Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Педагогический институт

УХВЕРЖДАЮ:

Директор института

М.В. Артамонова

эн » *08* 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ</u>

направление подготовки / специальность 44.03.05 –Педагогическое образование (с двумя профилями подготовки)

> направленность (профиль) подготовки Математика. Информатика

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является формирование у студентов элементов научного мировоззрения на основе изучения общности протекания информационных процессов в системах различной природы (социальных, биологических, технических); развитие операционного мышления, направленного на выбор оптимальных действий, на умение планировать свою деятельность и предвидеть ее результаты; формирование навыков грамотного пользователя персональной ЭВМ.

Задачи:

- ознакомление с некоторыми типичными задачами компьютерного моделирования;
- использование формального языка как средства создания и исследования моделей реальных явлений и процессов;
- формирование систематизированных знаний в области методов математического и компьютерного моделирования;
- формирование способности отображать реальные объекты и явления в компьютерные информационные структуры.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Компьютерное моделирование» относится к обязательной части учебного плана 44.03.05 – Педагогическое образование

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Наименование		
	1	обучения по дисциплине, в м достижения компетенции	
компетенции	*	оценочного средства	
(код, содержание	Индикатор достижения	Результаты обучения по	
компетенции)	компетенции	дисциплине	
	(код, содержание индикатора)		
ПК-1	ПК.1.1. Демонстрирует знания	Знает:	Отчет по
Способен успешно	особенностей педагогического	- основные виды	практической
взаимодействовать	общения и профессиональной	моделирования, методы	подготовке
в различных	рефлексии	формализации,	
ситуациях	ПК.1.2. Применяет успешные	алгоритмизации и реализации	
педагогического	технологии взаимодействия в	моделей на ЭВМ,	
общения	профессиональном коллективе	инструментарий	
	и решения педагогических	компьютерного	
	конфликтов	моделирования;	
	ПК.1.3. Целесообразно	- язык программирования как	
	выбирает и использует методы	исполнитель алгоритма;	
	педагогического общения с	- назначение систем	
	обучающимися и их	программирования.	
	родителями	программирования. Умеет:	
	родителями		
		- создавать модели различных	
		процессов на конкретном	
		языке программирования или	
		с использованием	
		инструментальных средств.	
		Владеет:	
		– принципами	
		построения математических	
		моделей, культурой мышления,	
		способностью анализа.	
	l .		

Формируемые	1 0	бучения по дисциплине, в	Наименование
компетенции	соответствии с индикатором дост	ижения компетенции	оценочного средства
(код, содержание	Индикатор достижения	Результаты обучения по	
компетенции)	компетенции	дисциплине	
	(код, содержание индикатора)		
ПК-3	ПК.3.1. Разрабатывает и	Знает:	Отчет по
. Способен	реализует основные и	- основные понятия	практической
реализовывать	дополнительные	модульного и объектно-	подготовке
образовательные	образовательные программы по	ориентированного	
программы	своей дисциплине с учетом	программирования;	
различных уровней	современных методов и	- методы построения и	
в соответствии с	технологий	отладки программ.	
современными	ПК.3.2. Применяет	Умеет:	
методиками и	современные информационные	- организовывать	
технологиями, в	технологии в урочной и	необходимую для решения	
том числе	внеурочной деятельности	задач информацию средствами	
информационными,	сопровождения	выбранного языка	
для обеспечения	образовательного процесса	программирования;	
качества учебно-	ПК.3.3. Применяет	- разрабатывать внешний	
воспитательного	современные методики в	интерфейс реализации	
процесса	организации воспитательного процесса	алгоритма решения задачи в	
		выбранной среде	
		программирования;	
		- анализировать структуру	
		программы с целью ее	
		дальнейшей оптимизации;	
		- оценивать эффективность	
		работы программы.	
		Владеет:	
		- принципами построения	
		математических моделей,	
		культурой мышления,	
		способностью анализа.	

