Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Педагогический институт

УТВЕРЖДАЮ:

Директор института

М.В. Артамонова

2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теплотехника

(наименование дисциплины)

направление подготовки / специальность

44.03.05 «Педагогическое образование» (с двумя профилями подготовки) (код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

«Технология. Экономическое образование» (направленность (профиль) подготовки)

г. Владимир

2021 г.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Теплотехника» является формирование знаний и практических навыков по получению, преобразованию, передаче и использованию тепловой энергии.

Задачи:

- изучение фундаментальных законов термодинамики, особенностей рабочих тел и термодинамических процессов;
- изучение параметров, позволяющих дать качественную и количественную характеристику термодинамических и тепловых процессов;
- изучение основных термодинамических и тепловых закономерностей и процессов, протекающих в тепловых двигателях и холодильных установках.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теплотехника» относится к обязательной части учебного плана.

Дисциплина «Теплотехника» использует знания, полученные при изучении технической физики, математики.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций):

Формируемые	Планируемые результаты с	Наименование	
компетенции	в соответствии с инди	оценочного	
(код,	компете	енции	средства
содержание	Индикатор достижения	Результаты обучения	
компетенции)	компетенции	по дисциплине	
	(код, содержание		
	индикатора		
ОПК-2	ОПК.2.1. Осуществляет	Знает:	Практико-
	разработку программ	- законы	ориентированные
	отдельных учебных	термодинамики и	задания
	предметов, в том числе	теплопередачи;	
	программ	- основные	
	дополнительного	закономерности	
	образования (согласно	термодинамических	
	освоенному профилю	процессов в	
	(профилям) подготовки)	энергетических	
	ОПК.2.2. Демонстрирует	установках;	
	умение разрабатывать	с целью разработки	
	программу развития	программы по	
	универсальных учебных	технологии и программ	
	действий средствами	дополнительного	
	преподаваемой(-ых)	образования	
	учебных дисциплин, в	Умеет:	
	том числе с	- решать тепловые	
	использованием ИКТ	задачи применительно	

ОПК.2.3. Демонстрируем умение разрабатывать планируемые результаты обучения и системы их оценивания, в том числе с использованием ИКТ (согласно освоенному профилю (профилям) подготовки)	к различным элементам энергоустановок в целях развития универсальных учебных действий. Владеет: -навыками разработки планируемых результатов обучения по соответствующему разделу технологии или программе дополнительного образования
	образования

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ Трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов

Тематический план форма обучения – очная

$N_{\underline{0}}$	Наименование тем				Контакті	ная раб	ота		Формы
Π/	и/или разделов/тем		ಡ		обуча	ющихс	Я	Б	текущего контроля
П	дисциплины		семестра		с педаго			эна	успеваемости,
		Q.L.	Me		работ	гником		en Fa	форма
		Семестр	Se		ие	ые	ой и	стоятел работа	промежуточной
		Cel	И	ИИ	эск	нда	ме еск 26к	ра	аттестации
			Неделя	Лекции	актичес) занятия	ораторі занятия	op.	Самостоятельная работа	(по семестрам)
			H	Ле	Трактические занятия	op 3af	в форме практической подготовки	Ű	
					Пр	Лабораторные занятия	npc nc		
1.	Общие понятия и	4							
	определения.								
	Основные параметры								
	стояния газа.								
	Уравнение состояния			4		6		4	
	идеального газа.								
	Газовые смеси.		1-3						
	Теплоемкость.		-						
	Количество теплоты.								

	Всего за 4 семестр			18	36	27	(4 семестр, 27 ч.)
7.	Основные понятия и определения. Виды теплообмена. Теплопроводность. Лучистый теплообмен. Конвективный теплообмен.	4	15-18	2	6	3	рейтинг-контроль 3
6.	Уравнение состояния для реальных газов. Рассмотрение процесса парообразования по р-V, I-S и TS диаграммам. Водяной пар. Дросселирование пара и газа.	4	13-14	2	4	4	
5.	Основы термоядерной энергии. Термоядерные энергетические установки. Энергетические установки с МГД-генераторами.	4	11-12	2	6	4	рейтинг-контроль 2
4.	Холодильные и криогенные машины. Тепловые насосы и кондиционеры.	4	9-10	2	4	4	
3.	Понятие о круговом процессе. Понятие об энтропии газа. Второй закон термодинамики. Цикл Карно и его термодинамическое значение. Понятие о TS-диаграмме.	4	7-8	4	4	4	
2.	Понятие термодинамического процесса. Внутренняя энергия и работа расширения и сжатия рабочего тела. Первый закон термодинамики. Энтальпия газа. Процессы изменения состояния идеального газа.	4	4-6	2	6	4	рейтинг-контроль 1

			(4 семестр, 27 ч.)

