. Флегмовое число и рабочее флегмовое число;
- 2. Равновесие ректификации и уравнения рабочих линий;
- 3. Конструкция и принцип действия ректификационной колонны;
- 4. Величины, характеризующие высоту колонного аппарата;
- 5. Непрерывный и ступенчатый контакты фаз;
- 6. Определение параметров процесса по фазовым и равновесным диаграммам.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 215-240;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 120-139;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 240-276.

Практическое занятие 11. Тепловой расчет установок с колонными аппаратами

Цель практического занятия: изучение методики расчета расхода теплоты в теплообменных аппаратах ректификационной установки.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета расхода теплоты, отдаваемой исходной смеси и кубовому остатку. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету расхода теплоты, отдаваемой исходной смеси и кубовому остатку. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета расхода теплоты, отдаваемой исходной смеси и кубовому остатку и решение задач отводится примерно 25 - 30 минут.

По завершении преподаватель объясняет студентам методику расчета расхода теплоты, отдаваемой охлаждающей воде. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету расхода теплоты, отдаваемой охлаждающей воде. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета расхода теплоты, отдаваемой охлаждающей воде и решение задач отводится примерно 25 - 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также

эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.

- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать расход теплоты, отдаваемой исходной смеси и кубовому остатку в подогревателях при работе установки по ректификации заданной смеси. Содержание легколетучего компонента в исходной смеси x_F , а в кубовом остатке — x_W . Температуру в колонне на уровне тарелки питания и температуру в нижней части колонны определить по фазовой диаграмме.

Вариант	Смесь	x _F , macc. %	xw, macc. %
1	бензол - толуол	50	12
2	этанол - вода	43	6
3	метанол - вода	53	10

Вариант	Смесь	x _F , macc. %	хw, масс. %
4	вода - уксус. кислота	53	8
5	бензол - толуол	43	10
6	этанол - вода	40	7
7	метанол - вода	55	13
8	вода - уксус. кислота	48	14
9	бензол - толуол	43	6
10	этанол - вода	50	14
11	метанол - вода	55	4
12	вода - уксус. кислота	51	14
13	бензол - толуол	40	13
14	этанол - вода	47	5
15	метанол - вода	44	13
16	вода - уксус. кислота	44	12
17	бензол - толуол	51	10
18	этанол - вода	43	8
19	метанол - вода	44	10
20	вода - уксус. кислота	48	5

2. Рассчитать расход теплоты, отдаваемой охлаждающей воде в дефлегматоре и холодильниках установки по ректификации заданной смеси. Содержание легколетучего компонента в дистилляте x_D , а в кубовом остатке — x_W . Температуру в верхней и нижней частях колонны определить по фазовой диаграмме.

Вариант	Смесь	x _D , macc. %	xw, macc. %
1	бензол - толуол	95	
2	этанол - вода	91	
3	метанол - вода	88	
4	вода - уксус. кислота	91	
5	бензол - толуол	92	
6	этанол - вода	89	
7	метанол - вода	86	
8	вода - уксус. кислота	88	
9	бензол - толуол	87	

Вариант	Смесь	XD, Macc. %	xw, macc. %
10	этанол - вода	97	
11	метанол - вода	96	
12	вода - уксус. кислота	92	
13	бензол - толуол	93	
14	этанол - вода	86	
15	метанол - вода	88	
16	вода - уксус. кислота	96	
17	бензол - толуол	89	
18	этанол - вода	96	
19	метанол - вода	97	
20	вода - уксус. кислота	96	

Вопросы для обсуждения

- 1. Общие принципы ректификации;
- 2. Устройство и принцип действия установки для ректификации бинарных смесей;
- 3. Тепловой баланс ректификации;
- 4. Теплофизические свойства жидких смесей и паров;
- 5. Определение параметров ректификации по фазовым диаграммам;
- 6. Теплообмен с изменением агрегатного состояния среды и без изменения агрегатного состояния.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 215-240;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 120-139;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 240-276.