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 2 зачетных единицы, 72 часа

Тематический план форма обучения – очная

Контактная работа Формы обучающихся текущего с педагогическим контроля работником успеваемости, Самостоятельная Неделя семестра форма в форме практической подготовки Практические занятия Лабораторные работы работа промежуточной $N_{\underline{0}}$ Наименование тем и/или аттестации Π/Π разделов/тем дисциплины (по семестрам) Лекции 1-2 2 10 1 Основные понятия компьютерного моделирования. 2 10 3-8 6 Рейтинг-Компьютерное моделирование 6 контроль № 1 физических процессов. 3 10 9-14 Компьютерное моделирование в 6 6 Рейтингконтроль № 2 экологии. 4 Компьютерное моделирование 10 15-18 4 4 Рейтингслучайных процессов. контроль № 3 Всего за 10 семестр: 18 18 Экзамен (36) Наличие в дисциплине КП/КР -Итого по дисциплине 18 18 Экзамен (36)

Содержание лекционных занятий по дисциплине

Раздел I. Основные понятия компьютерного моделирования.

Тема 1. Понятие "модель". Моделирование как метод познания. Натурные и абстрактные модели.

Понятие "модель". Моделирование как метод познания. Натурные и абстрактные модели. Виды моделирования в естественных и технических науках.

Тема 2. Компьютерная модель. Информационные модели. Примеры информационных моделей.

Компьютерная модель. Информационные модели. Математические модели.

Имитационное моделирование. Модели динамических систем.

Тема 3. Этапы и цели компьютерного моделирования. Численный эксперимент. Его взаимосвязи с натурным экспериментом и теорией.

Этапы и цели компьютерного моделирования. Сопоставление реального и численного экспериментов. Цели компьютерного моделирования. Примеры моделей.

Раздел II. Компьютерное моделирование физических процессов.

Тема 4. Движение тела, брошенного под углом к горизонту.

Моделирование физических процессов. Движение тела, брошенного под углом к горизонту без учета и с учетом сопротивления воздуха. Обезразмеривание. Дифференциальные уравнения - основной аппарат компьютерного математического моделирования.

Тема 5. Движение небесных тел. Задача Кеплера.

Движение небесных тел. Законы Кеплера. Задача Кеплера. Колебание математического маятника. Обезразмеривание.

Раздел III. Компьютерное моделирование в экологии.

Тема 6. Компьютерное моделирование в экологии. Основные понятия.

Компьютерное моделирование в экологии. Основные понятия. Специфика моделей биологических систем, их отличия от физических. Модель популяции.

Тема 7. Одновидовые и двухвидовые модели.

Одновидовые и двухвидовые модели. Различные типы динамик. Модели с дискретным и непрерывным временем.

Тема 8. Модель хищник-жертва.

Модель «хищник-жертва». Фазовая плоскость. Графики изменения численности популяций хищника и жертвы.

Раздел IV. Компьютерное моделирование случайных процессов.

Тема 9. Компьютерное моделирование случайных процессов. Моделирование последовательностей независимых и зависимых случайных испытаний.

Системный подход в научных исследованиях. Численный эксперимент. Случайной величины.

Тема 10. Моделирование систем массового обслуживания.

Моделирование систем массового обслуживания. Моделирование последовательностей независимых и зависимых случайных испытаний. Метод статистических испытаний.

Содержание лабораторных занятий по дисциплине

Лабораторная работа №1. Моделирование движения тела, брошенного под углом к горизонту.

Движение тела, брошенного под углом к горизонту без учета сопротивления воздуха.

Лабораторная работа №2. Моделирование движения тела, брошенного под углом к горизонту.

Движение тела, брошенного под углом к горизонту с учетом сопротивления воздуха. Артиллерийская задача.

Лабораторная работа №3. Моделирование движения небесных тел и заряженных частиц. Задача Кеплера.

Движение небесных тел. Законы Кеплера. Задача Кеплера. Колебание математического маятника.

Лабораторная работа №4. Задача о движении управляемого спутника.

Моделирование движения спутника, реагирующего на нажатия клавиш.

Лабораторная работа № 5. Моделирование в экологии: одновидовые модели.

Одновидовые модели. Различные типы динамик. Модели с дискретным временем.

Лабораторная работа № 6. Моделирование в экологии: одновидовые модели.

Одновидовые модели. Модели с непрерывным временем.

Лабораторная работа № 7. Моделирование в экологии: двухвидовые модели.

Моделирование взаимодействия двух популяций.

Лабораторная работа № 8. Модель «хищник-жертва».

Фазовая плоскость. Построение графиков изменения численности популяций хищника и жертвы.

Лабораторная работа № 9. Случайные величины. Моделирование случайных процессов.

