Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

УТВЕРЖДАЮ Проректор по учебно методической работе

А.А.Панфилов

201 \circ г.

« 11 » 03

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ»

Направление подготовки 44.03.05 Педагогическое образование

Профиль подготовки Физика. Математика

Уровень высшего образования бакалавриат

Форма обучения очная

Семестр	Трудоем- кость зач. ед,час.	and the same of th	Практич. занятий, час.	Лаборат. работ, час.	СРС,	Форма промежуточного контроля (экз./зачет)
6	3/108	18	54	_	36	ЗАЧЕТ С ОЦЕНКОЙ
Итого	3/108	18	54	_	36	ЗАЧЕТ С ОЦЕНКОЙ

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели:

- 1. Формировать физическое мышление у студентов;
- 2. Дать научные знания по электродинамике на уровне высшей школы, достаточные для освоения соответствующих разделов теоретической физики, а также для понимания и изучения технических дисциплин таких как, например, физическая электроника и элетрорадиотехника;
- 3. Дать основные знания и умения, которые будут необходимы при работе в средней школе в качестве учителя физики;
- 4. Развить навыки самостоятельной работы студентов.

Задачи дисциплины:

- 1. освоить теоретический материал, предусмотренный программой курса;
- 2. научиться применять законы электродинамики для решения конкретных физических задач;
- 3. научиться использовать основные методы и приемы исследования Электромагнитных и физических полей.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Основы теоретической физики» относится к вариативной части. Раздел «Электродинамика» читается в шестом семестре и является важным разделом физики, т.к. подготавливает студентов третьего курса профиля «Физика. Математика» к восприятию таких сложных разделов основ теоретической физики как квантовая механика, статистическая физика и термодинамика, физика твердого тела, физика ядра и элементарных частиц, и опирается на знания, полученные ранее в курсах «Общая и экспериментальная физика», «Математический анализ, дифференциальные уравнения и уравнения с частными производными», «Алгебра», «Методы математической физики», «Основы теоретической физики. Основы классической механики».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОСВО	ения дисципли	пы
Код компетенций по ФГОС	Компетенции	Планируемые результаты
OK-3	Способность использовать естественнонаучные и математические знания в современном информационном пространстве	Знать: - предмет и объект физики как науки; - теоретические основы и природу основных физических явлений; - фундаментальные понятия, законы и теории классической и современной физики; - основные достижения физической науки в практической жизни. Уметь: - выделять конкретное физическое содержание в прикладных задачах и использовать основные законы физики в профессиональной деятельности; - применять физические законы для решения практических задач. Владеть: - навыками работы с научной литературой разного

		уровня (научно-популярные издания, периодические
		журналы, монографии, учебники, справочники);
		-навыками оценки результатов научного эксперимента
		или исследования.
ПК-1	Готовность реали-	Знать:
	зовывать образова-	- требования актуального образовательного стандарта;
	тельные программы	структуру курса физики в основной и средней школе;
	по учебным предме-	- предмет, задачи и структуру курса физики; основные
	там в соответствии с	компоненты педагогической системы и пути их со-
	требованиями обра-	вершенствования; аспекты формирования мотивации
	зовательных стан-	учащихся на формирование познавательного интереса
	дартов	к изучению физики;
	Aupros	- базовый и углубленный материалы учебной дисцип-
		лины «Физика»: основные понятия и определения,
		включая физические величины, физические законы;
		Уметь:
		- реализовывать образовательные программы по физи-
		ке в соответствии с требованиями образовательных
		стандартов;
		- отбирать адекватные содержанию и дидактическим
		задачам методы, приемы, средства обучения; самостоя-
		тельно разрабатывать образовательные программы и
		составлять технологические карты занятий по дисцип-
		лине «Физика».
		Владеть:
		- навыками составления образовательной программы
		по учебному предмету «Физика» в соответствии с тре-
		бованиями образовательных стандартов;
		- навыками разработки всех элементов учебно-
		методического комплекса по физике в соответствии с
		возрастными особенностями учащихся и спецификой
		учебного заведения.
		у честого заведения.
	<u> </u>	

