Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт прикладной математики, физики и информатики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

(наименование дисциплины)

направление подготовки / специальность

02.03.02 «Фундаментальная информатика и информационные технологии»

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Мобильные и Интернет-технологии

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Дифференциальные уравнения» является освоение основных теорем базовых разделов теории дифференциальных уравнений (теорем существования и единственности, теории линейных систем, теория устойчивости).

Задачей дисциплины является освоение основных методов решения и качественных методов исследования обыкновенных дифференциальных уравнений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Дифференциальные уравнения» относится к обязательной части учебного плана.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

*	Планируемые результаты обучен индикатором дост	Наименование	
Формируемые компетенции	Индикатор достижения компетенции	Результаты обучения по дисциплине	оценочного средства
ОПК-1. Способен	ОПК-1.1. Знает принципы	Знать базовые навыки,	Типовой расчет,
применять	использования	полученные в области	контрольные
фундаментальные	фундаментальных знаний,	математических и (или)	вопросы к рейтинг-
знания, полученные в	полученных в области	естественных наук.	
области	математических и (или)	Уметь использовать базовые	контролю и
математических и	естественных наук.	знания из области	промежуточной
(или) естественных	ОПК-1.2. Умеет	математических и (или)	аттестации
наук, и использовать	использовать базовые знания	естественных наук в	
их в	из области математических и	профессиональной деятельности.	
профессиональной	(или) естественных наук в	Владеть навыками выбора	
деятельности	профессиональной		4.
A0/1100111	деятельности.	методов решения задач	7.
	ОПК-1.3. Владеет навыками	профессиональной деятельности	6
	выбора методов решения	на основе теоретических знаний.	5.180.
			7. 54 4X
	задач профессиональной		
	деятельности на основе		979. 8
ОПК-3. Способен к	теоретических знаний.		Cri ting.
	ОПК-3.1. Знает методы	Знать:	Типовой расчет,
разработке	теории алгоритмов,	• методы теории алгоритмов;	контрольные 370
алгоритмических и	системного и прикладного	• методы системного и	вопросы к рейтинг-
программных решений	программирования, принципы	прикладного программирования;	контролю и
в области системного	и методологии тестирования	• принципы и методологии	промежуточной
и прикладного	программного обеспечения,	тестирования программного	аттестации
программирования,	принципы математического	обеспечения;	
математических,	моделирования, типовые	• принципы математического	2
информационных и	(универсальные)	моделирования;	30
имитационных	математические (включая	• типовые (универсальные))
моделей, созданию	информационные и	математические (включая	. 07
информационных	имитационные) модели,	информационные и	
ресурсов глобальных	формулы, теоремы и методы,	имитационные) модели,	
сетей,	используемые в широком	формулы, теоремы и методы,	3 100
образовательного	наборе областей применения	используемые в широком наборе	at little
контента, прикладных	прикладной математики.	областей применения	16.30 (
баз данных, тестов и	ОПК-3.2. Умеет определять и	прикладной математики.	27/20
средств тестирования	составлять информационные	Уметь:	
систем и средств на	ресурсы глобальных сетей,	• соотносить знания в области	K
соответствие	образовательного контента,	программирования;	
стандартам и	средств тестирования систем,	• определять и составлять	
исходным	осуществлять обоснованный	информационные ресурсы	l e
требованиям	выбор адекватных	глобальных сетей,	
	поставленной задаче базовых	образовательного контента,	
	математических моделей,	средств тестирования систем;	1.5
	модифицировать базовые и	• осуществлять обоснованный	

(ил	и) разрабатывать	выбор адекватных поставленной	
орг	игинальные	задаче базовых математических	
мат	гематические модели в	моделей;	
coc	ответствии со спецификой	• модифицировать базовые и	=
пос	ставленной задачи	(или) разрабатывать	
МО	делирования.	оригинальные математические	44
OT	ІК-3.3. Владеет навыками	модели в соответствии со	
раз	вработки программного	спецификой поставленной	9.1
обе	еспечения, а также	задачи моделирования.	
ВЫ	полнения математического	Владеть:	
мо,	делирования от анализа	• навыками разработки	
пос	становки задачи до анализа	программного обеспечения;	
pes	вультатов.	• навыками выполнения	
		математического моделирования	
		от анализа постановки задачи до	
<u> </u>		анализа результатов.	

