Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» «ВлГУ»

ТВЕРЖДАЮ

А. Панфилов

30 » 08 2019 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОБЩАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА»

Направление подготовки 44.03.05 – Педагогическое образование

Профиль/программа подготовки Физика. Математика

Уровень высшего образования бакалавриат

Форма обучения очная

Семестр	Трудоем- кость зач. ед,/ час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	Форма промежуточной атте- стации (экзамен/зачет/зачет с оцен- кой)
4	7/252	36	36	36	99	ЭКЗАМЕН (45)
Итого	7/252	36	36	36	99	ЭКЗАМЕН (45)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины:

- 1. Формировать физическое мышление у студентов;
- 2. Дать научные знания по электродинамике на уровне высшей школы, достаточные для освоения соответствующих разделов теоретической физики, а также для понимания и изучения технических дисциплин таких как, например, физическая электроника и элетрорадиотехника;
- 3. Дать основные знания и умения, которые будут необходимы при работе в средней школе в качестве учителя физики;
 - 4. Развить навыки самостоятельной работы студентов.

Задачи дисциплины:

- 1. Раскрыть взаимосвязи дидактических, психолого-педагогических и методических основ применения информационных технологий для решения задач обучения и образования:
- 2. Сформировать компетентности в области использования возможностей современных средств ИТ в образовательной деятельности;
- 3. Обучить студентов использованию и применению средств ИТ в профессиональной деятельности специалиста, работающего в системе образования;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Общая и экспериментальная физика» относится к вариативной части.

Пререквизиты дисциплины: Введение в общую и экспериментальную физику, Общая и экспериментальная физика, Методы математической физики, Практикум по решению школьных физических задач.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИП-ЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

Код формируемых компе-	Уровень освоения компе-	Планируемые результаты обучения
тенций	тенции	по дисциплине характеризующие
		этапы формирования компетенций
		(показатели освоения компетенции)
1	2	3
ОК-3 Способность исполь-		Знать:
зовать естественнонаучные	частично	- предмет и объект физики как
и математические знания в		науки;
современном информаци-		- теоретические основы и приро-
онном пространстве		ду основных физических явле-
		ний;
		- фундаментальные понятия, за-
		коны и теории классической и
		современной физики;
		- основные достижения физиче-
		ской науки в практической жиз-

ПК-1 Готовность реализовывать образовательные программы по учебным предметам в соответствии с требованиями образова-	частично	ни. Уметь: - выделять конкретное физическое содержание в прикладных задачах и использовать основные законы физики в профессиональной деятельности; - применять физические законы для решения практических задач. Владеть: - навыками работы с научной литературой разного уровня (научно-популярные издания, периодические журналы, монографии, учебники, справочники); -навыками оценки результатов научного эксперимента или исследования. Знать: - требования актуального образовательного стандарта; структуру курса физики в основной и средней школе;
=		средней школе; - предмет, задачи и структуру курса физики; основные компоненты педагогической системы и пути их совершенствования; аспекты формирования мотивации учащихся на формирование познавательного интереса к изучению физики; - базовый и углубленный материалы учебной дисциплины «Физика»: основные понятия и определения, включая физические величины, физические законы; Уметь: - реализовывать образовательные программы по физике в со-
		ответствии с требованиями образовательных стандартов; - отбирать адекватные содержанию и дидактическим задачам методы, приемы, средства обучения; самостоятельно разрабатывать образовательные программы и составлять технологические карты занятий по дисциплине «Физика».

Владеть:
- навыками составления образо-
вательной программы по учеб-
ному предмету «Физика» в соот-
ветствии с требованиями обра-
зовательных стандартов;
- навыками разработки всех эле-
ментов учебно-методического
комплекса по физике в соответ-
ствии с возрастными особенно-
стями учащихся и спецификой
учебного заведения.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 7 зачетных единиц, 252 часов.

	Наименование тем и/или	тр	местра	вклн ную	очая работ	самост	работы, оятель- ентов и часах)	Объем учебной работы, с применением интерактивных методов (в часах / %)	Формы текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации (по семестрам)
№ п/п	разделов/тем дисципли- ны	Семестр	Неделя семестра	Лекции	Практические заня- тия	Лабораторные рабо- ты	CPC		
1	Электрическое поле в вакууме	4	1-3	6	4	4	16	5/36	
2	Электрическое поле при наличии диэлектриков	4	4	2	2		6	1/25	
3	Электрическое поле при наличии проводников	4	5	2	2	4	8	2/25	
4	Энергия взаимодействия зарядов и энергия электрического поля	4	6	2	2	4	6	2/25	PK-1
5	Постоянный электриче- ский ток	4	7	2	2		6	1/25	
6	Электропроводность твердых тел	4	8	2	2		6	1/25	
7	Электрический ток в электролитах и газах	4	9	2	2	4	6	2/25	
8	Постоянное магнитное	4	10-	4	4	8	14	4/25	PK-2