Задача Бюффона. Метод Монте-Карло вычисления площадей фигур.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Рейтинг-контроль 1

- 1. Какое высказывание наиболее точно определяет понятие «модель»:
 - а) точная копия оригинала;
 - b) оригинал в миниатюре;
 - с) образ оригинала с наиболее присущими ему свойствами;
 - d) начальный замысел будущего объекта?
- 2. Компьютерное моделирование это:
 - а) процесс построения модели компьютерными средствами;
 - b) процесс исследования объекта с помощью его компьютерной модели;
 - с) построение модели на экране компьютера;
 - d) решение конкретной задачи с помощью компьютера.
- 3. Вербальной моделью является:
 - а) модель автомобиля;
 - b) сборник правил дорожного движения;
 - с) формула закона всемирного тяготения;
 - d) номенклатура списка товаров на складе.
- 4. Математической моделью является:
 - а) модель автомобиля;
 - б) сборник правил дорожного движения;
 - с) формула закона всемирного тяготения;
 - d) номенклатура списка товаров на складе.
- 5. Информационной моделью является:
 - а) модель автомобиля;
 - b) сборник правил дорожного движения;
 - с) формула закона всемирного тяготения;
 - d) номенклатура списка товаров на складе.
- 6. К детерминированным моделям относится:
 - а) модель случайного блуждания частицы;
 - b) модель формирования очереди;
 - с) модель свободного падения тела в среде с сопротивлением;
 - d) модель игры «орел—решка».
- 7. К стохастическим моделям относится:
 - а) модель движения тела, брошенного под углом к горизонту;
 - b) модель броуновского движения;
 - с) модель таяния кусочка льда в стакане;
 - d) модель обтекания газом крыла самолета.

- 8. Последовательность этапов моделирования:
- а) цель, объект, модель, метод, алгоритм, программа, эксперимент, анализ, уточнение;
- b) цель, модель, объект, алгоритм, программа, эксперимент, уточнение выбора объекта;
 - с) объект, цель, модель, эксперимент, программа, анализ, тестирование;
 - d) объект, модель, цель, алгоритм, метод, программа, эксперимент.
- 9. Индуктивное моделирование предполагает:
 - а) гипотетическое описание модели;
 - b) решение задачи методом индукции;
 - с) решение задачи дедуктивным методом;
 - d) построение модели как частного случая глобальных законов природы.
- 10. Дедуктивное моделирование предполагает:
 - а) гипотетическое описание модели;
 - b) решение задачи методом индукции;
 - с) решение задачи дедуктивным методом;
 - d) построение модели как частного случая глобальных законов природы.
- 11. Компьютерный эксперимент это:
 - а) решение задачи на компьютере;
 - b) исследование модели с помощью компьютерной программы;
 - с) подключение компьютера для обработки физических экспериментов;
 - d) автоматизированное управление физическим экспериментом.

Рейтинг-контроль 2

- 1. Непрерывная модель численности популяций, без учета внутривидовой конкуренции (г— скорость роста численности, К предельная плотность насыщения):
 - a) dN/dt=rN/(1+N);
 - b) dN/dt = rN;
 - c) dN/dt = r(K N);
 - d) dN/dt = r.
- 2. Непрерывная (логистическая) модель численности популяций с учетом внутривидовой конкуренции (г скорость роста численности, К предельная плотность насыщения):
 - a) dN/dt = rN/(l+N);
 - b) dN/dt = r(K N)/K;
 - c) dN/dt = r(K-N);
 - d) dN/dt = r.
- 3. Модель межвидовой конкуренции «хищник—жертва» (N1,r, а численность, скорость роста и коэффициент смертности популяции жертвы; N2, b,q численность, эффективность добычи и коэффициент смертности популяции хищника):
 - a) dN1/dt = rN1 aN1N2, dN2/dt = bN1 qN2;
 - b) dN1/dt = rN1 aN1N2, dN2/dt = abN1N2 qN2;
 - c) dN1/dt = rN1(N1 N2 aN2), dN2/dt = aN2(N2 N1 qN2);
 - d) dN1/dt = rN1 aN2, dN2/dt = bN1 qN2.
- 4. В имитационной модели «Жизнь» (Д. Конвей) количество стационарных конфигураций:
 - a) 2;
 - b) 3;
 - c) 4;
 - d) более 10.

