Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт прикладной математики, физики и информатики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ДИСКРЕТНАЯ МАТЕМАТИКА»

направление подготовки / специальность

02.03.03 Математическое обеспечение и администрирование информационных систем (код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Проектирование и защита информационных систем и баз данных

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины (модуля) являются:

- формирование у студентов математической культуры и развитие логического мышления;
- формирование фундаментальных знаний при изучении вопросов теоретикомножественного описания математических объектов, основных проблем теории графов и методологии использования аппарата математической логики, составляющих теоретический фундамент описания функциональных систем;
- обучение составлению математических моделей и основным методам решения задач теории графов, алгебры логики, теории бинарных отношений и теории множеств;
- обучение решению прикладных задач математическими методами, развитию способности творчески подходить к решению профессиональных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Дискретная математика» относится к обязательной части учебного плана.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми

Формируемые компетенции (код, содержание	по достижения компетенции					
компетенции)	(код, содержание индикатора		ередетва			
ОПК-1, Способен	ОПК-1.1. Знает принципы ис-	Знать:	Отчёты по			
применять	пользования фундаментальных	базовые знания, полученные в	лабораторным			
фундаментальные	знаний, полученных в области	области математических и (или)	работам.			
знания, полу-	математических и (или)	естественных наук				
ченные в области	естественных наук.	Уметь;	Контрольные			
математических и	ОПК-1.2. Умеет использовать	использовать базовые знания из	вопросы к			
(или) естественных	базовые знания из области ма-	области математических и (или)	лабораторным			
наук, и	тематических и (или) естест-	естественных наук в	работам,			
использовать их в	венных наук в профессиональ-	профессиональной деятельности.	i e			
профессиональной	ной деятельности.	Владеть:	Контрольные			
деятельности	ОПК-1.3. Владеет навыками	навыками выбора методов решения	вопросы к			
	выбора методов решения задач	задач профессиональной	рейтинг-			
	профессиональной дея-	деятельности на основе	контролю и			
	тельности на основе теорети-	теоретических знаний.	промежуточной			
	ческих знаний.		аттестации.			
ОПК-2. Способен	ОПК-2.1. Знает математичес-	Знать:	Отчёты по			
применять	кие основы программирования	математические основы	лабораторным			
современный	и языков программирования,	программирования и языков	работам.			
математический	организации баз данных и	программирования, организации баз				
аппарат, связанный	компьютерного моделирова-	данных и компьютерного	Контрольные			
с проектированием,	ния, математические методы	моделирования;	вопросы к			
разработкой, реали-	оценки качества, надёжности и	математические методы оценки	лабораторным			
зацией и оценкой	эффективности программных	качества, надежности и	работам,			
качества	продуктов, математические	эффективности программных				
программных	методы организации	продуктов;	Контрольные			
продуктов и	информационной безопасности	математические методы	вопросы к			
программных	при разработке и эксплуатации	организации информационной	рейтинг-			
комплексов в	программных продуктов и	безопасности при разработке и	контролю и			
различных областях	программных комплексов.	эксплуатации программных	промежуточной			
человеческой дея-	ОПК-2,2. Умеет осуществлять	продуктов и программных	аттестации.			
гельности	обоснованный выбор матема-	комплексов.				
	тического аппарата при реше-	Уметь:				
	нии задач профессиональной	осуществлять обоснованный выбор				
	деятельности.	данного математического аппарата				
	ОПК-2.3. Владеет навыками	при решении задач				
	применения математического	профессиональной деятельности.				
	аппарата при решении кон-	Владеть:				

кретных задач.	навыками применения данного
	математического аппарата при
	решении конкретных задач.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 6 зачетных единиц, 216 часа

Тематический план

форма	обучения –	очная
-------	------------	-------

	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником			ная	Формы текущего контроля	
<i>№</i> п/п				Лекции	Практические занятия	Лабораторн <i>ые</i> работы	в форме практической полготовки	Самостоятельн работа	успеваемости, форма промежуточной аттестации (по семестрам)
1	Множества и отображения	3	1	4	4	4		12	
2	Бинарные отношения	3	2-5	6	6	6		9	рейтинг-контроль №1
3	Алгебра логики	3	6-8	10	10	10		13	
4	Элементы комбинаторного анализа	3	9-12	4	4	4		15	рейтинг-контроль №2
5	Теория графов	3	13-14	8	8	8		19	
6	Основы теории кодирования	3	15-18	4	4	4		13	рейтинг-контроль №3
Всего за 4 семестр:		***	=	36	36	36		81	экзамен (27 час.)
Наличие в дисциплине КП/КР		-		-2		-	-	-	-
Итого по дисциплине		-2	-	36	36	36	-	81	экзамен (27 час.)