	поле в вакууме		11						
9	Электромагнитная индукция	4	12- 13	4	4		6	2/25	
10	Магнитное поле в маг- нетиках	4	14	2	2	4	6	2/25	
11	Электромагнитное поле	4	15	2	4		6	2/33	
12	Квазистационарные электрические цепи	4	16- 17	4	4	8	8	4/25	
13	Электромагнитные волны	4	18	2	2		5	1/25	РК-3
	Всего за 4 семестр:			36	36	36	99	29/27	ЭКЗАМЕН (45)
Налі	ичие в дисциплине КР		2						
Итог	го по дисциплине			36	36	36	99	29/27	ЭКЗАМЕН (45)

Содержание лекционных занятий по дисциплине

Тема 1. Электрическое поле в вакууме.

Элементарный заряд. Описание макроскопических заряженных тел: модели точечного и непрерывно распределенного заряда. Закон сохранения заряда. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции. Теорема Остроградского –Гауса и еè применение к расчету поля некоторых симметричных тел. Потенциальный характер электростатического поля, циркуляция вектора напряженности. Потенциал. Градиент потенциала и напряженность поля.

Тема 2. Электрическое поле при наличии диэлектриков

Модели диэлектриков. Поляризация диэлектриков. Вектор поляризации. Вектор электрического смещения. Диэлектрическая проницаемость и еè физический смысл. Теорема Остроградского –Гауса для поля в диэлектрике.

Тема 3. Электрическое поле при наличии проводников

Условие равновесия избыточного заряда на проводнике. Напряженность поля у поверхности проводника и ее связь с поверхностной плотностью заряда. Электростатическая индукция и защита. Электроемкость. Конденсаторы и их соединения

Тема 4. Энергия взаимодействия зарядов и энергия электрического поля.

Энергия системы неподвижных точечных зарядов: заряженного проводника, конденсатора. Энергия и плотность энергии электростатического поля.

Тема 5. Постоянный электрический ток.

Закон Ома для участка цепи. Сторонние силы. Электродвижущая сила. Закон Ома для замкнутой цепи. Работа и мощность в цепи постоянного тока. Закон Джоуля-Ленца. Дифференциальная форма законов Ома и Джоуля-Ленца.

Тема 6. Электропроводность твердых тел.

Классификация твердых тел (проводники, полупроводники и диэлектрики). Природа тока в металлах. Опыты Мандельштама и Попалекси, Толмена и Стюарта. Классическая теория электропроводности металлов и вывод из нее законов Ома и Джоуля-Ленца. Трудности классической теории. Понятие о низкой и высокотемпературной сверпроводимости. Проводимость полупроводников.

Тема 7. Электрический ток в электролитах и газах

Проводимость электролитов. Закон Ома для электролитов. Законы Фарадея. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный газовый разряды. Вольтамперная характеристика газового разряда. Виды разряда (тлеющий, искровой и коронный). Молния. Понятие о плазме. Катодные лучи.

Тема 8 Постоянное магнитное поле в вакууме

Опыты Эрстеда и Ампера. Виток с током в магнитном поле. Магнитный момент витка. Индукция и напряженность магнитного поля. Закон Био-Савара-Лапласа. Магнитное поле движущегося заряда. Магнитное поле прямого и кругового токов. Циркуляция вектора индукции магнитного поля. Закон полного тока. Магнитное поле соленоидального тока.

Сила Ампера и сила Лоренца. Определение удельного заряда электрона. Масс-спектрограф. Циклические ускорители. Эффект Холла. Относительный характер электрического и магнитного полей.

Тема 9. Электромагнитная индукция

Опыты Фарадея. Закон Фарадея и правило Ленца. Физическая природа электродвижущей силы индукции. Вихревое электрическое поле. Вихревые токи. Поверхностный эффект. Самоиндукция и взаимоиндукция. Индуктивность. Электродвижущая сила самоиндукции. Энергия магнитного поля токов. Энергия и плотность энергии магнитного поля.

Тема 10. Магнитное поле в магнетиках

Вектор намагничения. Магнитная пронецаемость. Диа-, пара- и ферромагнетики. Магнитный гистерезис. Работы Столетова. Точка Кюри.

Тема 11. Электромагнитое поле

Ток смещения. Опыты Роуленда и Эйхенвальда. Уравнения Максвелла в интегральной и дифференциальной форме.

Тема 12. Квазистационарные электрические цепи

Получение переменной ЭДС. Активное сопротивления, индуктивность и емкость в цепи переменного тока. Векторные диаграммы. Последовательный резонанс. Работа и мощность в цепи переменного тока.