Рейтинг-контроль 3

- 1. Компьютерная модель «очередь» не может быть применена для оптимизации в следующих задачах:
 - а) обслуживание в магазине;

- b) телефонная станция;
- с) компьютерная сеть с выделенным сервером;
- d) спортивные соревнования.
- 2. В модели «очередь» случайный процесс формирования очереди является:
 - а) марковским;
 - b) немарковским;
 - с) линейным;
 - d) квазистационарным.
- 3. Для моделирования очереди менее всего подходит распределение длительности ожидания:
 - а) равновероятностное;
 - b) пуассоновское;
 - с) нормальное;
 - d) экспоненциальное.
- 4. Пусть автобусы двигаются с интервалом в 10 минут. Каково среднее время ожидания транспорта на остановке при наличии одного маршрута:
 - а) 10 мин;
 - b) 0 мин;
 - с) 5 мин;
 - d) не определено?
- 5. Пусть автобусы двигаются с интервалом в 10 минут. Каково среднее время ожидания транспорта на остановке при наличии двух маршрутов:
 - а) 5 мин;
 - b) менее 5 мин;
 - с) более 5 мин;
 - d) 10 мин?
 - 6. Методом случайных испытаний (метод Монте-Карло) невозможно вычислить:
 - а) число я;
 - b) площадь;
 - с) числа Фибоначчи;
 - d) корень уравнения.
 - 7. С помощью имитационной модели случайного блуждания точек невозможно изучать:
 - а) законы идеального газа;
 - b) броуновское движение;
 - с) законы кинематики;
 - d) тепловые процессы.

5.2. Промежуточная аттестация (экзамен)

- 1. Компьютерное моделирование и его цели. Примеры и классификация моделей.
- 2. Этапы компьютерного моделирования.
- 3. Моделирование движения тела, брошенного под углом к горизонту без учета сопротивления воздуха.
- 4. Моделирование движения тела брошенного под углом к горизонту с учетом сопротивления воздуха.
- 5. Моделирование движения небесных тел.
- 6. Моделирование в экологии: одновидовая модель с дискретным временем.
- 7. Моделирование в экологии: одновидовая модель с непрерывным временем.
- 8. Моделирование в экологии: модель межвидовой конкуренции.
- 9. Моделирование в экологии: модель паразит-хозяин.
- 10. Моделирование случайных процессов.
- 11. Примеры моделей с использованием случайных процессов: случайное блуждание, метод Монте-Карло, задача Бюффона.
- 12. Моделирование случайных процессов в системах массового обслуживания.
- 13. Имитационное моделирование. Примеры имитационных моделей.

14. Дифференциальные уравнения - основной аппарат компьютерного математического моделирования (определения, условия разрешимости, приближенное решение на компьютере).

5.3. Самостоятельная работа обучающегося.

Тема: Основные понятия компьютерного моделирования. Компьютерное моделирование в физике.

- 1. Какие причины обусловливают особую значимость компьютерного моделирования в физике?
- 2. Какие аналогии проводятся между реальным и компьютерным экспериментами?
- 3. Почему при исследовании реальных процессов движения тел нужна дифференциальная форма законов Ньютона?
- 4. Как зависит сила сопротивления от скорости движущегося тела?
- 5. Какая из составляющих силы сопротивления линейная или квадратичная будет доминировать при погружении в воду полого стального шара батискафа диаметром 2 м и с толщиной стенки 1 см при достижении им постоянной скорости погружения?
- 6. Почему учет силы сопротивления среды делает многие, известные из школьного курса физики модели, более реалистичными? Приведите примеры таких моделей.
- 7. Как надо преобразовать формулировку содержательной задачи, прежде чем приступать к ее решению?
- 8. Как можно отобразить результаты моделирования в задаче о свободном падении тела в наиболее удобной для восприятия форме?
- 9.В чем преимущества и недостатки моделирования с помощью составления программ и с использованием табличных процессоров?
- 10. Какова траектория движения тела, брошенного под углом к горизонту, при отсутствии сопротивления среды? Как меняется эта траектория качественно при наличии сильного сопротивления?
- 11. Для чего производится обезразмеривание величин, характеризующих движение? Возможен ли рассматриваемой задаче другой способ обезразмеривания?
- 12. Сделайте сравнительный анализ характеристик движения тела, брошенного под углом к горизонту, с учетом и без учета сопротивления воздуха. Как они будут изменяться с увеличением начальной скорости?