Практическое занятие 12. Расчет начальных параметров сушильного агента

Цель практического занятия: изучение методики расчета параметров сжигания топлива при конвективной сушке; изучить методику расчета параметров сушильного агента на входе в сушилку.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета параметров сжигания топлива при конвективной сушке. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету расчета параметров сжигания топлива при конвективной сушке. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета параметров сжигания топлива при конвективной сушке и решение задач отводится примерно 25 – 30 минут.

По завершении преподаватель объясняет студентам методику расчета параметров сушильного агента на входе в сушилку. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету параметров сушильного агента на входе в сушилку. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета параметров сушильного агента на входе в сушилку и решение задач отводится примерно 25 - 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать количество сухого воздуха, затрачиваемое на сжигание 1 кг топлива заданного состава, количество тепла, выделяющегося при сжигании 1 м 3 и 1 кг топлива, а также количество влаги, выделяющейся при сжигании 1 кг топлива и коэффициент избытка воздуха. Температура топлива принять равной 20 $^{\circ}$ С, температуру свежего воздуха 18 $^{\circ}$ С. Влагосодержание свежего воздуха x_0 , температура сушильного агента на входе в сушилку $t_{\text{нач}}$.

Вариант	х₀, г/кг	t _{нач} , °С	Вариант	х₀, г/кг	t _{нач} , °С
1	14	350	11	4	320
2	16	400	12	13	380
3	12	280	13	7	350
4	6	330	14	16	440
5	11	430	15	7	350
6	13	260	16	6	300
7	11	270	17	12	400
8	9	260	18	12	250
9	4	420	19	4	290
10	16	430	20	5	360

Вари-		Состав газа, об. %								
ант	CH ₄	C_2H_6	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	H_2	СО	N ₂		
1	93,0	3,4	0,8	0,6	0,3	0,1	0,8	1,0		
2	94,0	1,2	0,7	0,4	0,2	0,2	2,8	0,5		
3	91,6	1,6	0,8	0,4	0,2	0,6	3,3	1,5		
4	96,4	0,3	0,1	0,1	0,5	0,3	1,2	1,1		
5	94,4	0,6	0,6	0,2	0,7	0,6	1,5	1,4		
6	92,6	1,5	0,8	0,1	0,4	0,1	2,2	2,3		
7	94,8	0,9	0,9	0,6	0,3	0,5	1,1	0,9		

Вари-		Состав газа, об. %								
ант	CH ₄	C_2H_6	C_3H_8	C ₄ H ₁₀	C_5H_{12}	H ₂	CO	N_2		
8	92	3,2	1,2	0,4	0,5	0,3	0,6	1,8		
9	95,1	3	0,4	0,6	0,2	0,1	0,3	0,3		
10	90,6	2,7	0,8	0,5	0,3	0,8	1,8	2,5		
11	91,9	0,7	0,9	0,6	0,8	0,4	2,5	2,2		
12	94,3	3,8	0,4	0,5	0,2	0,1	0,3	0,4		
13	93,2	1,9	1	0,4	0,6	0,2	1	1,7		
14	92,3	4	0,5	0,2	0,3	0,2	0,5	2		
15	90,3	5	0,9	0,4	0,4	0,6	1,4	1		
16	92,1	3,3	1,1	0,3	0,6	0,2	1,9	0,5		
17	97,1	1,7	0,2	0,1	0,1	0,2	0,2	0,4		
18	96,6	1,4	0,6	0,4	0,2	0,1	0,2	0,5		
19	96,5	1,3	0,4	0,3	0,3	0,5	0,2	0,5		
20	92,7	3,6	1	0,4	0,2	0,3	0,8	1		

2. По результатам расчета первой задачи определить влагосодержание и энтальпию сушильного агента на входе в сушилку.