Электрический колебательный контур. Собственные колебания, формула Томсона. Затухающие и вынужденные колебания в контуре. Резонанс

Тема 13. Электромагнитные волны.

Плоские волны в однородном пространстве, скорость их распространения. Излучение электромагнитных волн. Опыты Герца. Объемная плотность энергии электромагнитного поля. Поток энергии. Вектор Умова-Пойнтинга. Шкала электромагнитных волн.

Содержание практических занятий по дисциплине

Тема 1. Электрическое поле в вакууме

Вопросы

- 1. Какие частицы обычно перераспределяются в пространстве, когда тело заряжается отрицательно? Положительно?
- 2. a) Можно ли зарядить тело зарядом $10^{-20}\,\mathrm{K}$ л? $10^{-10}\,\mathrm{K}$ л?
 - б) Можно ли равномерно зарядить макроскопическое тело, сообщив ему заряд $3.2 \cdot 10^{-19} \, \mathrm{Kn}$? 1 Кл ?
- 2. Можно ли считать заряд ядра в атоме точечным? Почему?
 - 3. Является ли электрическое поле просто удобным способом описания электрических явлений или оно реально существует?

Решение задач:

(Сахаров): 20.1-20.3; (Волькенштейн): 9.9-9.18

Тема 2. Электрическое поле при наличии диэлектриков

Вопросы

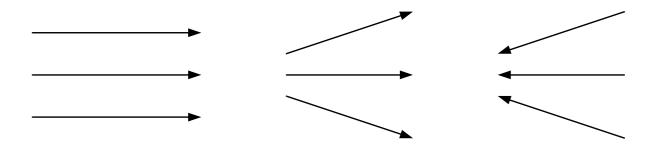
1. Поток вектора напряженности электрического поля, созданного системой зарядов через некоторую замкнутую поверхность, содержащую точку A, равен нулю. Можно ли утверждать, что заряд помещенный в эту точку, электрические силы не действуют?

- 2. В начало координат помещен положительный заряд q_1 , а положительный заряд q_2 перемещается из бесконечности в точку, отстоящую на расстоянии г от q_1 . Какова величина энергии, которую необходимо затратить? Какова эта энергия, если заряд q_1 отрицательный?
- 3. Как будут двигаться в поле положительный и отрицательный заряды: от точки с низким потенциалом к точке с высоким потенциалом или наоборот?
 - 4. Маленький уединенный металлический шарик зарядили до потенциала 1 В, а затем внесли его внутрь металлической сферы, заряженной до потенциала 1000 В. В каком направление будут перемещаться заряды при соприкосновении шарика с внутренней поверхностью сферы? Нет ли здесь противоречия с ответом на предыдущий вопрос? Решение задач:

(Волькенштей): 9. 42, 9. 45, 9. 46, 9. 49, 9. 52, 9.54 – 9.76.

Тема 3. Электрическое поле при наличии проводников

Вопросы


- 1. Пластину из диэлектрика внесли в заряженный плоский конденсатор. Получится ли два разноименно заряженных куска диэлектрика, если распилить пластину параллельно обкладкам конденсатора? Сопоставьте результаты такого опыта для диэлектрика и проводника.
- 2. Что можно сказать о внутреннем устройстве диэлектрика, если известно, что его диэлектрическая проницаемость значительно изменяется с температурой? Что о нем можно сказать, если эта зависимость очень слабая?
- 3. Положительный и отрицательный точечные заряды притягиваются с некоторой силой. Как изменится сила, действующая на каждый из этих зарядов, если поместить между зарядами шар из этого диэлектрика?
- 4. Как имея отрицательный заряженный проводник, зарядить положительно другой проводник, не меняя заряд первого?
- 5. Два металлических шара одинакового радиуса расположены на небольшом расстоянии друг от друга. Одинакова ли будет величина силы электрического взаимодействия шаров в случаях, когда они заряжены одноименно и разноименно?

Решение Задач:

(Сахаров):24.11, 24.12;

Тема 4. Энергия взаимодействия зарядов и энергия электрического поля Вопросы:

1. На рисунке показаны силовые линии трех электрических полей. Как будет вести себя металлический шарик, помещенный в каждое из этих полей? Почему?

2. Внутри проводящей незаряженной, но заземленной сферы помещен положительный заряд q. Каково будет распределение зарядов на сфере? Какова величина заряда, ин-

- дуцированного на ней? Нарисуйте картину силовых линий. Как изменится эта картина, если сферу не заземлять?
- 3. Заряженный металлический шар присоединен к электрометру. Как будут меняться показания электрометра, если шар подносить близко к проводящим заземленным предметам? Почему?
- 4. Емкость плоского конденсатора вычисляется по формуле $C = \frac{\varepsilon_0 \varepsilon S}{d}$. Будет ли ем-

кость стремиться к нулю, если расстояние между пластинами увеличивать до бесконечности?