Тема: Моделирование в экологии

- 1. В чем отличие классической экологии от современной?
- 2. Какие проблемы рассматриваются в классической экологии?
- 3. Какие виды взаимодействия организмов принято рассматривать в классической экологии?
- 4. Какие цели преследуются при составлении математических моделей в экологии?
- 5. В чем выражается специфика биологических систем в отличие от рассмотренных ранее физических и механических систем?
- 6. Что понимают под конкуренцией в биологии? внутривидовой конкуренцией? межвидовой конкуренцией? Каковы источники конкуренции, и как конкуренция учитывается в приведенных моделях?
- 7. Какие результаты могут быть получены с помощью простейшей модели роста численности популяции с дискретным размножением? Как изменятся эти результаты, если учесть интенсивность конкуренции?
- 8. Как построить фазовую диаграмму динамики численности популяции с дискретным размножением?
- 9. Решите задачу, получив все четыре способа изменения численности популяции в модели внутривидовой конкуренции.
- 10. Решите задачу, построив фазовую диаграмму в модели межвидовой конкуренции.
- 11. Как выводится логистическое уравнение? Каково аналитическое решение этого уравнения? Как в нем учитывается внутривидовая конкуренция?
- 12. По какому принципу записывается модель межвидовой конкуренции?

- 13. Какие результаты могут быть получены с помощью модели межвидовой конкуренции?
- 14. Какие факторы необходимо учесть при разработке модели системы «хищник -жертва»?
- 15. Какие результаты могут быть получены с помощью модели «хищник-жертва»?
- 16. Является ли использование стохастических моделей в исследовании эволюции популяций отражением закономерностей реального мира? В какой мере случайность проявляется в биологических процессах?
- 17. Получите самостоятельно все результаты, которые приведены в примерах динамики численности популяций с непрерывным размножением и в системе «хищник-жертва».

Тема: Моделирование случайных процессов

- 1. Какие случайные события называют достоверными? невозможными? несовместимыми? противоположными?
- 2. Дайте классическое определение вероятности случайного события.
- 3. В чем заключаются теоремы сложения и умножения вероятностей?
- 4. Сформулируйте локальную и интегральную теоремы Лапласа для вероятности появления заданного числа случайных событий.
- 5. Сформулируйте теорему Бернулли для оценки частоты появления случайных событий при независимых повторных испытаниях.
- 6. Что такое случайная величина дискретная? непрерывная?
- 7. Дайте определение функции распределения непрерывной случайной величины и плотности распределения.
- 8. Что такое математическое ожидание и дисперсия случайной величины (при дискретном и при непрерывном распределениях)?
- 9. Какое распределение называется нормальным? В чем особая значимость нормального распределения в теории вероятностей?
- 10. Что такое независимая повторная выборка? Как находятся выборочные средние? выборочные дисперсии? В каких связях они с математическим ожиданием и дисперсией случайной величины?
- 11. Как построить гистограмму выборочного распределения случайной величины? Как по ней судить о функции распределения?
- 12. Какими свойствами должна обладать точечная оценка параметров функции распределения?
- 13. Как оценить отклонение выборочного среднего от математического ожидания при малом числе испытаний? при большом числе испытаний? Что такое доверительный интервал?
- 14. Сформулируйте один из критериев согласия эмпирической и теоретической функций распределения.
- 15. Что такое «случайное число»? Сформулируйте метод компьютерной генерации последовательности равномерно распределенных псевдослучайных чисел.
- 16. Сформулируйте один из методов генерации последовательности псевдослучайных чисел с заданным законом распределения.
- 17. Как формулируются задачи теории массового обслуживания?
- Фонд оценочных материалов (Φ OM) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания,	Год	КНИГООБЕСПЕЧЕННОСТЬ	
издательство		Наличие в электронном каталоге ЭБС	
Основная литература			
Семакин, И. Г. Информационные системы и модели.	2012	http://www.iprbookshop.ru/13016	
Элективный курс [Электронный ресурс]: методическое			
пособие / И. Г. Семакин, Е. К. Хеннер 2-е изд. (эл.) М.:			
БИНОМ. Лаборатория знаний 71 с. : ил ISBN 978-5-9963-			
092.			
Тупик Н.В. Компьютерное моделирование [Электронный	2013	http://www.studentlibrary.ru/book/ISBN978	
ресурс]: учебное пособие/ Тупик Н.В.— Электрон. текстовые		5996327812.html	
данные.— Саратов: Вузовское образование.— 230 с			
Компьютерные методы математических исследований	2013	http://www.iprbookshop.ru/55102	
[Электронный ресурс]: методические указания к			
самостоятельной работе по дисциплинам «Численные			
методы» и «Компьютерное моделирование»/ — Электрон.			
текстовые данные. — Липецк: Липецкий государственный			
технический университет, ЭБС АСВ.— 30 с.			
Дополнительная л			
Склярова Е.А. Компьютерное моделирование физических	2012	http://www.iprbookshop.ru/34668	
явлений [Электронный ресурс]: учебное пособие/ Склярова			
Е.А., Малютин В.М.— Электрон. текстовые данные.—			
Томск: Томский политехнический университет. 152 с			
Компьютерное моделирование математических задач.	2012	http://www.studentlibrary.ru/doc/ISBN9785	
Элективный курс [Электронный ресурс]: учебное пособие / Р.		<u>996314843-</u>	
Р. Сулейманов Эл. изд М.: БИНОМ. Лаборатория		SCN0036.html?SSr=100133a1eb1450c6dc3	
знаний, 2012 381 с. : ил.		<u>7515</u>	
Дьяконов В.П. VisSim+Mathcad+MATLAB. Визуальное	2008	http://www.iprbookshop.ru/8656	
математическое моделирование [Электронный ресурс]/			
Дьяконов В.П.— Электрон. текстовые данные.— М.:			
СОЛОН-ПРЕСС. — 384 с.			