Содержание лекционных занятий по дисциплине

- Тема 1. Общие понятия и определения. Основные параметры стояния газа. Уравнение состояния идеального газа. Газовые смеси. Теплоемкость. Количество теплоты.
- Тема 2. Понятие термодинамического процесса. Внутренняя энергия и работа расширения и сжатия рабочего тела. Первый закон термодинамики. Энтальпия газа. Процессы изменения состояния идеального газа.
- Тема 3. Понятие о круговом процессе. Понятие об энтропии газа. Второй закон термодинамики. Цикл Карно и его термодинамическое значение. Понятие о TS-диаграмме.
 - Тема 4. Холодильные и криогенные машины. Тепловые насосы и кондиционеры.
- Тема5. Основы термоядерной энергии. Термоядерные энергетические установки. Энергетические установки с МГД-генераторами.
- Тема 6. Уравнение состояния для реальных газов. Рассмотрение процесса парообразования по p-V, I-S и TS диаграммам. Водяной пар. Дросселирование пара и газа.
- Тема 7. Основные понятия и определения. Виды теплообмена. Теплопроводность. Лучистый теплообмен. Конвективный теплообмен.

Содержание лабораторных занятий по дисциплине

Лабораторные работы являются формой индивидуально-группового и практикоориентированного обучения, ориентированного на практическое освоение и закрепление знаний на основе исследования реальных процессов, физически или математически смоделированных применительно к виду и профилю профессиональной деятельности.

Таблица 2. Перечень лабораторных работ

таолица 2. переченв наобраторных расот	
Наименование лабораторных работ	Продолжите
n to a new transfer of fine	льность
2	3
4 семестр	
Определение коэффициента поверхностного натяжения разными методами.	4
Определение постоянной Авогадро.	4
Изучение законов внутреннего трения.	4
Определение отношения удельных теплоемкостей газов методом Клемана-Дезорма.	4
Изучение теплового расширения твердых тел.	4
Определение удельной теплоты перехода воды в пар при температуре кипения.	4
Измерение влажности воздуха.	4
Определение размеров молекул жирных кислот.	4
Определение теплоты растворения соли.	2
Bcero	36
	Наименование лабораторных работ 2 4 семестр Определение коэффициента поверхностного натяжения разными методами. Определение постоянной Авогадро. Изучение законов внутреннего трения. Определение отношения удельных теплоемкостей газов методом Клемана-Дезорма. Изучение теплового расширения твердых тел. Определение удельной теплоты перехода воды в пар при температуре кипения. Измерение влажности воздуха. Определение размеров молекул жирных кислот.

Тематический план форма обучения – заочная

<u>№</u> π/ π	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Лекции	с педаго	ющихся	я ИМ	Самостоятельная работа	Формы текущего контроля успеваемости, форма промежуточной аттестации (по семестрам)
1.	Общие понятия и определения. Основные параметры стояния газа. Уравнение состояния идеального газа. Газовые смеси. Теплоемкость. Количество теплоты.	4				(ı	16	
2.	Понятие термодинамического процесса. Внутренняя энергия и работа расширения и сжатия рабочего тела. Первый закон термодинамики. Энтальпия газа. Процессы изменения состояния идеального газа.	4						16	
3.	Понятие о круговом процессе. Понятие об энтропии газа. Второй закон термодинамики. Цикл Карно и его термодинамическое значение. Понятие о TS-диаграмме.	4	19	2		4		12	
4.	Холодильные и криогенные машины. Тепловые насосы и кондиционеры.	4						16	

5.	Основы термоядерной энергии. Термоядерные энергетические установки. Энергетические установки с МГД-генераторами.	4				16	
6.	Уравнение состояния для реальных газов. Рассмотрение процесса парообразования по р-V, I-S и TS диаграммам. Водяной пар. Дросселирование пара и газа.	4	20	2	4	12	
7.	Основные понятия и определения. Виды теплообмена. Теплопроводность. Лучистый теплообмен. Конвективный теплообмен.	4	21	2	4	11	
	Всего за 4 семестр			6	12	99	Экзамен (4 семестр, 27 ч.)
	Итого по дисциплине			6	12	99	Экзамен

Содержание лекционных занятий по дисциплине

Тема 3. Понятие о круговом процессе. Понятие об энтропии газа. Второй закон термодинамики. Цикл Карно и его термодинамическое значение. Понятие о TS-диаграмме.