5. В середине плоского конденсатора поместили тонкую металлическую пластину. Как изменится емкость конденсатора? Как она изменится, если пластину соединить проволокой с одной из обкладок? Если внести в конденсатор пластину из диэлектрика с ε = 2 и толщиной. Равной половине расстояния между обкладками?

Решение задач:

(Волькенштейн): 9.100-9.103; 9.116-9.118

Тема 5. Постоянный электрический ток

Вопросы

- 1. В электростатике было установлено, что
- а) поверхность проводника является эквипотенциальной;
- б) внутри проводника электрическое поле отсутствует;
- в) силовые линии поля вне проводника перпендикулярны к его поверхности.

Остаются ли справедливыми эти утверждения в случае протекания по проводнику постоянного тока?

- 2. От выключателя к электрической лампочке ведет медный провод сечением 1 мм.кв. и длиной 3 м. Через какое время электрон, находящийся у выключателя, достигнет лампочки, если сила тока 1 A, а концентрация электронов в меди $n = 10^{23} \, cm^{-3}$. Не противоречит ли результат этой оценки нашему обыденному опыту?
- 3. Как изменится дрейфовая скорость носителей заряда и сила тока, если при неизменной разности потенциалов на концах проводника увеличить вдвое:
- а) длину проводника;
- б) площадь его поперечного сечения?

Решение задач:

(Волькенштейн): 10.14-10.19

Тема 6. Электропроводность твердых тел

Вопросы

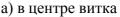
- 1. При каких условиях напряжение на зажимах батареи может больше, чем ее ЭДС?
- 2. На каких положениях основано первое правило Кирхгофа? Поясните, к каким бы следствиям привело бы нарушение этих положений.

Решение задач:

(Волькенштейн): 10.34-10.36; 10.43, 10.44

Тема 7. Электрический ток в электролитах и газах

Решение задач:


(Волькенштейн): 10.77-10.79

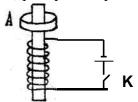
Тема 8. Постоянное магнитное поле в вакууме

Вопросы

- 1. Электрон движется со скоростью ${\bf v}$. Чему равна индукция ${\bf B}$ магнитного поля, создаваемого электроном, в некоторой точке пространства? Постоянно ли ${\bf B}$ в этой точке?"
- 2. Можно ли дать вектору магнитной индукции **B** такое определение: **B** это сила, действующая на единичный элемент тока в данном поле (т.е. аналогичное определению напряженности электрического поля)?

- 3. Два заряда движутся во взаимно-перпендикулярных направлениях с одинаковыми по величине скоростями **v** . Сравните силы, действующие на каждый заряд в данный момент времени. Не противоречит ли ответ законам Ньютона?
- 4. Найдите В для следующих конфигураций тока

б) электрон в атоме водорода



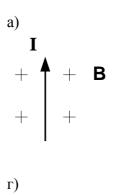
Чему равен магнитный момент витка в случае а)? Орбитальный магнитный момент электрона в случае б)? Решение задач:

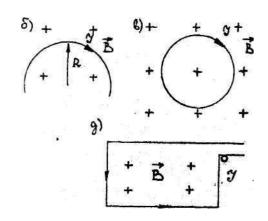
Волькенштейн: 11.3-11.5, 11.10-12, 11-56

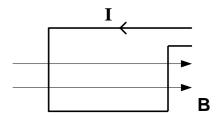
Тема 9. Электромагнитная индукция

1. На сердечник электромагнита надето легкое проводящее кольцо А, радиус которого больше радиуса сердечника .

Каково направление индукционного тока, возникающего в кольце при замыкании или размыкании цепи электромагнита? Как направлен магнитный момент индукционного точа кольца? Как будет вести себя кольцо при замыкании ключа?

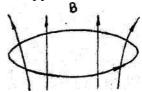

Решение задач:


Волькенштейн 11-95, 11-96, 11.118-11.120


Тема 10. Магнитное поле в магнетиках

Вопросы:

1. Найдите силу, действующую на проводник с током в однородном магнитном поле для следующих случаев:



При каком направлении тока в случаях в) и г) положение витка устойчиво (неустойчиво)? Как направлены силы, действующие на отдельные элементы рамки в этом случае?

2. Круговой виток с током находится в магнитном поле

Какая сила действует на него? Можно ли подобрать условия эксперимента таким образом, чтобы виток неподвижно висел в этом поле?