"В соответствии с профессиональным стандартом педагога (приказ Министерства труда и социальной защиты населения РФ № 544н от 18.10.2013г.) преподаватели в средней школе при разработке и реализации программ учебных дисциплин в рамках основной общеобразовательной программы, а также при планировании и проведении учебных занятий должны владеть общепользовательскими и общепедагогическими ИКТ-компетентностями (ИКТ - информационно-коммуникационные технологии). "

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет <u>3</u> зачетных единиц, <u>108</u> часов.

№ п/п	Раздел (тема) дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			Объем учебной работы, с применением интерактивных методов (в часах / %)	Формы текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации (по семестрам)			
				Лекции	Практические занятия	Лабораторные работы	Лабораторные работы Контрольные работы СРС				
1	Введение. Исторический обзор.	6	1	2	6			4		2/25	
2	Электростатиче- ское поле, его силовые и энерге- тические характе- ристики.	6	2-3	2	6			4		2/25	
3	Электромагнит- ное поле в ди- электриках. Урав- нение электро- магнитного поля.	6	4-5	2	6			4		2/25	PK-1
4	Постоянный элек- трический ток	6	6-7	2	6			4		2/25	
5	Стационарное магнитное поле и его характеристи-ки.	6	8	2	6			4		2/25	PK-2
6	Квазистационар- ное электромаг- нитное поле.	6	9	2	6			4		2/25	
7	Переменное электромагнитное поле.	6	10	2	6			4		2/25	
8	Электромагнит- ные волны. Излу- чение электро- магнитных волн.	6	11	2	6			4		2/25	
9	Основы электрон- ной теории Ло- ренца	6	12	2	6			4		2/25	PK-3
Всего				18	54			36		18/25	ЗАЧЕТ С ОЦЕНКОЙ

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

N	Виды учебной ра-	Образовательные технологии
п/п	боты	
1.	Лекция	-лекция-информация с визуализацией;
		-проблемная лекция
2.	Практические заня-	-семинар-конференция по студенчиским докладам и эссе;
	тия	-выполнение расчетных работ;
		-поиск и анализ информации в сети Интернет;

		-проектные технологии; -технология учебного исследования
3.	Самостоятельная работа	-внеаудиторная работа студентов (освоение теоретического материала, подготовка к практическим занятиям, работа с электронным учебно-методическим комплексом, работа над проектом, подготовка к текущему и итоговому контролю)
4.	Текущий контроль	-решение задач на практических занятиях; - защита расчетных работ; -защита проектов; -бланочное и компьютерное тестирование

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИП-ЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬ-НОЙ РАБОТЫ СТУДЕНТОВ

Вопросы к рейтинг-контролю 1

- 1. Уравнения Максвелла и их физическое обоснование. Сила Лоренца.
- 2. Закон сохранения энергии в микроскопической электродинамике. Плотность энергии электромагнитного поля. Вектор Пойнтинга.
- 3. Потенциалы электромагнитного поля. Калибровочная инвариантность. Вывод уравнений для потенциалов при калибровке Лоренца.
- 4. Уравнения для потенциалов статических электрического и магнитного полей и их решения
- 5. Разложение потенциала электростатического поля по мультиполям (до квадруполя включительно).
- 6. Электрический дипольный момент. Потенциал и напряженность поля электрического диполя в статике. Энергия диполя во внешнем поле.
- 7. Энергия и сила электростатического взаимодействия двух удаленных систем зарядов. Момент силы.
- 8. Магнитный момент токов. Векторный потенциал и поле магнитного диполя.
- 9. Уравнения для потенциалов и их решение в виде запаздывающих потенциалов.
- 10. Потенциалы Лиенара-Вихерта.
- 11. Физические условия применимости мультипольного разложения в задаче об излучении.
- 12. Электрическое дипольное излучение. Полная интенсивность, угловое распределение, поляризация.
- 13. Магнитное дипольное излучение. Полная интенсивность, угловое распределение, поляризация.
- 14. Электрическое квадрупольное излучение. Угловое распределение и полная интенсивность.
- 15. Сила радиационного трения (в нерелятивистском приближении).
- 16. Рассеяние электромагнитных волн на изотропном гармоническом осцилляторе.