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ Трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

Тематический план

форма обучения – очная

	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником			хся ским	льная	Формы текущего контроля
№ п/п				Лекции	Практические занятия	Лабораторные	в форме практической подготовки	Самостоятельная работа	успеваемости, форма промежуточной аттестации (по семестрам)
1	Обыкновенные дифференциальные уравнения (ОДУ). Общие понятия. Примеры из физики.	3	1	2	2		2	3	1
2	Простейшие методы отыскания решений.	3	2	2	2		2	3	- 1
3	Нормальные системы ОДУ и сведение уравнения n-го порядка к нормальной системе. Существование и единственность решений для нормальных систем ОДУ.	3	3-4	4			2	6	
4	Продолжение решений. Непрерывная зависимость решений от начальных данных и правой части.	3	5	2			1	3	
5	Линейные уравнения и системы линейных ОДУ. Фундаментальная матрица и ее свойства.	3	6	2			1	3	Рейтинг-контроль 1
6	Линейные неоднородные системы. Общее и частное решение. Принцип суперпозиции. Формула вариации постоянных.	3	7-8	4			2	6	
7	Линейные уравнения n-го порядка и их свойства. Фундаментальная система решений. Общее решение.	3	9	2			1	3	
8	Определитель Вронского системы решений линейного уравнения и его свойства. Формула Лиувилля-Остроградского.	3	10	2	2		2	3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
9	Линейные уравнение n-го порядка с постоянными коэффициентами.	3	11	2	2		2	3	Рейтинг-контроль 2
10	Линейные неоднородные уравнения n-го порядка с постоянными коэффициентами. Частное решение.	3	12	2	2		2	3	- 1 - 2 - 2 - 7
11	Линейные системы с постоянными коэффициентами. Характеристическое уравнение и представление решений.	3	13	2	2		2	3	de Alberta
12	Линейные неоднородные системы с постоянными коэффициентами Формула вариации постоянных.	3	14	2	2		2	3	2
13	Автономные системы. Устойчивость.	3	15	4	2		3	6	

Итого по дисциплине				36	18		54	Зачет с оценкой
Всего	за 3 семестр:			36	18		54	Зачет с оценкой
15	Дифференцируемость решений по параметру.	3	17- 18	2	1	1,5	3	Рейтинг-контроль 3
14	Особые точки. Фазовый портрет двумерных линейных систем.	3	16	2	1	1,5	3	