Решение залач:

Волькенштейн: 11.69 – 11.87

Тема 11. Электромагнитное поле

- 1. Электрон движется со скоростью \mathbf{v} в однородном магнитном поле. Какие траектории движения заряда возможны? Запишите уравнения траектории для каждого из предложенных случаев.
- 2. Электрон движется в скрещенных однородных электрическом и магнитном полях (вектора \mathbf{E} и \mathbf{B} перпендикулярны) (начальная скорость $\mathbf{v} = \mathbf{0}$). Запишите уравнение его траектории. Решение залач:

Волькенштейн: 11.80 – 11.87

Тема 12. Квазистационарные электрические цепи

Вопросы

- 1. Прямоугольная рамка равномерно вращается с угловой скоростью ω в однородном магнитном поле с индукцией **B**, перпендикулярной оси вращения. По какому закону меняются ЭДС индукции и ток в рамке? При какой ориентации рамки относительно вектора **B** ЭДС индукции и ток будут иметь максимальные значения?
- 2. Перечислите виды потерь энергии в катушке индуктивности в случае, когда по ней течет а) постоянный ток, б) переменный ток. Как изменится активное сопротивление катушки, если в нее вставить сплошной железный сердечник? Наборный сердечник?
- 3. Каков сдвиг фаз между напряжением и током на катушке индуктивности и на конденсаторе? Чем он объясняется с физической точки зрения?
- 4. Какова связь между мгновенными значениями напряжения и тока на катушке индуктивности? на конденсаторе? Тот же вопрос относительно амплитудных значений.
- 5. Изобразить на одном рисунке зависимость от времени напряжения на идеальном конденсаторе и тока через него. Показать, в какие интервалы времени конденсатор накапливает энергию, и в какие отдает ее. Сделать то же самое для идеальной катушки индуктивности. Чему равна энергия, потребляемая идеальной катушкой или идеальным конденсатором за один период?
- 6. Как с физической точки зрения объяснить возможность электрических колебаний в LC- контуре? Почему ток в контуре не прекращается в тот момент, когда конденсатор полностью разряжается?

Волькенштейн: 14.2-14.4, 14.11

Тема 13. Электромагнитные волны

Вопросы

- 1. Чем отличаются свободные колебания, происходящие в идеальном (R=0) и реальном, контуре?
- 2.Основываясь на втором правиле Кирхгофа показать, что свободные колебания в контуре описываются дифференциальным уравнением второго порядка, являющимся уравнением движения гармонического осциллятора. Какой вид имеет решение этого уравнения?
- 3. Как практически можно возбудить свободные колебания в контуре? От чего зависит начальная амплитуда этих колебаний?
- 4. Какими параметрами контура определяется его собственная частота, коэффициент затухания?
- 5. Какова частота свободных колебаний в контуре? В каком случае ее можно считать равной собственной частоте?
- 6. Какие элементы контура накапливают (запасают) энергию? Как найти запасенную энергию и энергию, теряемую за один период колебаний?

Решение задач:

Волькенштейн: 14.18-14.21

Содержание лабораторных занятий по дисциплине

Тема 1. Электрическое поле в вакууме

Лабораторная работа №1 Изучение электронного осциллографа.

Лабораторная работа №2 Исследование затухающих колебаний в колебательном контуре.

Тема 3. Электрическое поле при наличии проводников

Лабораторная работа №3 Методы измерения электроемкости конденсатора. Исследование параллельно и последовательно соединенных конденсаторов.

Лабораторная работа №4 Исследование вынужденных колебаний в колебательном контуре.

Тема 4. Энергия взаимодействия зарядов и энергия электрического поля

Лабораторная работа №5 Определение удельного заряда электрона методом магнетрона. Лабораторная работа №6 Определение удельного заряда электрона методом Милликена.

Тема 7. Электрический ток в электролитах и газах

Лабораторная работа №7 Исследования электрических процессов в простых линейных цепях при действии гармонической ЭДС.

Лабораторная работа №8 Исследование электростатического поля.

Тема 8. Постоянное магнитное поле в вакууме

Лабораторная работа №9 Исследование магнитного поля соленоида с помощью датчика Холла.

Тема 10. Магнитное поле в магнетиках

Лабораторная работа №10 Исследование явления гистерезиса ферромагнитных материалов.

Тема 12. Квазистационарные электрические цепи

Лабораторная работа №11 Определение числа Фарадея и заряда электрона методом электролиза.

Лабораторная работа №12 Исследование зависимости величин активного, индуктивного и емкостного сопротивлений и их проводимостей от частоты переменного тока.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Общая и экспериментальная физика» используются разнообразные образовательные технологии как традиционные, так и с применением активных и интерактивных методов обучения.

Активные и интерактивные методы обучения:

- Интерактивная лекция (тема №1, тема №4, тема №13);
- Разбор конкретных ситуаций (тема №3, тема №5, тема №6,тема №8);
- Проблемная лекция (тема №2, тема №7);
- Технология учебного исследования (тема №11)
- Анализ ситуаций (тема №9)
- Применение имитационных моделей (тема №10).