Вопросы к рейтинг-контролю 2

- 1. Преобразования Лоренца для координат времени. Интервал.
- 2. Релятивистская кинематика. Преобразование промежутка времени и длины отрезка.
- 3. Релятивистский закон сложения скоростей. Преобразование углов.
- 4. Пространство Минковского. Примеры тензоров различных рангов.
- 5. Закон преобразования плотностей заряда и тока и его обоснование.
- 6. Ковариантная запись условия Лоренца и уравнений для потенциалов. Законы преобразования потенциалов.
- 7. Тензор электромагнитного поля. Ковариантная запись уравнений Максвелла для полей в вакууме.

- 8. Законы преобразования векторов поля Е и Н. Инварианты электромагнитного поля.
- 9. Инвариантность фазы. Законы преобразования частоты и волнового вектора.
- 10. Астрономическая аберрация и эффект Допплера.
- 11. Принцип стационарного действия в электродинамике. Основные постулаты.
- 12. Вывод уравнений движения релятивистской заряженной частицы во внешнем электромагнитном поле в четырехмерном виде.
- 13. Лагранжиан для заряженной частицы во внешнем электромагнитном поле. Уравнения Лагранжавторого рода. Интегралы движения.
- 14. Связь между энергией, импульсом, массой и скоростью релятивистской частицы. Закон преобразования энергии и импульса частиц.

Вопросы к рейтинг-контролю 3

- 1. Усреднение микроскопических уравнений Максвелла. Векторы поляризации и намагничения среды, их связь с плотностью связанных зарядов и токов.
- 2. Материальные уравнения для полей в покоящемся веществе.
- 3. Уравнения для потенциалов в однородном покоящемся веществе. Калибровочная инвариантность. Решение в виде запаздывающих потенциалов.
- 4. Граничные условия для полей в покоящейся кусочно-однородной среде.
- 5. Закон сохранения энергии в электродинамике покоящихся сред.
- 6. Постановка задачи (основные уравнения и граничные условия) для электростатики кусочно-однородной среды.
- 7. Силы в электростатике диэлектриков.
- 8. Энергия системы проводников. Силы в электростатике проводников.
- 9. Постановка задачи (уравнения и граничные условия) для стационарных токов в кусочнооднородных проводниках.
- 10. Потенциал и магнитное поле стационарных токов.
- 11. Энергия магнитного поля стационарных токов. Магнитный поток. Коэффициенты само-индукции и взаимной индукции.
- 12. Квазистационарное приближение. Основные уравнения. Границы применимости.
- 13. Проникновение периодически меняющихся полей в проводник (в квазистационарном приближении). Скин-эффект.
- 14. Обобщенный закон Ома для линейной цепи с индуктивностями и емкостями в квазистационарном приближении.
- 15. Уравнения макроскопической электродинамики в ковариантном виде.
- 16. Материальные уравнения для движущихся диэлектриков.
- 17. Закон преобразования векторов поляризации и намагничения в движущейся среде.
- 18. Основные уравнения магнитной гидродинамики идеально проводящей жидкости.
- 19. "Вмораживание" магнитного поля в движущийся идеальный проводник.
- 20. Дисперсия диэлектрической проницаемости для разреженных газов из нейтральных атомов или молекул.
- 21. Дисперсия диэлектрической проницаемости для ионизированных газов.
- 22. Физический смысл мнимой части комплексной диэлектрической проницаемости.
- 23. Формулы Крамерса-Кронига.
- 24. . Фазовая и групповая скорости света в диспергирующей среде.
- 25. 3.25. Распространение электромагнитных волн в проводящей среде.