Содержание лекционных занятий по дисциплине

Раздел 1. Множества и отображения.

- 1) Понятие множества. Способы задания множеств. Подмножества. Сравнение множеств. Равномощные множества. Конечные и бесконечные множества. Операции над множествами. Свойства операций над множествами.
- 2) Отображения. Образ и прообраз при отображении. Композиция отображений. Типы отображений. Обратимость и односторонняя обратимость.

Раздел 2. Бинарные отношения.

- 3) Упорядоченные пары и наборы. Прямое произведение множеств. Бинарные отношения и способы их задания. Матрица бинарного отношения. Операции над бинарными отношениями. Обратные отношения. Композиция бинарных отношений. Свойства отношений.
- 4) Замыкание отношений. Транзитивное и рефлексивное замыкание. Функциональные отношения. Инъекция, сюръекция и биекция. Образы и прообразы. Суперпозиция функций. Представление функций в программах.
- 5) Отношения эквивалентности. Классы эквивалентности и их свойства. Фактормножество. Отношения порядка. Минимальные элементы. Верхние и нижние границы. Упорядоченные, линейно-упорядоченные и частично-упорядоченные множества.

Раздел 3. Алгебра логики.

- 6) Высказывания, операции над высказываниями. Логические и битовые операции. Формулы алгебры высказываний. Таблицы истинности формул. Равносильность формул. Теорема о равносильной подстановке. Равносильные преобразования и упрощение формул.
- 7) Двойственность в алгебре высказываний. Принцип двойственности. Закон двойственности.
- 8) Нормальные формы алгебры высказываний. ДНФ и КНФ. Совершенная дизьюнктивная нормальная форма. Алгоритм построение СДНФ. Нахождение СДНФ при помощи карт Вейча. Совершенная конъюнктивная нормальная форма. Алгоритм построения СКНФ.

- 9) Функции алгебры логики. Существенные и несущественные переменные. Булевы функции одной переменной. Булевы функции двух переменных. Суперпозиция функций алгебры логики. Полные системы функций. Многочлены Жегалкина.
- 10) Замкнутые классы функций. Функции, сохраняющие константы 0,1. Линейные функции. Монотонные функции. Самодвойственные функции. Критерий полноты (теорема Поста).

Раздел 4. Элементы комбинаторного анализа.

- 11) Классификация комбинаторных задач и характеристика их основных типов. Основные правила комбинаторики. Основные комбинаторные конфигурации: размещения, сочетания, перестановки. Разбиения. Метод включений и исключений.
- 12) Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Раздел 5. Теория графов.

- 13) Основные определения: граф, частичный граф, подграф. Способы задания графа. Степени вершин. Теорема Эйлера о сумме степеней. Путь, простой путь, цепь, контур, цикл. Связность, сильная связность.
- 14) Планарные графы. Теорема Понтрягина-Куратовского. Критерий планарности. Раскраска графа. Хроматическое число графа.
- 15) Эйлеровы и гамильтоновы графы. Необходимые и достаточные условия. Задача поиска гамильтонова цикла в графе. Двудольные графы. Остовы графа.
- 16) Дискретные экстремальные задачи. Алгоритм Дейкстры нахождения дерева кратчайших расстояний. Алгоритм Флойда нахождения матрицы кратчайших путей.

Раздел 6. Основы теории кодирования.

- 17) Кодирование как способ представления информации. Кодирование и декодирование. Алфавитное кодирование. Достаточный признак взаимной однозначности алфавитного кодирования.
- 18) Оптимальное кодирование. Помехоустойчивое кодирование. Кодирование с исправлением ошибок. Классификация ошибок. Возможность исправления ошибок.