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕ-ВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Текущий контроль успеваемости

Вопросы к рейтинг-контролю №1

- 1. Элементарный заряд.
- 2. Описание макроскопических заряженных тел: модели точечного и непрерывно распределенного заряда.
- 3. Закон сохранения заряда.
- 4. Закон Кулона.
- 5. Напряженность электростатического поля.
- 6. Принцип суперпозиции.
- 7. Теорема Остроградского Гауса и еè применение к расчету поля некоторых симметричных тел.
- 8. Потенциальный характер электростатического поля, циркуляция вектора напряженности. Потенциал.
- 9. Градиент потенциала и напряженность поля.
- 10. Модели диэлектриков.
- 11. Поляризация диэлектриков.
- 12. Вектор поляризации.
- 13. Вектор электрического смещения.
- 14. Диэлектрическая проницаемость и еè физический смысл.
- 15. Теорема Остроградского Гауса для поля в диэлектрике

Вопросы к рейтинг-контролю №2

- 1. Условие равновесия избыточного заряда на проводнике.
- 2. Напряженность поля у поверхности проводника и ее связь с поверхностной плотностью заряда.
- 3. Электростатическая индукция и защита. Электроемкость.
- 4. Конденсаторы и их соединения
- 5. Закон Ома для участка цепи.
- 6. Сторонние силы.
- 7. Электродвижущая сила.

- 8. Закон Ома для замкнутой цепи.
- 9. Работа и мощность в цепи постоянного тока.
- 10. Закон Джоуля-Ленца.
- 11. Дифференциальная форма законов Ома и Джоуля-Ленца.
- 12. Классификация твердых тел (проводники, полупроводники и диэлектрики).
- 13. Природа тока в металлах.
- 14. Опыты Мандельштама и Попалекси, Толмена и Стюарта.
- 15. Классическая теория электропроводности металлов и вывод из нее законов Ома и Джоуля-Ленца.
- 16. Трудности классической теории.
- 17. Понятие о низкой и высокотемпературной сверхпроводимости.
- 18. Проводимость полупроводников.
- 19. Проводимость электролитов.
- 20. Закон Ома для электролитов.
- 21. Законы Фарадея.
- 22. Процессы ионизации и рекомбинации.
- 23. Несамостоятельный и самостоятельный газовый разряды.
- 24. Вольтамперная характеристика газового разряда.
- 25. Виды разряда (тлеющий, искровой и коронный).
- 26. Молния. Понятие о плазме. Катодные лучи.
- 27. Опыты Эрстеда и Ампера.
- 28. Виток с током в магнитном поле.
- 29. Магнитный момент витка.
- 30. Индукция и напряженность магнитного поля.
- 31. Закон Био-Савара-Лапласа.
- 32. Магнитное поле движущегося заряда.
- 33. Магнитное поле прямого и кругового токов.
- 34. Циркуляция вектора индукции магнитного поля.
- 35. Закон полного тока.
- 36. Магнитное поле соленоидального тока.
- 37. Сила Ампера и сила Лоренца.
- 38. Определение удельного заряда электрона.
- 39. Масс-спектрограф.
- 40. Циклические ускорители.
- 41. Эффект Холла.
- 42. Относительный характер электрического и магнитного полей.

Вопросы к рейтинг-контролю №3

- 1. Ток смещения.
- 2. Опыты Роуленда и Эйхенвальда.
- 3. Уравнения Максвелла в интегральной и дифференциальной форме.
- 4. Получение переменной ЭДС.
- 5. Активное сопротивления, индуктивность и емкость в цепи переменного тока.
- 6. Векторные диаграммы. Последовательный резонанс.
- 7. Работа и мощность в цепи переменного тока.
- 8. Электрический колебательный контур.
- 9. Собственные колебания, формула Томсона.
- 10. Затухающие и вынужденные колебания в контуре.
- 11. Резонанс.
- 12. Плоские волны в однородном пространстве
- 13. Скорость их распространения.

- 14. Излучение электромагнитных волн.
- 15. Опыты Герца.
- 16. Объемная плотность энергии электромагнитного поля.
- 17. Поток энергии.
- 18. Вектор Умова-Пойнтинга.
- 19. Шкала электромагнитных волн.