Организация и учебно-методическое обеспечение самостоятельной работы студентов (36 часов)

Приводится характеристика всех видов и форм самостоятельной работы студентов, включая текущую и творческую/исследовательскую деятельность студентов:

Текущая СРС, направленная на углубление и закрепление знаний студента, развитие практических умений включает:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса,
- выполнение домашних заданий, контрольных работ,
- - изучение тем, вынесенных на самостоятельную проработку,
- подготовку к практическим и семинарским занятиям;
- подготовка к контрольной работе, к зачету, экзамену.

Творческая проблемно-ориентированная самостоятельная работа (ТСР), ориентированная на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов включает следующие виды работ по основным проблемам курса:

- поиск, анализ, структурирование и презентация информации,
- анализ научных публикаций по заранее определенной преподавателем теме;
- анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

Содержание самостоятельной работы студентов по дисциплине

Темы рефератов для самостоятельной работы

- 1. Атмосферное электричество.
- 2. Электрические свойства кристаллов.
- 3. Методы расчета электрических полей, созданных заряженными проводниками.
- 4. Методы расчёт электрических цепей постоянного тока.
- 5. Открытие сверхпроводимости.
- 6. Низкотемпературная сверхпроводимость.
- 7. Современные электроизмерительные приборы, используемые для изучения электрических и магнитных полей.
- 8. Эффект Холла и его использование в техник.
- 9. Виды циклических ускорителей заряженных частиц.
- 10. Опыты Герца по изучению электромагнитных волн.
- 11. Методы по определению удельного заряда частиц.
- 12. Методы повышения коэффициента мощности в цепи переменного тока.

Проектная деятельность

- 1. Создание школьных виртуальных лабораторных работ по электричеству.
- 2. Создания виртуальной установки циклотрона.
- 3. Создание виртуальной установки масс-спектрографа.
- 4. Компьютерное моделирование поляризации диэлектриков.
- 5. Компьютерное моделирование движения заряженных частиц в электрических и магнитных полях.
- 6. Компьютерное моделирование эффекта Холла.
- 7. Компьютерное моделирование явления гистерезиса в ферромагнетиках.

Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей. Оценка результатов самостоятельной работы организуется следующим образом:

- контрольные вопросы, задаваемые при выполнении и защитах лабораторных работ;
- контрольные вопросы, задаваемые при проведении практических занятий,
- вопросы для самоконтроля;
- вопросы тестирований;
- выполнение домашних работ;
- выполнение самостоятельных и контрольных работ
- вопросы, выносимые на экзамен.

- реферат с элементами проектирования;
- доклады на конференц-неделях.

Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дис-
	циплине
Самостоятельные работы на практических занятиях	Знание основных формул и определений
Контрольные работы на практических занятиях	Умение самостоятельно находить решение поставленной задачи
Участие студентов в научной дискуссии по подготовленным и представленным презентациям, рефератам во время проведения конференц-недели	Овладение опытом анализа информационных источников; выступлений с докладами и участия в дискуссиях; разделения научного и ненаучного знания;
Выполнение и защита индивидуальных заданий	Знание основных формул и определений. Умение самостоятельно находить решение поставленной задачи
Тестирование	Знание основных формул и определений. Умение самостоятельно находить решение поставленной задачи

Контроль со стороны преподавателя и самоконтроль осуществляется в соответствии с рейтинг-планом дисциплины, во время практических и лабораторных занятий, коллоквиумов, защиты домашних заданий.