Содержание практических занятий по дисциплине

Раздел 1. Множества и отображения.

Содержание практических занятий.

- 1) Множества, подмножества. Диаграммы Венна. Универсальное множество. Объединение множеств. Пересечение множеств. Разность множеств. Симметрическая разность множеств. Теоретико-множественные преобразования.
- 2) Отображения. Образ и прообраз при отображении. Композиция отображений. Типы отображений.

Раздел 2. Бинарные отношения.

Содержание практических занятий.

- 3) Декартово произведение множеств. Бинарные отношения. Графические способы задания бинарных отношений. Свойства отношений.
- 4) Специальные бинарные отношения. Транзитивность и рефлексивность отношений. Отношение эквивалентности. Связь между отношением эквивалентности и разбиением множества.
- 5) Отношение строгого порядка. Отношение нестрогого порядка. Упорядоченные множества. Отношение соответствия. Функциональные отношения. Отображения. Реляционная алгебра.

Раздел 3. Алгебра логики.

Содержание практических занятий.

- 6) Операции над высказываниями. Формулы алгебры логики. Таблицы истинности. Эквивалентность формул. Равносильные преобразования формул.
- 7) Функции алгебры логики. Табличное и аналитическое задание булевых функций. Реализация функций формулами. Двойственные функции.

- 8) Нормальные формы. ДНФ и КНФ. Совершенные нормальные формы. СДНФ и СКНФ. Алгоритм построения СДНФ и СКНФ.
- 9) Многочлен Жегалкина. Замкнутые классы функций алгебры логики. Класс P_0 и его свойства. Класс P_1 и его свойства. Классы Поста L и S. Класс М и его свойства.
- 10) Функциональная полнота. Полные системы функций. Критерий Поста функциональной полноты.

Раздел 4. Элементы комбинаторного анализа.

Содержание практических занятий.

- 11) Основные аксиомы комбинаторики. Простейшие комбинаторные равенства. Комбинаторные задачи. Размещения, размещения без повторений. Сочетания. Сочетания с повторениями.
- 12) Перестановки. Графическое представление перестановок. Инверсии. Генерация перестановок. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов.

Раздел 5. Теория графов.

Содержание практических занятий.

- 13) Основные понятия теории графов. Типы графов. Матричное представление графов. Операции над графами. Построение графовых моделей электрических и коммутационных схем.
- 14) Метрические характеристики графа. Определение центра, радиуса, диаметра, медианы графа. Решение минимаксных задач размещения.
- 15) Достижимость и связность. Определение компонент связности. Деревья. Построение остовных деревьев с использованием поиска в глубину и ширину. Алгоритмы построения кратчайшего остова взвешенного графа.
- 16) Определение эйлеровых и гамильтоновых циклов и использование данных задач в приложениях. Алгоритмы раскраски графа. Решение задач, сводящихся к задаче о раскраске.

Раздел 6. Основы теории кодирования

Содержание практических занятий.

- 17) Алфавитное кодирование. Теорема Маркова о взаимной однозначности алфавитного кодиро-вания. Неравенство Макмиллана. Оптимальные коды и их свойства.
- 18) Коды с исправлением r ошибок. Оценка функции $M_r(n)$. Коды Хэмминга. Оценка функции $M_1(n)$.

Содержание лабораторных занятий по дисциплине

Раздел 1. Множества и отображения.

Содержание лабораторных занятий.

- 1) Моделирование операции «пересечение» для двух числовых множеств. Цель работы: изучение способов численного моделирования операции пересечения для множеств; разработка компьютерной программы для выполнения пересечения двух конечных множеств.
- 2) Моделирование основных операций для двух числоваых множеств. Цель работы: изучение способов численного моделирования основных операций для множеств; разработка компьютерной программы для выполнения этих операций над двумя конечными множествами.

Раздел 2. Бинарные отношения..

Содержание лабораторных занятий.