Тема 6. Уравнение состояния для реальных газов. Рассмотрение процесса парообразования по p-V, I-S и TS диаграммам. Водяной пар. Дросселирование пара и газа.

Тема 7. Основные понятия и определения. Виды теплообмена. Теплопроводность. Лучистый теплообмен. Конвективный теплообмен.

Содержание лабораторных занятий по дисциплине

Лабораторные работы являются формой индивидуально-группового и практикоориентированного обучения, ориентированного на практическое освоение и закрепление знаний на основе исследования реальных процессов, физически или математически смоделированных применительно к виду и профилю профессиональной деятельности.

Таблица 2. Перечень лабораторных работ

№ п/п	Наименование лабораторных работ	Продолжите льность
1	2	3
	4 семестр	
1.	Определение отношения удельных теплоемкостей газов методом Клемана-Дезорма.	4

2.	Изучение теплового расширения твердых тел.	4
3.	Измерение влажности воздуха.	4
	Всего	12

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Рейтинг-контроль 1

- 1. Термодинамическое рабочее тело. Параметры состояния. Уравнения состояния рабочего тела.
- 2. Теплоемкость газов.
- 3. Первый закон термодинамики. Работа газа.
- 4. Внутренняя энергия. Энтальпия. Энтропия.
- 5. Анализ термодинамических процессов. Изохорный и изобарный процессы.
- 6. Анализ термодинамических процессов. Изотермический и адиабатный процессы.
- 7 Политропные процессы.

Рейтинг-контроль 2

- 1. Второй закон термодинамики.
- 2. Энтальпия. Энтропия.
- 3. Цикл Карно.
- 4. Цикл холодильных машин.
- 5. Тепловые насосы и кондиционеры.

Рейтинг-контроль 3

- 1. Основы термоядерной энергии.
- 2. Термоядерные энергетические установки.
- 3. Энергетические установки с МГД-генераторами.
- 4. Уравнение состояния для реальных газов.
- 5. Рассмотрение процесса парообразования по p-V, I-S и TS диаграммам.
- 6. Водяной пар. Дросселирование пара и газа.
- 7. Теплопроводность.
- 8.Лучистый теплообмен.
- 9.Конвективный теплообмен.

5.2. Промежуточная аттестация

Вопросы к экзамену по дисциплине «Теплотехника»

- 1. Общие понятия и определения технической термодинамики.
- 2. Основные параметры стояния газа. Уравнение состояния идеального газа.
- 3. Законы изменения состояния идеального газа.
- 4. Основное уравнение молекулярно-кинетической теории идеального газа.
- 5. Средняя кинетическая энергия одно-, двух- и многоатомной молекулы идеального газа.
- 6. Газовые смеси. Закон Дальтона.
- 7. Теплоемкость. Уравнение Майера.
- 8. Количество теплоты.
- 9. Понятие термодинамического процесса. Внутренняя энергия и работа расширения и сжатия рабочего тела.
- 10. Первый закон термодинамики.
- 11. Энтальпия газа.
- 12. Анализ термодинамических процессов. Изохорный и изобарный процессы.
- 13. Анализ термодинамических процессов. Изотермический и адиабатный процессы.
- 14. Политропные процессы.
- 15. Понятие о круговом процессе. Понятие об энтропии газа.
- 16. Второй закон термодинамики.
- 17. Обратимый цикл. Цикл Карно и его термодинамическое значение.
- 18. Понятие о TS-диаграмме.
- 19. Цикл холодильной машины. Холодильные и криогенные машины.
- 20. Тепловые насосы и кондиционеры.
- 21. Уравнение состояния для реальных газов (уравнение Ван-дер-Ваальса).
- 22. Изотермы реального газа. Критическое состояние.
- 23. Рассмотрение процесса парообразования по p-V, I-S и TS диаграммам.
- 24. Влажный воздух. Понятия абсолютной и относительной влажности.
- 25. Водяной пар. Дросселирование пара и газа.
- 26. Виды теплообмена. Основные понятия.
- 27. Теплопроводность. Закон Био-Фурье.
- 28. Теплопроводность через плоскую стенку.
- 29. Лучистый теплообмен. Законы Стефана Больцмана и Кирхгофа.
- 30. Конвективный теплообмен. Уравнение Ньютона-Рихмана.
- 31. Предмет и задачи гидравлики.
- 32. Физические свойства жидкости.
- 33. Силы в жидкости.
- 34. Гидростатическое давление.
- 35. Основное уравнение гидростатики.
- 36. Избыточное и вакуумметрическое давления.
- 37. Закон Паскаля.
- 38. Относительный покой жидкости.
- 39. Сила давления жидкости на плоскую поверхность.
- 40. Сила давления жидкости на криволинейную поверхность.
- 41. Закон Архимеда.
- 42. Уравнение неразрывности жидкости.
- 43. Гидродинамика. Понятие идеальной жидкости.
- 44. Уравнение Бернулли для идеальной жидкости.
- 45. Уравнение Бернулли для реальной жидкости.