Содержание лекционных занятий по дисциплине

- **Тема 1.** Обыкновенные дифференциальные уравнения (ОДУ). Общие понятия. Решение ОДУ и его свойства. Геометрическое представление графиков решений. Начальные данные и задача Коши для ОДУ. Примеры из физики.
- **Тема 2.** Уравнения с разделяющимися переменными. Однородные уравнения. Линейные уравнения. Уравнения в полных дифференциалах. Метод понижения порядка.
- **Тема 3.** Нормальные системы ОДУ и сведение уравнения n-го порядка к нормальной системе. Существование и единственность решения задачи Коши для нормальных систем ОДУ.
- **Тема 4.** Продолжение решений. Условия подлинейного роста. Непрерывная зависимость решений от начальных данных и правой части. Уравнения n-го порядка, разрешенные относительно старшей производной и их сведение к нормальной системе дифференциальных уравнений. Теоремы о существовании и единственности решения задачи Коши для уравнения n-го порядка. Теоремы о продолжении и непрерывной зависимости решений от начальных данных. Теорема о степени гладкости решения.
- **Тема 5.** Линейные уравнения и системы линейных ДУ. Свойства решений линейных систем. Линейная независимость решений. Определитель Вронского системы решений линейного уравнения и его свойства. Формула Лиувилля-Остроградского.
- **Тема 6.** Линейные неоднородные системы. Общее и частное решение. Принцип суперпозиции. Представление решения с помощью фундаментальной матрицы. Формула вариации постоянных.
- **Тема 7.** Линейные уравнения n-го порядка и их свойства. Фундаментальная система решений. Общее решение.
- **Тема 8.** Определитель Вронского системы решений линейного уравнения и его свойства. Формула Лиувилля-Остроградского.
- **Тема 9.** Линейные уравнение n-го порядка с постоянными коэффициентами. Характеристическое уравнение и представление решений. Общее решение.
- **Тема 10.** Линейные неоднородные уравнения с постоянными коэффициентами. Частное решение. Отыскание частного решения методом неопределенных коэффициентов. Метод вариации постоянных.
- **Тема 11.** Линейные системы ДУ с постоянными коэффициентами. Характеристический многочлен. Представление общего решения.
- **Тема 12.** Линейные неоднородные системы ДУ с постоянными коэффициентами. Отыскание частного решения методом неопределенных коэффициентов. Формула вариации постоянных решения задачи Коши. Краевые задачи для линейного уравнения второго порядка. Функция Грина.
- **Тема 13.** Автономные системы. Фазовое пространство. Векторное поле. Траектории автономных систем и их свойства. Устойчивость по Ляпунову. Устойчивость нулевого решения линейных систем с постоянными коэффициентами. Функция Ляпунова. Теорема Ляпунова об устойчивости. Теорема об устойчивости по первому приближению.
- **Тема 14.** Особые точки. Фазовый портрет двумерных линейных систем. Особые точки пинейных систем второго порядка с постоянными коэффициентами. Грубость особых точек автономных нелинейных систем второго порядка.
- **Тема 15.** Дифференцируемость решений нормальной системы по параметру. Система уравнений в вариациях. Разложение решения в ряд по степеням малого параметра. Метод изоклин. Уравнения с разделяющимися переменными.

- Тема 1. Обыкновенные дифференциальные уравнения (ОДУ). Примеры из физики. Решение задач.
 - Тема 2. Простейшие методы отыскания решений. Решение задач.
- Тема 3. Определитель Вронского системы решений линейного уравнения и его свойства. Формула Лиувилля-Остроградского. Решение задач.
 - **Тема 4.** Линейные уравнение n-го порядка с постоянными коэффициентами. Решение задач.
- Тема 5. Линейные неоднородные уравнения п-го порядка с постоянными коэффициентами. Частное решение. Решение задач.
- Тема 6. Линейные системы с постоянными коэффициентами. Характеристическое уравнение и представление решений. Решение задач.
- Тема 7. Линейные неоднородные системы с постоянными коэффициентами Формула вариации постоянных. Решение задач. 1 чиение
 - **Тема 8.** Автономные системы. Устойчивость. Решение задач.
 - **Тема 9.** Особые точки. Фазовый портрет двумерных линейных систем. Решение задач.
 - Тема 10. Дифференцируемость решений по параметру. Решение задач.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

3.88

THO N

903.

5.1. Текущий контроль успеваемости

Рейтинг-контроль №1

«Элементарные методы интегрирования уравнений первого порядка и уравнений, допускающих понижение порядка. Интегрирование линейных уравнений и систем

- высших порядков»

 1. Решить уравнение $xy'\cos\frac{y}{x}=y\cos\frac{y}{x}-x$.

 2. Решить задачу Коши $2(x+y^4)\mathrm{d}y=y\mathrm{d}x,\,y(0)=1$.
- 3. Решить уравнение $y' = xy xy^3$.
- 4. Найти частный интеграл уравнения $(2x + \frac{y}{x})dx + (\ln x y^3)dy = 0$, удовлетворяющий условию y(1) = 1.
 - 5. Найти общее решение, используя метод подбора: $y'' 2y' 3y = -4e^x + 3$. 6. Найти общее решение методом вариации: $y'' + y = -\frac{1}{\sin 2x \sqrt{\sin 2x}}$.