- 3) Моделирование операции «прямое произведение множеств». Изучение способов численного моделирования прямого произведение множеств. Разработка компьютерной программы для вычисления прямого произведения множеств
- 4) Построение матрицы бинарного отношения. Изучение способов численного моделирования матрицы бинарного отношения. Разработка компьютерной программы для построения матрицы бинарного отношения для двух заданных числовых множеств.

5) Исследование свойств бинарных отношений. Изучение свойств бинарных отношений. Разработка компьютерной программы для установления свойств бинарных отношений, заданных с помощью матрицы.

Раздел 3. Алгебра логики.

Содержание лабораторных занятий.

- 6) Построение таблицы истинности. Изучение способов моделирования базовых логических операций. Разработка компьютерной программы автоматического построения таблиц истинности формул алгебры логики.
- 7) Анализ булевых функций. Изучение свойств булевых функций. Разработка программы для проверки свойств булевых фунеций с небольшим количеством переменных.
- 8) Двойственность в алгебре логики. Изучение построения таблицы истинности двойственных булевых функций. Разработка компьютерной программы автоматического построения таблиц истинности двойственных функций.
- 9) Минимизация булевых функций методом карт Карно. Изучение особенностей минимизации булевых функций методом карт Карно. Реализация метода для булевых функций от трех переменны.
 - 10) Полные системы функций. Исследование данной системы функций на полноту.

Раздел 4. Элементы комбинаторного анализа.

Содержание лабораторных занятий.

- 11) Генерация размещений. Изучение способов численного моделирования размещений. Разработка компьютерной программы для генерации всех размещений для заданных значений параметров в лексикографическом порядке.
- 12) Вычисление числа сочетаний. Изучение особенностей использования рекурсии в программиро-вании. Разработка компьютерной программы для генерации числа сочетаний.

Раздел 5. Теория графов.

Содержание лабораторных занятий.

- 13) Планарность графа. Изучение необходимых и достаточных условий планарности графа. Разработка компьютерной программы для проверки планарности графа.
- 14) Раскраска вершин графа. Изучение принципов правильной раскраски вершин графа. Разработка программы решения этой задачи на основе последовательного алгоритма.
- 15) Нахождение эйлерова цикла в неориентированном графе. Изучение алгоритмов обхода неориентированного графа. Разработка компьютерной программы для нахождения эйлерова цикла в неориентированном графе.
- 16) Нахождение кратчайших маршрутов по алгоритму Дейкстры. Изучение алгоритмов поиска кратчайших маршрутов на взвешенных графах. Разработка компьютерной программы, реализующей алгоритм Дейкстры.

Раздел 1. Основы теории кодирования.

Содержание лабораторных занятий.

- 17) Построение бинарного кода Грея. Изучение алгоритма построения кода Грея. Разработка компьютерной программы для построения таблицы n-битного кода Грея.
- 18) Построение кода Хаффмана. Изучение принципа сжатия информации по алгоритму Хаффмана. Разработка программы, реализующей алгоритм Хаффмана с построением бинарного дерева.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Примерный перечень вопросов к рейтинг-контролю №1

- 1. Даны множества $A = \{1,3,5,7\}$ и $B = \{2,3,4,7,8\}$. Найти $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $A \triangle B$
 - 2. Для множества В задания 1 найти все его подмножества.
 - 3. Доказать равенства:

$$(A \triangle B) \triangle C = A \triangle (B \triangle C) \quad (A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Нарисовать диаграммы Вьенна, интерпретирующие доказанные равенства.

- **4.** Имеется материя 5 различных цветов. Сколько различных трехполосных флагов можно создать ?
- **5.** Имеется 12 различных дискет. Сколько способов заполнения коробки для дискет с 6-ю отсеками, если в коробку мы укладываем а) 6 дискет из имеющихся, б) 4 дискеты из имеющихся? (расположение дискет в коробке существенно).
- **6.** Даны множества $A = \{2,3,4,6\}$ и $B = \{1,2,4,7,8\}$. Найти $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $A \triangle B$
 - 7. Для множества В задания 6 найти все его подмножества.
 - 8. Доказать равенства:

$$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$$
, $A \setminus (A \setminus B) = A \cap B$.