Вопросы к зачету с оценкой

- 1. Закон Кулона. Электрическое поле. Напряженность.
- 2. Теорема Гаусса. Применение т. Гаусса для расчета электрических полей.
- 3. Работа сил электрического поля. Циркуляция вектора напряженности. Потенциал и разность потенциалов. Электрического поля.
- 4. Связь между потенциалом и напряженностью. Потенциалы некоторых полей.
- 5. Диэлектрики в электрическом поле. Типы диэлектриков. Вектор поляризации. Электрическое смещение. Теорема Гаусса для диэлектриков. Закон Кулона для диэлектриков.
- 6. Электрическое поле заряженного проводника. Проводники в электрическом поле.
- 7. Электроемкость. Конденсаторы. Энергия электрического поля.
- 8. Электрический ток. Плотность и сила тока. Закон Ома, з-н Джоуля-Ленца в интегральной и дифференциальной форме.
- 9. ЭДС, закон Ома для замкнутой цепи. Работа и мощность в цепи постоянного тока. КПД источника тока. Правила Кирхгофа.
- 10. Классификация твердых тел (проводники, полупроводники и диэлектрики). Природа тока в металлах. Опыты Мандельштама и Попалекси, Толмена и Стюарта. Классическая теория электропроводности металлов и вывод из нее законов Ома и Джоуля-Ленца.
- 11. Трудности классической теории. Понятие о низкой и высокотемпературной сверхпроводимости.
- 12. Электролиты, з-н Ома для электролитов. Законы электролиза.
- 13. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный газовый разряды. Вольтамперная характеристика газового разряда.
- 14. Виды разряда (тлеющий, искровой и коронный). Молния. Понятие о плазме.

- 15. Опыты Эрстеда и Ампера. Виток с током в магнитном поле. Магнитный момент витка. Индукция и напряженность магнитного поля.
- 16. Закон Био-Савара-Лапласа. Магнитное поле движущегося заряда.
- 17. Магнитное поле прямого и кругового токов.
- 18. Циркуляция вектора индукции магнитного поля. Закон полного тока. Магнитное поле соленоидального тока.
- 19. Сила Ампера и сила Лоренца. Определение удельного заряда электрона. Циклические ускорители.
- 20. Эффект Холла.
- 21. Относительный характер электрического и магнитного полей.
- 22. Опыты Фарадея. Закон Фарадея и правило Ленца.
- 23. Физическая природа электродвижущей силы индукции. Вихревое электрическое поле. Вихревые токи. Поверхностный эффект.
- 24. Самоиндукция. Индуктивность. Электродвижущая сила самоиндукции.
- 25. Энергия магнитного поля токов. Энергия и плотность энергии магнитного поля.
- 26. Атом в магнитном поле. Вектор намагничения. Классификация магнетиков.
- 27. Ток смещения.
- 28. Уравнения Максвелла в интегральной и дифференциальной форме. Их физический смысл.
- 29. Принцип получения переменной ЭДС. Виды сопротивлений в цепи переменного тока. Закон Ома. Резонанс напряжений.
- 30. Мощность в цепи переменного тока.
- 31. Электрический колебательный контур. Собственные колебания, формула Томсона.
- 32. Затухающие и вынужденные колебания в контуре. Резонанс.
- 33. Плоские волны в однородном пространстве, скорость их распространения. Излучение электромагнитных волн. Опыты Герца.
- 34. Объемная плотность энергии электромагнитного поля. Поток энергии. Вектор Умова-Пойнтинга. Шкала электромагнитных волн.

7.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

№ п/п	Название и выходные данные (автор, вид издания, издательство, издания, количество страниц)	Год изда- ния	Количество экземпляров в библиотеке университета	Наличие в электрон-ной библиотеке ВлГУ	Количе- ство студен- тов, ис- поль- зую-щих указан- ную ли-	Обеспечен- ность сту- дентов ли- терату-рой, %
		-		_	тературу	
1	2	3	4	5	6	7
	Осн	овная .	питература			
1	Электромагнетизм. Основные законы[Электронный ресурс] / И.Е. Иродов. — 9-е изд. (эл.). — М. : БИНОМ. Лаборатория знаний	2014		OBC "Znanium" http://znanium .com/catalog.p hp?bookinfo= 539095 ISBN 978-5- 9963-2348-7	20	100
2	Задачи по общей физике [Электронный ресурс] / Иродов И.Е М. : БИНОМ,	2014		ЭБС "Кон- сультант сту- дента" http://www.stu	20	100