 - 7. Решить задачу Коши: $y' = -2y + z e^{2x}$, $z' = -3y + 2z + 6e^{2x}$, y(0) = z(0) = 1.
- 8. Построить линейное однородное дифференциальное уравнение (возможно более низкого порядка) с постоянными коэффициентами, для которого функция $y_1 = xe^x \cos 2x$ частное решение.

Рейтинг-контроль №2

«Зависимость решений ОДУ от начальных данных и параметров. Основы математической теории устойчивости»

- 1. При y(0)=0, $y'(0)=1+\mu$, найти $\frac{\partial y}{\partial \mu}$ при $\mu=0$, если $y''-3y+\sin \mu y=\mu x$. 2. При $y(2)=y_0$ найти $\frac{\partial y}{\partial y_0}$ при $y_0=0$, если $y'-y=2y^2+4xy^3$.
- 3. При x(0) = y(0) = 0 найти $\frac{\partial y}{\partial \mu}$ при $\mu = 0$, если $\begin{cases} \dot{x} = 1 + 10 \mu y \\ \dot{y} = 2tx^2 \end{cases}$
- 4. Решить краевую задачу y'' = 4y + 2, y(0) = 1, y(x) ограничено при $x \to +\infty$.
- 5. Пользуясь определением устойчивости по Ляпунову, выяснить устойчивость решения задачи Коши 4xt + (2t+1)x' = 0, x(0) = 1.
- 6. По теореме об устойчивости по 1-му приближению исследовать устойчивость нулевого решения системы $\dot{x} = y \lg x - y$, $\dot{y} = -2 \ln(1 + x + y^2) - 3y$.

- 7. При каких значениях параметров a и b асимптотически устойчиво нулевое решение системы $\dot{x} = x 2\sin ay + x^3$, $y = -2e^{bx} 3y + 2$.
- 8. Пользуясь известными условиями гурвицевости полинома, исследовать асимптотическую устойчивость нулевого решения уравнения $y^5 + y^4 + 6y''' + 4y'' + 8y' + 3y = 0$.
- 9. Начертить на плоскости Oxy эскиз траекторий системы вблизи точки (0,0) и с помощью функции Ляпунова либо Четаева исследовать устойчивость нулевого решения системы $x = \sin x$, $y = x + y^3$.

Рейтинг-контроль №3

«Элементы качественного анализа динамических систем. Уравнения с частными производными первого порядка».

- 1. Для заданного линейного векторного поля изобразить фазовый портрет вблизи особой точки (0;0). Определить тип особой точки.
 - 2. Определить тип особой точки заданного нелинейного векторного поля.
- 3. Методом характеристик построить общее решение линейного однородного либо квазилинейного уравнения в частных производных первого порядка.
- 4. Методом характеристик построить интегральную поверхность линейного однородного либо квазилинейного уравнения в частных производных первого порядка, проходящую через данное начальное многообразие.

Для выдачи конкретных заданий используются материалы сборника: Сборник задач по дифференциальным уравнениям и вариационному исчислению : учебное пособие / В.К. Романко, Н.Х. Агаханов, В.В. Власов, Л.И. Коваленко. — 6-е изд. — Москва : Лаборатория знаний, 2020. — 222 с. — ISBN 978-5-00101-799-8. — https://e.lanbook.com/book/135528

5.2. Промежуточная аттестация по итогам освоения дисциплины (зачет с оценкой) Вопросы к зачету с оценкой