Нарисовать диаграммы Вьенна, интерпретирующие доказанные равенства.

Примерный перечень вопросов к рейтинг-контролю №2

- 1. Найти область определения, область значений, R^{-1} , R.R, $R.R^{-1}$, R^{-1} . R для отношения $R = \{ \langle x, y \rangle | x, y \in D$ и $x + y \leq 0 \}$, где D -множество действительных чисел.
- **2.** 6. Найти область определения, область значений, R^{-1} , R.R, $R.R^{-1}$, $R^{-1}.R$ для отношения $R = \{ \langle x, y \rangle | x, y \in [-\pi/2, \pi/2] \text{ и } y \geq \sin x \}$.
 - **3.** 7. Доказать, что для любых бинарных отношений $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$
 - **4.** 8. Доказать, что если отношения R_1 и R_2 рефлексивны, то рефлексивны и отношения: $R_1 \cup R_2, \ R_1 \cap R_2, \ R_1^{-1}, \ R_1 \cdot R_2$
- **5.** 9. На множествах N и NxN определим R_m следующим образом: $\langle a,b \rangle \in R_m \Leftrightarrow (a-b)$ делится на $m \ (m > 0)$. Доказать, что R_m является отношением эквивалентности.

Примерный перечень вопросов к рейтинг-контролю №3

- 1. В библиотеке 5 учебников геометрии, 7 тригонометрии, 4- адгебры. Сколько полных комплектов учебников можно составить? (Все экземпляры считаются различными).
 - 2. Сколько способов разложить 10 одинаковых монет по двум карманам?
- **3.** Сколько способов разложить 10 одинаковых монет по трем карманам так, чтобы ни один из карманов не был пустым?
 - **4.** Построить СКНФ функции, заданной формулой $f(x,y,z) = ((\bar{x}y \to \bar{z})/(\bar{y}x)) \to (y \oplus z)$.
 - **5.** Построить СДНФ функции, заданной столбцом значений f(x, y, z) = (1,1,0,1,0,0,1,0).
 - 6. Построить полином Жегалкина для функции из п. 20
 - 7. По исходной матрице смежности M построить чертеж графа, составить матрицу

инцидентности H и список ребер.

$$M = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Промежуточная аттестация по итогам освоения дисциплины (экзамен). Примерный перечень вопросов к экзамену

- 1. Определения множества, пустого множества. Кванторы. Подмножества. Способы задания множеств.
 - 2. Конечные и бесконечные множества. Мощность множества.
 - 3. Операции над множествами. Диаграммы Венна.
- 4. Декартово произведение множеств, декартов квадрат произвольного множества. Привести примеры. Записать формулы, выражающие число элементов декартова произведения и декартова квадрата.
- 5. Понятие об отображении. Образы и прообразы и их свойства. Основные типы отображений. Композиция отображений. Ассоциативность композиции. Композиция однотипных отображений. Обратимость и односторонняя обратимость. Критерии обратимости и односторонней обратимости.
- 6. Многоместные отношения. Булевы операции над отношениями. Булева алгебра отношений. Булевы матрицы и отношения на конечных множествах.
- 7. Бинарные отношения. Свойства бинарных отношений: рефлективность, симметричность, антисимметричность, транзитивность.
- 8. Отношения эквивалентности. Классы эквивалентности и их свойства. Фактормножество. Отношения порядка. Упорядоченные, линейно-упорядоченные и частичноупорядоченные множества.
 - 9. Высказывания и операции над ними. Таблица истинности.
- 10. Формулы алгебры высказываний. Равносильность формул. Теорема о равносильной подстановке.
 - 11. Равносильные преобразования формул. Основные равносильности.
 - 12. Лемма о числе слов длины m в алфавите из r букв.
 - 13. Ранг формулы. Равносильность формул и булевых формул (теорема).
 - 14. Двойственность в алгебре логики. Закон двойственности (теорема).
 - 15. Общий принцип двойственности (теорема).
 - 16. Принцип двойственности для булевых формул (теорема).
- 17. Функции алгебры логики. Задание функции формулой. Нормальные формы. Алгоритмы построения совершенных нормальных форм.
 - 18. Теорема о разложении функции алгебры логики по переменным.
- 19. Теорема о совершенной дизъюнктивной нормальной форме и совершенной конъюнктивной нормальной форме.
- 20. Полные системы функций. Примеры полных систем функций (с доказательством полноты).
 - 21. Замкнутые классы функций алгебры логики.
- 22. Классы функций, сохраняющих ноль и единицу. Теоремы о замкнутости классов P_0 и P_1 . Теорема о функции не сохраняющей ноль. Теорема о функции, не сохраняющей единицу.
- 23. Класс самодвойственных функций. Теорема о замкнутости класса S. Теорема о несамодвойственной функции.
- 24. Класс монотонных функций. Теорема о замкнутости класс М. Теорема о немонотонной функции.
- 25. Полином Жегалкина. Теорема о представлении функции в виде полинома Жегалкина.
- 26. Класс линейных функций. Теорема о замкнутости класс L. Теорема о нелинейной функции.
 - 27. Теорема Поста о функциональной полноте алгебры логики.
 - 28. Перестановки и подстановки. Формула для вычисления числа перестановок.
 - 29. Размещения. Формула для вычисления числа размещений.