Вопросы для обсуждения

- 1. Общие принципы конвективной сушки;
- 2. Основные параметры сушильного агента и высушиваемого материала;
- 3. Величины, характеризующие влажность материала и сушильного агента;
- 4. Энтальпия и кинетика сушки;
- 5. Температура мокрого термометра и ее определение;
- 6. Диаграмма состояния влажного воздуха.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 380-404;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 156-174;

3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. – М. Издательский дом МЭИ, 2011. - 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) – стр. 330-352.

Практическое занятие 13. Определение конечных параметров сушильного агента. Определение температур мокрого термометра в начале и в конце процесса сушки

Цель практического занятия: изучение методики расчета конечных параметров сушильного агента; изучение методики определения температуры мокрого термометра.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета конечных параметров сушильного агента. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету конечных параметров сушильного агента. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета конечных параметров сушильного агента и решение задач отводится примерно 25-30 минут.

По завершении преподаватель объясняет студентам методику определения температуры мокрого термометра в начале и конце сушки. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по определению температуры мокрого термометра в начале и конце сушки. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики определения температуры мокрого термометра в начале и конце сушки и решение задач отводится примерно 25 – 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совмест-

ному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать влагосодержание и энтальпию сушильного агента в конце сушки заданного материала в барабанной установке производительностью по высушенному материалу G_1 . Начальное влагосодержание материала $W_{\text{нач}}$, конечное влагосодержание материала $W_{\text{кон}}$, конечная температура сушильного агента $t_{\text{кон}}$. Влагосодержание сушильного агента на входе в сушилку x_1 , энтальпия – I_1 .

Вариант	материал	G ₁ , т/ч	W _{нач} , %	W _{кон} , %	t _{кон} , °C	х1, кг/кг	I ₁ , кДж/кг
1	песок	0,9	22	1,0	120	0,0276	454
2	глина	1,3	24	9,0	100	0,0243	580
3	мел	1,6	18	5,0	110	0,0231	404
4	доломит	1,9	16	0,5	90	0,0218	423
5	песок	1,1	28	2,0	120	0,0207	400
6	глина	1,2	24	3,5	115	0,0209	542
7	мел	1,3	20	8,2	90	0,0248	411
8	доломит	0,7	16	1,2	118	0,0245	526
9	песок	2,0	19	6,4	110	0,0278	563
10	глина	1,7	19	2,5	116	0,0235	477
11	мел	1,6	18	7,7	108	0,0259	559
12	доломит	0,8	19	1,8	100	0,0217	520
13	песок	1,0	23	5,2	110	0,0224	375
14	глина	1,3	17	6,4	90	0,0191	355
15	мел	1,9	25	3,8	120	0,0250	571
16	доломит	1,0	16	8,8	120	0,0255	419

Вариант	материал	G ₁ , т/ч	W _{нач} , %	W _{кон} , %	t _{кон} , °C	х1, кг/кг	I ₁ , кДж/кг
17	песок	0,7	28	6,0	110	0,0203	451
18	глина	2,0	21	8,0	116	0,0237	395
19	мел	1,4	18	7,2	100	0,0271	401
20	доломит	0,9	14	2,1	90	0,0181	492

2. По результатам расчета первой задачи и диаграмме состояния влажного воздуха определить температуру мокрого термометра в начале и в конце сушки.

Вопросы для обсуждения

- 1. Основные параметры сушильного агента и высушиваемого материала;
- 2. Величины, характеризующие влажность материала и сушильного агента;
- 3. Энтальпия и кинетика сушки;
- 4. Температура мокрого термометра и ее определение;
- 5. Внутренний тепловой баланс сушилки;
- 6. Диаграмма состояния влажного воздуха.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 380-404;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 156-174;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 330-352.

Практическое занятие 14. Определение основных размеров сушильного барабана

Цель практического занятия: изучение методики расчета объема сушильного барабана и выбора сушилки; изучение методики проведения проверочного расчета выбранной сушилки

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20 – 25 минут, преподаватель объясняет студентам методику расчета объема сушильного барабана и выбора сушилки. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету объема сушильного барабана и выбора сушилки. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение расчета методики расчета объема сушильного барабана и выбора сушилки и решение задач отводится примерно 25 - 30 минут.