- 1. Основные понятия: дифференциальное уравнение n-го порядка, решение дифференциального уравнения. Интегральные кривые. Геометрический смысл уравнения у'=f(x,y).
- 2. Уравнения с разделяющимися переменными. Однородные уравнения и свойства решений однородного уравнения.
 - 3. Линейные уравнения первого порядка. Уравнения в полных дифференциалах.
- 4. Нормальная система дифференциальных уравнений и ее решения. Задача Коши для системы дифференциальных уравнений. Условие Липшица.
- 5. Сведение задачи Коши для системы дифференциальных уравнений к интегральному уравнению. Теорема существования и единственности решения задачи Коши для системы дифференциальных уравнений.
 - 6. Теорема о существовании и единственности решения для уравнения n-го порядка.
- 7. Система линейных дифференциальных уравнений. Свойства решений однородной системы дифференциальных уравнений. Линейная независимость решений.
- 8. Определитель Вронского системы решений. Фундаментальная система решений. Переход от однородной фундаментальной матрицы к другой. Формула Лиувилля-Остроградского.
- 10. Общее решение линейной неоднородной системы дифференциальных уравнений. Метод вариации постоянных.
 - 11. Линейные уравнения п-го порядка. Частное решение.
- 12. Линейные уравнения с постоянными коэффициентами. Характеристический многочлен и собственные значения. Решения, отвечающие собственным значениям (все случаи).
- 13. Линейные система дифференциальных уравнений с постоянными коэффициентами. Решения, отвечающие различным собственным значениям. Случай комплексных корней.
- 14. Линейные системы дифференциальных уравнений с постоянными коэффициентами. Случай кратных корней.
 - 15. Особые точки и фазовый портрет линейных систем на плоскости.

118

\$ OH

- 16. Устойчивость по Ляпунову. Асимптотическая устойчивость. Устойчивость нулевого решения для линейных систем с постоянными коэффициентами.
 - 17. Исследование устойчивости с помощью функции Ляпунова.
 - 18. Устойчивость по первому приближению.

5.3. Самостоятельная работа обучающегося.

Задания к типовому расчету

BUTO

- 1. Решить задачу:
 - a) xy' = 2y(x + 1);
 - b) (x + y)y' 2x + y = 0;
 - c) y' + 2y = x + 1:
 - d) $(3x^2 + 3y \sin x + 1)dx + (2y \cos x)dy = 0$.
- 2. Решить задачу Коши:

a)
$$y' + 2y/x = 3$$
; $y(0) = 1$;

b)
$$y' + xy = x^2 + 1$$
; $y(0) = -2$;

c)
$$y' + 4y = 4x + 5$$
; $y(1) = 1$;

d)
$$xy' + y = 4x$$
; $y(1) = 0$.

3. Решить задачу Коши:

a)
$$y'' - 2y' - 3y = 0$$
; $y(1) = 0$; $y'(1) = 2$;

b)
$$y'' + 2y' - 3y = 0$$
; $y(-1) = 1$; $y'(-1) = 0$;

c)
$$y'' + 2y' - 8y = 0$$
; $y(0) = 0$; $y'(0) = 2$;

d)
$$2y'' + 3y' + y = 0$$
; $y(2) = 2$; $y'(2) = -2$.

4. Решить уравнения:

a)
$$2y'' - y' - y = x$$
;

b)
$$y''' + 2y' = \cos x$$
;

c)
$$y'' - y' - 12y = 2x$$
;

d)
$$y''' - y'' - 2y0 = 1$$
;

e)
$$2y'' + 2y' + y = x - 1$$
;

f)
$$y''' - 2y'' - y' + 2y = 3x$$
.

5. Решить систему уравнений:

5.1. a)
$$\begin{cases} \dot{x} = x + 2y + t \\ \dot{y} = 2x + 4y \end{cases}$$
; b)
$$\begin{cases} \dot{x} = 2x - y - z \\ \dot{y} = x - z \\ \dot{z} = 3x - y - 2z \end{cases}$$
 a)
$$\begin{cases} \dot{x} = x + 2y + t \\ \dot{y} = 2x + 4y \end{cases}$$
; b)
$$\begin{cases} \dot{x} = 2x - y - z \\ \dot{y} = x - z \\ \dot{z} = 3x - y - 2z \end{cases}$$
 5.3. a)
$$\begin{cases} \dot{x} = 2x + 2y + t \\ \dot{y} = 2x + 4y \end{cases}$$
; b)
$$\begin{cases} \dot{x} = 2x - y - z \\ \dot{y} = x - z \\ \dot{z} = 3x - y - 2z \end{cases}$$
 5.4. a)
$$\begin{cases} \dot{x} = 2x + 2y + t \\ \dot{y} = 2x + 4y \end{cases}$$
 b)
$$\begin{cases} \dot{x} = x - 2y + 2z \\ \dot{y} = x + 4y - 2z \\ \dot{z} = x + 5y - 3z \end{cases}$$