- 30. Сочетания. Формула для вычисления числа сочетаний.
- 31. Разбиения. Формула для вычисления числа разбиений.
- 32. Метод включений и исключений.
- 33. Определения графов, их представления. Матрицы смежности и инциденций. Изоморфизм графов.
- 34. Простейшие типы графов: полные, двудольные, регулярные и др. операции объединения, соединения, дополнения.
- 35. Маршруты, цепи, простые цепи, циклы. Связность графа.
- 36. Теорема о числе ребер в графе и ее следствие.
- 37. Эйлеровы графы. Лемма о существовании цикла в графе.
- 38. Теорема о необходимых и достаточных условиях графа быть эйлеровым.
- 39. Построение эйлерова цикла (алгоритм Флери).
- 40. Орграфы. Ормаршруты, орцепи, орциклы. Связность орграфов. Теорема для эйлеровых орграфов.
- 41. Гамильтоновы графы. Теорема Дирака.
- 42. Деревья и их свойства. Остовное дерево, циклический ранг графа.
- 43. Разделяющее множество, разрез, мост. Алгоритм Краскала.
- 44. Плоские и планарные графы. Гомеоморфность графов. Теоремы о необходимых и достаточных условиях планарности графов.
 - 45. Теорема Эйлера о соотношении числа граней, ребер и вершин в графе. Ее обобщение на несвязные графы.
 - 46. Теоремы о свойствах планарных графов: числе ребер, степени вершин.
 - 47. Раскраска вершин в графе. Хроматическое число. Раскраска простейших типов графов.
 - 48. Теорема о раскраске произвольного графа. Теорема о раскраске планарного графа.
 - 49. Нахождение хроматического числа для произвольного графа.
 - 50. Алгоритм Дейкстры.
 - 51. Определение потока в сети. Простое сечение и величина его потока. Теорема Форда, Фалкерсона.
 - 52. Алгоритм нахождения максимального потока в сети.
 - 53. Алфавитное кодирование. Однозначность кодирования.
 - 54. Свойство префикса. Теорема.
 - 55. Нетривиальное разложение кодов в схеме кодирования. Алгоритм проверки кодирования на однозначность.
 - 56. Неравенство Макмилана. Теорема.
 - 57. Теорема о существовании взаимно однозначного кодирования, обладающего свойством префикса.
 - 58. Понятие о кодах с минимальной избыточностью.
 - 59. Дерево взаимно однозначного кодирования и операции на нем.
 - 60. Насыщенное и приведенное кодовые деревья.
 - 61. Алгоритм построения кода с минимальной избыточностью.

Самостоятельная работа студентов по дисциплине «Дискретная математика» включает в себя следующие виды деятельности:

- 1) проработку учебного материала по конспектам, учебной и научной литературе;
- 2) подготовку к практическим занятиям, требующую совместного выполнения малыми группами студентов рассматриваемых на лекциях методов.
- 3) подготовку по всем видам контрольных мероприятий, в том числе к текущему контролю знаний и промежуточной аттестации.