- 46. Режимы движения жидкости. Ламинарное течение.
- 47. Режимы движения жидкости. Турбулентное течение.
- 48. Потери напора.
- 49. Местные потери напора.
- 50. Истечение жидкости через отверстия.
- 51. Истечение жидкости через насадки.
- 52. Классификация насосов.
- 53. Центробежные насосы.
- 54. Поршневые насосы.

5.3. Самостоятельная работа обучающегося

Раздел 1. Общие понятия и определения. Основные параметры стояния газа. Уравнение состояния идеального газа. Газовые смеси. Теплоемкость. Количество теплоты.

Задание: Осуществить обзор литературных источников по данной теме. Изучить основные понятия и законы данной темы. Подготовиться к обсуждению изучаемых вопросов, создать презентацию по данной теме.

Литература: вся рекомендованная по дисциплине литература.

Раздел 2. Понятие термодинамического процесса. Внутренняя энергия и работа расширения и сжатия рабочего тела. Первый закон термодинамики. Энтальпия газа. Процессы изменения состояния идеального газа.

Задание: Осуществить обзор литературных источников по данной теме.

Изучить основные понятия и законы темы. Подготовиться к обсуждению изучаемых вопросов и написать доклад.

Литература: вся рекомендованная по дисциплине литература.

Раздел 3. Понятие о круговом процессе. Понятие об энтропии газа. Второй закон термодинамики. Цикл Карно и его термодинамическое значение. Понятие о TS-диаграмме.

Задание: Осуществить обзор литературных источников по данной теме.

Изучить предложенные вопросы по данной теме. Подготовиться к собеседованию по изученным вопросам.

Литература: вся рекомендованная по дисциплине литература.

Раздел 4. Холодильные и криогенные машины. Тепловые насосы и кондиционеры.

Задание: Осуществить обзор литературных источников по данной теме. Изучить предложенные вопросы по данной теме. Подготовиться к обсуждению изучаемых вопросов и подготовить презентацию по данной теме.

Литература: вся рекомендованная по дисциплине литература.

Тема 5. Основы термоядерной энергии. Термоядерные энергетические установки.

Энергетические установки с МГД-генераторами.

Задание: Осуществить обзор литературных источников по данной теме.

Изучить предложенные вопросы по данной теме. Подготовиться к обсуждению изучаемых вопросов.

Литература: вся рекомендованная по дисциплине литература.

Тема 6. Уравнение состояния для реальных газов. Рассмотрение процесса парообразования по p-V, I-S и TS диаграммам. Водяной пар. Дросселирование пара и газа.

Задание: Осуществить обзор литературных источников по данной теме.

Изучить предложенные вопросы по данной теме.

Подготовиться к обсуждению изучаемых вопросов и подготовить презентацию по данной теме.

Литература: вся рекомендованная по дисциплине литература.

Тема 7. Основные понятия и определения. Виды теплообмена. Теплопроводность. Лучистый теплообмен. Конвективный теплообмен.

Задание: Осуществить обзор литературных источников по данной теме.

Изучить предложенные вопросы по данной теме, подготовиться к обсуждению изучаемых вопросов и создать презентацию по данной теме.