5.3.
$$a) \begin{cases} \dot{x} = 2x + 2y \\ \dot{y} = 4x + y + 2t \end{cases}; \qquad b) \begin{cases} \dot{x} = x - 2y + 2z \\ \dot{y} = x + 4y - 2z \\ \dot{z} = x + 5y - 3z \end{cases} \qquad a) \begin{cases} \dot{x} = 2x + 2y \\ \dot{y} = 4x + y + 2t \end{cases}; \qquad b) \begin{cases} \dot{x} = x - 2y + 2z \\ \dot{y} = x + 4y - 2z \\ \dot{z} = x + 5y - 3z \end{cases}$$

оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ **ДИСЦИПЛИНЫ**

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год	КНИГООБЕСПЕЧЕННОСТЬ		
тальногование литературы. автор, название, вид издания, издательство	издания	Наличие в электронном каталоге ЭБС		
Основная литература				
1. Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. – 240 с ISBN 978-5-484-00786-8.	2007	https://alleng.org/d/math- stud/math-st879.htm		
2. Сборник задач по дифференциальным уравнениям / Филиппов А. Ф М.: Книжный дом ЛИБРОКОМ, 2011 - 240 с ISBN 978-5-397-01632-2.	2011	http://kvm.gubkin.ru/pub/ uok/FilippovDU.pdf		
3. Ибрагимов, Н. Х. Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы.	2012	https://www.studentlibrar y.ru/book/ISBN97859221		

		. 100/
Нелинейные математические модели. Симметрия и принципы инвариантности / Ибрагимов Н. Х.; Пер. с англ. И. С. Емельяновой 2-е изд., доп. и испр Москва: ФИЗМАТЛИТ, 2012 332 с ISBN 978-5-9221-1377-9.		13779.html
Дополнительная литература		
1. Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений / Петровский И. Г Москва: ФИЗМАТЛИТ, 2009 208 с ISBN 978-5-9221-1144-7.	2009	https://www.studentlibrar y.ru/book/ISBN97859221 11447.html
 6.2. Периодические издания 1. Успехи математических наук, журнал РАН (корпус 3, ауд. 414) 6.3. Интернет-ресурсы 1. http://window.edu.ru/ 2. http://www.exponenta.ru/ 3. http://allmath.com/ 		, vin
7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕН	ие лис	спиплины
Для реализации данной дисциплины имеются специальные пом лекционного и практического типа. Практические работы провод методов (405-3). Перечень используемого лицензионного программного обеспечен	ещения; ятся в л	для проведения занятий паборатории численных
Рабочую программу составил: доцент каф. ФАиП, к.фм.н. Мастерков Ю.В.	1	
Рецензент (представитель работодателя): заместитель директора по развитию ООО «Баланс» Кожин А.В.	K	
Программа рассмотрена и одобрена на заседании кафедры ФАиГ Протокол №от <u>30.08.2021</u> года Заведующий кафедрой ФАиП, к.фм.н., доцент Бурков В.Д	D	ALLEMA ALLEMAX
Рабочая программа рассмотрена и одобрена на заседании ученаправления 02.03.02 «Фундаментальная информатика и информ Протокол № от года Председатель комиссии Зав. кафедрой ФиПМ, д.фм.н. Аракелян С.М	ационн	тодической комиссии ые технологии»»
		21
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛ	ины	2033
Рабочая программа одобрена на 20 <u>Д</u> / 20 <u>ИЗ</u> унебный года Протокол заседания кафедры № <u>/</u> от <u>ЭО ОВ ЖА</u> года Ваведующий кафедрой	Jan	nun
Рабочая программа одобрена на 20 / 20 унебный года Протокол заседания кафедры № от года Заведующий кафедрой		
Рабочая программа одобрена на 20 / 20 учебный года Протокол заседания кафедры № от года Заведующий кафедрой		