Примерный перечень вопросов, рассматриваемых при самостоятельной работе студентов

1. Способы задания множеств.

- 2. Основные операции над множествами. Диаграммы Эйлера-Венна. Свойства операций над множествами.
 - 3. Понятие разбиения и покрытия множества.
- 4. Определение прямого произведения множеств. Вычисление мощности прямого произведения конечных множеств. Мощности которых известны.
- 5. Понятие бинарного отношения. Примеры бинарных отношений. Алгоритм построения матрицы отношения
- 6. Какие отношения называют рефлексивными, симметричными и транзитивными. Особенности матрицы отношений для таких отношений.
- 7. Понятие отношения эквивалентности. Примеры отношений эквивалентности. Что называется классом эквивалентности, системой классов эквивалентности. Свойства классов эквивалентности.
 - 8. Понятие отношения порядка. Примеры отношений порядка.
- 9. Понятие замыкания отношения. Алгоритм транзитивного замыкания (алгоритм Уоршалла).
- 10. Понятие алгебры логики, функции алгебры логики. Правила построения таблицы истинности и карты Карно.
- 11. Понятие формулы алгебры логики. Унарные и бинарные логические операции. Приоритет логических операций.
- 12. Понятие элементарной дизъюнкции (конъюнкции) формул, дизъюнктивной и конъюнктивной нормальной формой.
 - 13. Понятие СДНФ (СКНФ). Теорема о существовании СДНФ (СКНФ).
 - 14. Алгоритмы построения СДНФ (СКНФ) по таблице истинности.
 - 15. Алгоритмы получения сокращенной ДНФ (КНФ) по карте Карно.
- 16. Определение графа, смежных ребер, смежных вершин. Что означает выражение "ребро инцидентно вершинам"?
- 17. Определение ориентированного, неориентированного, смешанного графа. Каноническое представление неориентированного графа (нарисовать пример).
- 18. Понятие: пустого графа, нуль-графа, тривиального графа, графа с петлями, мультиграфа, простого графа, бесконечного графа (приведите примеры каждого в виде диаграмм).
- 19. Что называют локальной степенью вершины графа. Понятие полустепени исхода" и "полустепень захода" для ориентированного графа. Понятие связного графа.
- 20. Перечислите возможные способы задания графов. Как формируются матрица инциденций, матрица смежности для неориентированного и ориентированного графов.
- 21. Какие графы называют изоморфными. Привести алгоритм сравнения графов, представленных матрицами смежности, на предмет выявления их изоморфности.
- 22. Пути дороги в неориентированном (ориентированном) графе: определение маршрута, длины маршрута, маршрута циклического, цепи, простой цепи, цикла, простого цикла.
 - 23. Что понимается под обходом графа. Описание алгоритма обхода графа в глубину.
- 24. Определение связного неориентированный графа. Что называется компонентой связности неориентированного графа.
- 25. Определение сильно связного и односторонне связного ориентированного графа. Компоненты сильной связности и односторонней связности графа.
- 26. Что есть отношение достижимости заданное на графе. Свойства отношения достижимости для неориентированного и ориентированного графов.
 - 27. Понятие отношения достижимости на множестве компонент сильной связности.
- 28. Задание матрицы связности для неориентированного графа, матрицы односторонней связности для ориентированного графа, матрицы сильной связности для ориентированного графа.