6.2. Периодические издания

1. Журнал «Информатика и образование»: http://infojournal.ru/

6.3. Интернет-ресурсы

- 1. msdn.microsoft.com.
- 2. http://projecteuler.net/.
- 3. http://pascalabc.net/
- 4. http://infojournal.ru/
- 5. http://novtex.ru/IT/
- 6. http://www.infosoc.iis.ru/index.html
- 7. Πορταπ ΦΓΟC BO: http://fgosvo.ru/
- 8. Российское образование. Федеральный портал: http://www.edu.ru/

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Вид учебных	Наименование специальных	Оснащенность	Перечень лицензионного	
занятий по	помещений и помещений для	специальных помещений и	программного обеспечения.	
дисциплине	самостоятельной работы	помещений для	Реквизиты	
		самостоятельной работы	подтверждающего	
			документа	
1	2	3	4	
Лекционные	Лаборатории информатики и	Компьютерный класс на	Лицензии на Microsoft	
занятия	информационных технологий в	основе ЭВМ ПК IntelCore с	Windows/Office: Microsoft	
	образовании, компьютерные	доступом в сеть Интернет,	Open License	
	классы.	маркерная и	61248656/62857078/6384836	
	Владимир, пр-т. Строителей, д.	интерактивная доски,	8/64196124	
	11, (ĸ.7)	переносной ноутбук,	Visual Studio professional:	
	Аудит. 226, 241, 242, 243.	наушники, колонки.	MSDN подписка,	
	Лекционно-семинарская	Мультимедийный	Mathcad 14.0 M011: PKG-	
	аудитория.	комплекс в составе:	7518-FN	
	Владимир, пр-т. Строителей, д.	Ноутбук с выходом в сеть	Лицензия наантивирусное	
	11, (к.7)	Интернет, мультимедиа	ПО: Kaspersky Endpoint	
Лабораторные	Лабораторные занятия	проектор, экран белый	Security Standart 1356-	
работы	проводятся в компьютерных	матовый, доска маркерная,	161220-101943-827-71	
	классах с возможностью	доска меловая.		
	индивидуальной работы каждого			
	студента за компьютером.			

Рабочую программу составил доце	ит каз	D. PMOUL	IT Cond	& C. S. Hay
Рецензент (представитель работодателя) МАОУ	«СОШ №		>	Мевре подпись)
Программа рассмотрена и одобрена н Протокол № от	года обрена и комисси готовки) года	О.Е. (по. ии направления	дпись) 44.03.05 -	- Педагогическое <i>рташи нова</i>
		ГВЕРЖДЕНИЯ ІМЫ ДИСЦИПЈ	лины	
Рабочая программа одобрена на 20	/20	_ учебный года		
Протокол заседания кафедры №	OT	года		
Заведующий кафедрой			w	
Рабочая программа одобрена на 20	/20	_ учебный года		
Протокол заседания кафедры №	OT	года		
Заведующий кафедрой	W)			2
Рабочая программа одобрена на 20	/20	_ учебный года		
Протокол заседания кафедры №	OT	года		
Заведующий кафедрой				