Литература: вся рекомендованная по дисциплине литература.

Фонд оценочных материалов (Φ OM) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид	Год	КНИГООБЕСПЕЧЕННОСТЬ
издания, издательство	издания	Наличие в электронном каталоге
		ЭБС
Основн	ая литера	тура
1. Яновский А.А., Теоретические	2017	
основы теплотехники: учебное пособие		URL:
/ А.А. Яновский - Ставрополь : АГРУС		http://www.studentlibrary.ru/book/stav
Ставропольского гос. аграрного ун-та.		gau_00105.html
2. Лахмаков В.С.,	2019	
Основы теплотехники и гидравлики:		URL:
учеб. пособие / В.С. Лахмаков, В.А.		http://www.studentlibrary.ru/book/ISB
Коротинский - Минск : РИПО.		N9789855034774.html
3. Мирам А.О., Техническая	2017	URL:
термодинамика. тепломассообмен / А.О.		http://www.studentlibrary.ru/book/ISB
Мирам, В.А. Павленко - М.:		N9785930938418.html
Издательство АСВ.		
4.Александров, А.А. Теплотехника:	2018	URL:
учебник для вузов / А. А. Александров,		https://www.studentlibrary.ru/book/ISB
А. М. Архаров, И. А. Архаров, В. Н.		N9785703849026.html
Афанасьев и др.; под общ. ред. А. М.		
Архарова, В. Н. Афанасьева 6-е изд		
Москва: Издательство МГТУ им. Н. Э.		
Баумана		
Дополните	льная лит	ература
1. Козлов Н.А.Техническая	2017	Электронная библиотека ВлГУ
термодинамика и теплотехника:		http://e.lib.vlsu.ru:80/handle/12345678
учебное пособие— Владимир:		<u>9/1376</u>
Владимирский государственный		
университет (ВлГУ).		
2. Замалеев, 3. Х. Основы гидравлики и	2014	
теплотехники: Учебное издание / Под		https://www.studentlibrary.ru/book/ISB
общей ред. проф. В. Н. Посохина		N9785432300218.html
Москва: Издательство АСВ.		
3. Кудинов, В. А. Теплотехника:	2012	URL:
учебное пособие / В. А. Кудинов, Э. М.		https://www.studentlibrary.ru/book/ISB
Карташов, Е. В. Стефанюк Москва:		N9785437200445.html
Абрис,		

6.2. Периодические издания

- 1. Журнал «Промышленная теплотехника».
- 2. Журнал «Теплоэнергетика»

6.3. Интернет-ресурсы

- 1. Электронная библиотека система http://www.studentlibrary.ru
- 2. Электронный научный журнал «Теплофизика и теплотехника» http://www.thermophysics-and-thermotechnics.ingnpublishing.com/

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лекционные занятия проводятся в аудитории 417-7, оснащенной 16 персональными компьютерами, мультитач-панелью.

1. Специализированная лаборатория (ауд. 108-7), позволяющая исследовать тепловые процессы.

Технические средства включают:

- 1. Установка для исследования изохорного процесса.
- 2. Установка для исследования адиабатного процесса.
- 3. Установка для исследования теплоемкости воздуха.
- 4. Установка для исследования влажности воздуха.
- 5. Установка для определения коэффициента теплопроводности материала.
- 6. Установка для определения изменения энтропии при нагревании тел.
- 7. Установка для определения коэффициента теплопередачи.

Рабочую программу составила кандидат физико-математических наук, доцент
Игонин В.А
Рецензент – кандидат педагогических наук, директор школы-интерната №1
Пасынков И.А
Программа рассмотрена и одобрена на заседании технологического и экономического
образования,
протокол № от 31. 08. 2021 г.
Заведующий кафедрой к.п.н, дроф. Г.А. Молева
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
направления 44.03.05 «Педагогическое образование (с двумя профилями подготовки»,
протокол № 1 от 31.08.2021 г.
Председатель комиссии (Артамонова М.В.).

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рабочая программа одобрена на 22/23 учебный год	
Протокол заседания кафедры № <u>/</u> от <u>З1.08. 222 год</u> а	
Заведующий кафедрой ТЭО	М.С.Фабриков
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой ТЭО	М.С.Фабриков
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой ТЭО	М.С.Фабриков