Промежуточная аттестация по итогам освоения дисциплины (экзамен)

Вопросы к экзамену

- 1. Закон Кулона. Электрическое поле. Напряженность.
- 2. Теорема Гаусса. Применение т. Гаусса для расчета электрических полей.
- 3. Работа сил электрического поля. Циркуляция вектора напряженности. Потенциал и разность потенциалов. Электрического поля.
- 4. Связь между потенциалом и напряженностью. Потенциалы некоторых полей.
- 5. Диэлектрики в электрическом поле. Типы диэлектриков. Вектор поляризации. Электрическое смещение. Теорема Гаусса для диэлектриков. Закон Кулона для диэлектриков.
- 6. Электрическое поле заряженного проводника. Проводники в электрическом поле.
- 7. Электроемкость. Конденсаторы. Энергия электрического поля.
- 8. Электрический ток. Плотность и сила тока. Закон Ома, з-н Джоуля-Ленца в интегральной и дифференциальной форме.
- 9. ЭДС, закон Ома для замкнутой цепи. Работа и мощность в цепи постоянного тока. КПД источника тока. Правила Кирхгофа.
- 10. Классификация твердых тел (проводники, полупроводники и диэлектрики). Природа тока в металлах. Опыты Мандельштама и Попалекси, Толмена и Стюарта. Классическая теория электропроводности металлов и вывод из нее законов Ома и Джоуля-Ленца.
- 11. Трудности классической теории. Понятие о низкой и высокотемпературной сверхпроводимости.
- 12. Электролиты, з-н Ома для электролитов. Законы электролиза.
- 13. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный газовый разряды. Вольтамперная характеристика газового разряда.
- 14. Виды разряда (тлеющий, искровой и коронный). Молния. Понятие о плазме.
- 15. Опыты Эрстеда и Ампера. Виток с током в магнитном поле. Магнитный момент витка. Индукция и напряженность магнитного поля.
- 16. Закон Био-Савара-Лапласа. Магнитное поле движущегося заряда.
- 17. Магнитное поле прямого и кругового токов.
- 18. Циркуляция вектора индукции магнитного поля. Закон полного тока. Магнитное поле соленоидального тока.
- 19. Сила Ампера и сила Лоренца. Определение удельного заряда электрона. Циклические ускорители.
- 20. Эффект Холла.
- 21. Относительный характер электрического и магнитного полей.
- 22. Опыты Фарадея. Закон Фарадея и правило Ленца.
- 23. Физическая природа электродвижущей силы индукции. Вихревое электрическое поле. Вихревые токи. Поверхностный эффект.
- 24. Самоиндукция. Индуктивность. Электродвижущая сила самоиндукции.
- 25. Энергия магнитного поля токов. Энергия и плотность энергии магнитного поля.
- 26. Атом в магнитном поле. Вектор намагничения. Классификация магнетиков.
- 27. Ток смещения.

- 28. Уравнения Максвелла в интегральной и дифференциальной форме. Их физический смысл.
- 29. Принцип получения переменной ЭДС. Виды сопротивлений в цепи переменного тока. Закон Ома. Резонанс напряжений.
- 30. Мощность в цепи переменного тока.
- 31. Электрический колебательный контур. Собственные колебания, формула Томсона.
- 32. Затухающие и вынужденные колебания в контуре. Резонанс.
- 33. Плоские волны в однородном пространстве, скорость их распространения. Излучение электромагнитных волн. Опыты Герца.
- 34. Объемная плотность энергии электромагнитного поля. Поток энергии. Вектор Умова-Пойнтинга. Шкала электромагнитных волн.

Текущая СРС, направленная на углубление и закрепление знаний студента, развитие практических умений включает:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса,
- выполнение домашних заданий, контрольных работ,
- изучение тем, вынесенных на самостоятельную проработку,
- подготовку к практическим и семинарским занятиям;
- подготовка к контрольной работе, к зачету, экзамену.

Творческая проблемно-ориентированная самостоятельная работа (ТСР), ориентированная на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов включает следующие виды работ по основным проблемам курса:

- поиск, анализ, структурирование и презентация информации,
- анализ научных публикаций по заранее определенной преподавателем теме;
- анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

Темы рефератов для самостоятельной работы

- 1. Атмосферное электричество.
- 2. Электрические свойства кристаллов.
- 3. Методы расчета электрических полей, созданных заряженными проводниками.
- 4. Методы расчет электрических цепей постоянного тока.
- 5. Открытие сверхпроводимости.
- 6. Низкотемпературная сверхпроводимость.
- 7. Современные электроизмерительные приборы, используемые для изучения электрических и магнитных полей.
- 8. Эффект Холла и его использование в техник.
- 9. Виды циклических ускорителей заряженных частиц.
- 10. Опыты Герца по изучению электромагнитных волн.
- 11. Методы по определению удельного заряда частиц.
- 12. Методы повышения коэффициента мощности в цепи переменного тока.

Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дис-
Самостоятельные работы на практических занятиях	Знание основных формул и определений

Контрольные работы на практических занятиях	Умение самостоятельно нахо-
	дить решение поставленной
	задачи
Участие студентов в научной дискуссии по подготов-	Овладение опытом анализа ин-
ленным и представленным презентациям, рефератам во	формационных источников;
время проведения конференц-недели	выступлений с докладами и
	участия в дискуссиях;
	разделения научного и ненауч-
	ного знания;
Выполнение и защита индивидуальных заданий	Знание основных формул и оп-
	ределений. Умение самостоя-
	тельно находить решение по-
	ставленной задачи
Тестирование	Знание основных формул и оп-
	ределений. Умение самостоя-
	тельно находить решение по-
	ставленной задачи

Контроль со стороны преподавателя и самоконтроль осуществляется в соответствии с рейтинг-планом дисциплины, во время практических и лабораторных занятий, коллоквиумов, защиты домашних заданий.

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС-ПЕЧЕНИЕ ДИСЦИПЛИНЫ

Книгообеспеченность

Наименование литературы:	Год из-	КНИГООБЕСІ	ТЕЧЕННОСТЬ
автор, название, вид издания, издательство	дания	Количество экземпляров изданий в библиотеке ВлГУ в соответствии с ФГОС ВО	Наличие в электронной библиотеке ВлГУ
1	2	3	4
	Осног	вная литература	
1. Электромагнетизм. Основные зако-ны[Электронный ресурс] / И.Е. Иродов. — 9-е изд. (эл.). — М.: БИ-НОМ. Лабо-ратория знаний	2014		http://znanium.com/catalo g.php?bookinfo=539095
2. Задачи по общей физике [Электронный ресурс] / Иродов И.Е М.: БИ-НОМ,	2014		http://znanium.com/catalo g.php?bookinfo=539095
3. Физика. Основы электро- динамики. Электромаг- нитные колебания и вол- ны: Учебное пособие / С.И. Кузнецов 4-е изд., испр. и доп М.: Вузов-	2015		http://znanium.com/catalo g.php?bookinfo=424601

	ский учебник: НИЦ ИН- ФРА-М, 2015 231 с ISBN 978-5-9558-0332-6, 500 экз.	Дополни	тельная литература	
1.	Основы электродинамики с Matlab [Электронный ресурс]: учеб. пособие / А. Ю. Гринев, Е. В. Ильин М.: Логос, 2012 176 с ISBN 978-5-98704-700-2.	2012		http://znanium.com/catalo g.php?bookinfo=468451
2.	Кркий курс общей физики [Электронный ресурс]: учебное пособие / И.А. Старостина Казань: Издательство КНИТУ.	2014		http://www.studentlibrary. ru/book/ISBN9785788216 911.html
3.	Электромагнетизм. Методы решения задач [Электронный ресурс] / Покровский В.В М. : БИНОМ	2013		http://www.studentlibrary. ru/book/ISBN9785996322 930.html

Периодические издания

«Земля и вселенная». М.: Наука;

«Природа» М.: Изд. РАН;

«Физика в школе» М.: Школьная пресса;

«Успехи физических наук» М.: Изд. РАН;

«Физика» М.: Первое сентября.

Интернет-ресурсы

CourseLab 2.7;

Открытая физика (часть I)

http://physics.ru/courses/op25part1/content/content.html#.V80iwVuLTcs

Открытая физика (часть II)

http://physics.ru/courses/op25part2/content/content.html#.V80jOVuLTcs

Физика, химия, математика студентам и школьникам

http://www.ph4s.ru/

Физика в анимациях

http://physics.nad.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИП-ЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий практического типа, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Практические работы проводятся в Аудит. 121-7, 227-7, 235-7, 236-7. Лабораторные работы проводятся в «Лаборатории электродинамики» Аудит. 114-7.

Перечень используемого лицензионного программного обеспечения: Лицензии на Microsoft Windows/Office: Microsoft Open License 49487346

	Рабочую программу составил доц. А.В. Гончаров
	Рецензент
	Программа рассмотрена и одобрена на заседании кафедры общей и теоретической фи-
Ü	Протокол №
	Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии правления 44.03.05 – Педагогическое образование
	Протокол № от <u>30. US. 19</u> года Председатель комиссии М.В. Артамонова

.

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рабочая программа одобрена на <u>2019</u>	7/20	учебный год	
Протокол заседания кафедры № _/_	от <u>3</u> С	<u>). 08.19</u> года	
Заведующий кафедрой	ul	_ H.B. Manei	6
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины *«Общая и экспериментальная физика»* образовательной программы направления подготовки 44.03.05 – Педагогическое образование,

бразовательной программы направления подготовки 44.03.05 – Педагогическое образован направленность: Физика. Математика (бакалавриат)

Номер	Внесены изменения в части/разделы	Исполнитель	Основание
изменения	рабочей программы	ФИО	(номер и дата распоряди-
			тельного документа о вне-
			сении изменения)
1			
2			

Рабочая программа	прассмотрен	а и одобрена н	а заседании кафедры	общей и теоретической фи-
зики, протокол №	OT	_201 <u></u> Γ.		
Зав. кафедрой	/			
_	Подпись	ФИО		