- 29. Метрические характеристики графов: определение расстояния между вершинами v_i и v_j в связном графе, диаметра связного графа, эксцентриситета вершины v в связном графе, радиуса графа, центральной вершины.
- 30. Понятие точки сочленения, моста и блока. Когда вершину графа можно считать точкой сочленения. Какое ребро считается мостом. Какой граф является блоком.
 - 31. Что называется вершинной и реберной связностью графа.
- 32. Определение эйлерова цикла, эйлерова графа. Теорема Эйлера для неориентированного и ориентированного графов (без доказательства).
 - 33. Описание рекурсивного алгоритма построения эйлерова цикла.
- 34. Описание алгоритма Дейкстры нахождения минимального пути между двумя произвольными вершинами в нагруженном ориентированном графе.
- 35. Описание алгоритма Форда Беллмана нахождения минимального пути в взвешенном ориентированном графе.
- 36. Определение неориентированного дерева. Что называют остовным деревом неориентированного связного графа. Что называется неориентированным лесом.
- 37. Определение ориентированного дерева, леса. Что называется остовным деревом ориентированного связного графа.
- 38. Определения корня, потомка вершины, предка вершины, листа, куста ориентированного дерева.
- 39. Определение высоты ориентированного дерева, глубины вершины v ориентированного дерева, высоты вершины ориентированного дерева v, уровня вершины ориентированного дерева v.
- 40. Какое ориентированное дерево называется бинарным. Какое бинарное ориентированное дерево называется полным.
 - 41. Описание алгоритма Краскала построения минимального остовного дерева.
- 42. Что называется цикломатическим числом графа G. Чему равно количество фундаментальных циклов графа G(V, E) при любом фиксированном остовном дереве T = (V, E').

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕ ННОСТЬ	
		Наличие в электронной библиотеке ВлГУ	
Основная литература			
1. Зарипова Э.Р. Декции по дискретной математике. Ма-тематическая логика/ учебное пособие М.: Российский университет дружбы народов, 2014120 с.	2014	http://www. iprbookshop. ru/22190	
2. Марченков С.С. Основы теории булевых функ-ций/учебное пособие М: ФИЗМАТЛИТ, 2014 136 с.	2014	http://www. iprbookshop. ru/24270	
3. Иванов И.П. Сборник за-дач по курсу «Дискретная математика»/ методические указания М.: Московский государственный техничес-кий университет имени Н.Э. Баумана, 2013 32 с	2013	http://www. iprbookshop. ru/31549	
4. Алексеев В.Б. Лекции по дискретной математике/ учебное пособие М.: НИЦ ИНФРАМ, 2013 90 с.	2013	http://www. znanium, com/catalog	

1. Усов С.В. Дискретная математика/ учебное пособие Омск: Омский гос. ун-т им. С.В. Достоев-ского, 2011 60 с.	2011	http://www. iprbookshop. ru/24884
2. Марченков С.С. Основы теории булевых функций/ учебное пособие М.: ФИЗМАТЛИТ, 2014 136 с.	2014	http://www. iprbookshop. ru/24270
3. Храмова Т.В. Дискретная математика. Элементы тео-рии графов/ учебное посо-бие Новосибирск: Сибир-ский гос. ун-т телекоммуни-каций и информатики, 2014 43 с.	2014	http://www. iprbookshop. ru/24270

6.2. Периодические издания

- 1. Вестник компьютерных и информационных технологий, ISSN: 1810-7206.
- 2. Computerworld Россия, ISSN: 1560-5213.
- 3. Мир ПК, ISSN: 0235-3520.

6.3. Интернет-ресурсы

- 1. The LaTeX Project // Режим доступа: https://www.latex-project.org/ ЭБС «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотека: http://www.twirpx.com

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, лабораторных занятий, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лабораторные занятия проводятся в компьютерном классе (100-3, 1226-3, 5116-3 или аналогичной аудитории в зависимости от сетки расписания).

Перечень используемого лицензионного программного обеспечения:

- 1) MS Word;
- 2) Visual Studio;

,,
Рабочую программу составил доц. каф. ФиПМ Горлов В.Н.
(ФИО, должность, подпись)
Рецензент Генеральный директор ООО «ФС Сервис» Д.С. Квасов
(место работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании кафедры ФиПМ
Протокол № 1 от 30.08.2021 года
Заведующий кафедройС.М. Аракелян
entr. ripakenin
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
направления 02.03.03 Математическое обеспечение и администрирование
информационных систем
Протокол № 1 от 30.08.2021 года
Председатель комиссии С.М. Аракелян
Civil reputesioni
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ
РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ
Рабочая программа одобрена на 20 22 / 20 2 учебный года
Протокол заседания кафедры № от от
Заведующий кафедрой
Рабочая программа одобрена на 20 / 20 учебный года
Протокол заседания кафедры № от года
Заведующий кафедрой