По завершении преподаватель объясняет студентам методику проверочного расчета выбранной сушилки. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по проверочному расчету выбранной сушилки. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики проверочного расчета выбранной сушилки и решение задач отводится примерно 25 – 30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

- 1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.
- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать объем сушильного барабана и выбрать сушилку производительностью по высушенному материалу G_1 . Расход влаги, удаляемой из материала, равен W, начальная температура сушильного агента $t_{\text{нач}}$, конечная температура сушильного агента $t_{\text{кон}}$. Температура мокрого термометра на входе в сушилку $t_{\text{м1}}$, на выходе $-t_{\text{м2}}$. Незаданные параметры выбрать самостоятельно.

Исходные данные:

Вариант	материал	G ₁ , т/ч	W, кг/с	t _{нач} , °С	tкон, °С	t _{M1} , °C	t _{M2} , °C
1	песок	1,7	0,711	250	100	55,8	67,2
2	глина	0,9	0,757	380	90	59,2	68,2
3	мел	1,5	0,610	300	120	58,2	60,1
4	доломит	1,4	0,733	330	100	59,6	66,1
5	песок	1,3	0,784	390	110	60,5	62,5
6	глина	1,4	0,640	380	120	57,0	68,1
7	мел	1,1	0,765	360	90	58,9	66,9
8	доломит	1,3	0,678	350	100	63,7	69,2
9	песок	1,9	0,712	430	120	59,1	63,3
10	глина	1,3	0,753	450	110	62,9	64,4
11	мел	1,2	0,682	450	100	59,4	61,7
12	доломит	1,8	0,768	340	100	56,8	68,3
13	песок	1,0	0,639	330	110	58,7	69,9
14	глина	0,8	0,640	320	90	60,6	65,1
15	мел	1,2	0,720	440	120	55,9	65,7
16	доломит	1,3	0,711	290	100	60,3	65,6
17	песок	1,8	0,765	360	110	61,4	62,3
18	глина	1,2	0,706	310	90	55,5	68,5
19	мел	1,0	0,747	400	120	56,3	69,0
20	доломит	0,9	0,794	420	110	62,6	64,6

2. По результатам расчета первой задачи рассчитать действительную скорость сушильного агента и скорость уноса, а также угол наклона сушильного барабана. При необходимости сделать пересчет первой задачи.

Вопросы для обсуждения

1. Конструкция и принцип действия барабанной сушилки;

- 2. Насадки, применяемые в сушильных барабанах;
- 3. Параметры работы сушильного барабана;
- 4. Режимы движения газа через слой зернистого материала;
- 5. Конвективная сушка при разных давлениях в сушильном барабане;
- 6. Периоды сушки и их особенности.

Список литературы

- 1. Романков П.Г., Фролов В.Ф., Флисюк О.М. Массообменные процессы химической технологии: Учеб. пособие. СПб.: ХИМИЗДАТ, 2011. 440 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081949.html) стр. 380-404;
- 2. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 156-174;
- 3. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: учебник для вузов. М. Издательский дом МЭИ, 2011. 562 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785383005637.html) стр. 330-352.

Практическое занятие 15. Расчет и выбор аппаратов для очистки отработанного сушильного агента

Цель практического занятия: изучить методику расчета и выбора циклона; изучить методику расчета и выбора мокрого пылеуловителя.

План проведения занятия

Практическое занятие проводится в несколько этапов. В начале занятия проводится беседа со студентами для оценки общего уровня знаний студентов по тематике занятия и выявления вопросов, которые большинству или всем неизвестны.

Затем преподаватель консультирует студентов по вопросам, которые вызвали у них трудности и по возможности сам приводит или просит привести студентов практические примеры для лучшего усвоения тематических основ.

После проведения консультации преподаватель дает студентам возможность задать ему возникшие у них вопросы по тематике занятия. При ответах желательно также приводить примеры и по возможности давать ответить другим студентам, знающим ответ для создания активного диалога с ними.