3	Физика. Основы электродинамики. Электромагнитные колебания и волны: Учебное пособие / С.И. Кузнецов 4-е изд., испр. и доп М.: Вузовский учебник: НИЦ ИНФРА-М, 2015 231 с ISBN 978-5-9558-0332-6, 500 экз.	2015	dentlibrary.ru/book/ISBN97 85996323494. html ЭБС "Znanium" http://znanium.com/catalog.p hp?bookinfo= 424601	20	100
	Дополн	ительн	ая литература		
1	Основы электродинамики с Matlab [Электронный ресурс] : учеб. пособие / А. Ю. Гринев, Е. В. Ильин М.: Логос, 2012 176 с ISBN 978-5-98704-700-2.	2012	ЭБС "Zna- nium" http://znanium .com/catalog.p hp?bookinfo= 468451	20	100
2	Крат- кий курс общей физики [Электронный ресурс]: учебное пособие / И.А. Ста- ростина Казань: Издательство КНИ- ТУ.	2014	ЭБС "Кон- сультант сту- дента" http://www.stu dentlibrary.ru/ book/ISBN97 85788216911. html	20	100
3	Электромагнетизм. Методы решения задач [Электронный ресурс] / Покровский В.В М. : БИНОМ	2013	ЭБС "Кон- сультант сту- дента" http://www.stu dentlibrary.ru/ book/ISBN97 85996322930. html	20	100

периодические издания:

«Земля и вселенная». М.: Наука;

«Природа» М.: Изд. РАН;

«Физика в школе» М.: Школьная пресса; «Успехи физических наук» М.: Изд. РАН;

«Физика» М.: Первое сентября.

программное обеспечение и Интернет-ресурсы: CourseLab 2.7;

Открытая физика (часть I)

http://physics.ru/courses/op25part1/content/content.html#.V80iwVuLTcs Открытая физика (часть II)

http://physics.ru/courses/op25part2/content/content.html#.V80jOVuLTcs

Физика, химия, математика студентам и школьникам

http://www.ph4s.ru/

Физика в анимациях

http://physics.nad.ru/

Работы А.Г. Столетова по намагничиванию железа

www.v-ratio.ru/fiziki/22-ferromagnetizm.html

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционная аудитория с мультимедийный проектором и ПК (а. 236-7).
- 2. Препараторская для подготовки демонстрационных физических опытов (235а-7).
- 3. Компьютерный класс с интерактивной доской (а. 121-7).
- 4. Лаборатория по электродинамике и электротехнике (а.114-7) с необходимым физическим оборудованием и электроизмерительными приборами, включая осциллографы.

тематика. Рабочую программу составил _____ Местово Рецензент _______ директор МАО СОШ №2 А.М. Санакин Программа рассмотрена и одобрена на заседании кафедры общей и теоретической физики протокол № <u>8</u> от <u>10.03.16</u> 2016 года. Заведующий кафедрой А.В. Малеев Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 44.03.05 - Педагогическое образование Председатель комиссии ____ М.В. Артамонова ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ _учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой ____учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой _____ _учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой _учебный год. Протокол заседания кафедры № _____от ____года. Заведующий кафедрой учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой _учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой _учебный год. Протокол заседания кафедры № ____от ___года. на Заведующий кафедрой_____ _учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой _учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой_____ ____учебный год. Протокол заседания кафедры № ____от ___года. Заведующий кафедрой

Рабочая программа дисциплины составлена в соответствии с требованиями $\Phi\Gamma$ ОС ВО по направлению $\underline{44.03.05}$ – $\underline{\Pi}$ едагогическое образование и профилю подготовки $\underline{\Phi}$ изика. Ма-