По завершению беседы, на которую в общей сложности отводится 20-25 минут, преподаватель объясняет студентам методику расчета и выбора циклона. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету и выбору циклона. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета и выбора циклона и решение задач отводится примерно 25-30 минут.

По завершении преподаватель объясняет студентам методику расчета и выбора мокрого пылеуловителя. Во время объяснения и по его завершении студенты могут задавать преподавателю вопросы. Затем преподаватель вызывает к доске одного из студентов по его желанию или по своему выбору. Этому студенту выдается задача в качестве примера, которую он прорешивает у доски с участием остальной группы и преподавателя. При этом студенты получают начальный навык расчета по этой методике и в форме общегруппового диалога с преподавателем решают возникающие трудности.

После этого каждому студенту выдается индивидуальное задание по расчету и выбору мокрого пылеуловителя. В случае возникновения у одного или нескольких студентов трудностей, они решаются совместно с преподавателем и остальной группой.

На объяснение методики расчета и выбора мокрого пылеуловителя и решение задач отводится примерно 25-30 минут.

Используемые технологии преподавания

При проведении данного практического занятия используются следующие технологии образования:

1. Практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений за счет установки междисциплинарных связей, при которых изучение дисциплины строится на основе ранее приобретенных знаний и умений, а полученные навыки необходимы для дальнейшего обучения по программе подготовки. Также эти технологии реализуются за счет того, что задачи связаны с практической деятельностью, предусмотренной программой подготовки.

- 2. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие навыков проблемного мышления. Заключается в постановке основных проблем тематики дисциплины на практическом занятии, и предполагает проведение открытых индивидуальных и коллективных дискуссий по совместному с преподавателем поиску оптимальных решений.
- 3. Личностно-ориентированные технологии, учитывающие индивидуальные особенности и способности каждого обучающегося для обеспечения успешного изучения дисциплины. Заключаются в индивидуальных беседах со студентами во время занятий и проверке решения задач.

Большая часть занятий и образовательных технологий происходит в интерактивной форме, заключающемся в обмене информацией между преподавателем и студентами, совместному поиску путей решения практических задач и проблем, а также в возможности более детального совместного рассмотрения и актуализации вопросов, представляющих наибольший интерес для обучающихся в рамках тематики занятия.

Примерные варианты заданий

Предпочтительно, чтобы каждый студент выполнял задания на практических занятиях в соответствии с выданными ему исходными данными для курсового проектирования. Это позволит ему своевременно выполнять этапы курсового проектирования и поможет оперативно решить возникающие трудности с ведущим преподавателем.

В качестве заданий для примеров или для выдачи индивидуальных заданий ведущий преподаватель может выдать следующие задачи:

1. Рассчитать и выбрать циклон для извлечения твердых частиц при расходе газа Q с входной концентрацией c_{Bx} . Плотность твердых частиц $\rho_{\text{ч}}$, плотность и вязкость газа - $\rho_{\text{г}}$ и μ . Требуемая степень извлечения η .

Исходные данные:

Вариант	Тип	$Q, M^3/c$	$c_{\text{BX}}, \Gamma/M^3$	$ρ_{\Gamma}$, $κ\Gamma/M^3$	ρ _ч , кг/м ³	μ · 10 ⁶ ,	η
						Па∙с	
1	ЦН-11	10	40	1,34	1930	22,2	0,95
2	ЦН-15	11	120	1,35	2230	22,1	0,65
3	ЦН-24	12	80	1,36	1650	22,0	0,75
4	СДК-ЦН-33	13	10	1,37	1700	21,9	0,95
5	СК-ЦН-34	14	20	1,38	1750	21,8	0,90
6	СК-ЦН-34м	15	40	1,39	1900	21,7	0,85

Вариант	Тип	$Q, M^3/c$	$c_{\text{BX}}, \Gamma/\text{M}^3$	$ρ_{\Gamma}$, $κ\Gamma/M^3$	$\rho_{\rm H}$, $\kappa\Gamma/{ m M}^3$	μ · 10 ⁶ ,	η
						Па∙с	
7	ЦН-11	8	150	1,33	2130	21,6	0,65
8	ЦН-15	5	80	1,32	2050	21,5	0,75
9	ЦН-24	1	40	1,31	2100	21,4	0,75
10	СДК-ЦН-33	6	60	1,30	1650	21,0	0,90
11	СК-ЦН-34	4	120	1,34	1900	21,6	0,85
12	СК-ЦН-34м	10	70	1,35	2230	21,8	0,65
13	ЦН-11	15	30	1,36	1800	22,4	0,95
14	ЦН-15	20	60	1,37	1700	22,0	0,75
15	ЦН-24	14	120	1,38	2200	21,9	0,95
16	СДК-ЦН-33	15	10	1,39	1930	21,8	0,90
17	СК-ЦН-34	11	40	1,39	2230	21,7	0,85
18	СК-ЦН-34м	5	150	1,33	1650	21,6	0,65
19	ЦН-11	1	80	1,32	1700	22,1	0,95
20	ЦН-15	8	40	1,34	1750	22,0	0,65

2. Рассчитать и выбрать мокрый пылеуловитель для извлечения дисперсных частиц при расходе газа $Q_{\text{газ}}$ и температуре t. Запыленность газа на входе в аппарат $c_{\text{вх}}$, степень очистки η , средняя скорость газа в аппарате ω .

Вариант	Q_{ra3} , м ³ /ч	t, °C	$c_{\text{bx}}, \text{kg/m}^3$	η	ω, м/с
1	50000	80	0,10	0,99	2,3
2	45000	79	0,11	0,98	2,2
3	55000	81	0,12	0,97	2,1
4	47000	78	0,13	0,96	2,0
5	53000	82	0,14	0,95	2,3
6	42000	77	0,15	0,99	2,4
7	44000	83	0,14	0,98	2,5
8	54000	76	0,13	0,97	2,6
9	52000	84	0,12	0,96	2,7
10	47000	75	0,11	0,95	2,8
11	54000	85	0,10	0,99	2,9
12	50000	74	0,09	0,98	3,0

Вариант	$Q_{\Gamma a3}$, м ³ /ч	t, °C	$c_{\text{bx}}, \kappa \Gamma / \text{M}^3$	η	ω, м/с
13	45000	86	0,08	0,97	2,9
14	55000	75	0,07	0,96	2,8
15	47000	85	0,06	0,95	2,7
16	53000	76	0,07	0,99	2,6
17	42000	84	0,08	0,98	2,5
18	44000	77	0,09	0,97	2,4
19	54000	83	0,10	0,96	2,3
20	52000	78	0,11	0,95	2,2

Вопросы для обсуждения

- 1. Очистка отработанных газов от дисперсных частиц;
- 2. Центробежное осаждение дисперсных частиц;
- 3. Классификация, параметры работы и характеристики циклонов;
- 4. Конструкция и принцип действия циклона;
- 5. Области применения и закономерности мокрой очистки газов;
- 6. Классификация, конструкция и принцип действия мокрых пылеуловителей.

Список литературы

- 1. Самарин О.Д. Гидравлические расчеты инженерных систем: Справоч. пособие. М.: Издательство Ассоциации строительных вузов, 2014. 112 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300140.html) стр. 86-102;
- 2. Замалеев З.Х., Посохин В.Н., Чефанов В.М. Основы гидравлики и теплотехники: учебное издание, под общей ред. проф. В.Н. Посохина М.: АСВ, 2014. 424 с. (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785432300218.html) стр. 202-224;
- 3. Фролов В.Ф. Лекции по курсу "Процессы и аппараты химической технологии". 2-е изд., истр. СПб.: ХИМИЗДАТ, 2008. 608 с (доступ по интернет-ссылке http://www.studentlibrary.ru/book/ISBN9785938081581.html) стр. 196-216.