Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

Направление подготовки — 44.03.05 Педагогическое образование.

Профиль/программа подготовки — Биология. География.

Уровень высшего образования — бакалавриат.

Форма обучения — очная.

Семестр	Трудоёмкость зач. ед. / час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	Форма промежуточной аттестации (экзамен / зачёт / зачёт с оценкой)
8	2 / 72	20		20	32	зачёт
Итого	2 / 72	20		20	32'	зачёт

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины — формирование систематизированных знаний в области молекулярной биологии как науки об особенностях строения и свойств молекул, обеспечивающих существование биологической формы движения материи.

Задачи: приобретение студентами устойчивых знаний о механизмах реализации генетической программы, особенностях организации информационных молекул живых организмов, механизмов сохранения генетической информации в поколениях, генетических и эпигенетических механизмов развития, адаптации их к факторам окружающей среды, механизмов эволюции.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Молекулярная биология» относится к вариативной части.

Пререквизиты дисциплины: «Органическая химия», «Биологическая химия», «Микробиология».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесённые с планируемыми результатами освоения ОПОП:

Код формируемых компетенций	Уровень освоения компетен- ции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций (показатели освоения компетенции)
ПК-2	частичное	Знать: современные образовательные технологии, конкрет-
(способность использо-	освоение	ные методики обучения учебному предмету «Биология».
вать современные ме-		Уметь: осуществлять анализ учебного материала при реали-
тоды и технологии		зации учебных программ, определять структуру и содержание
обучения и диагности-		учебных занятий при реализации учебных программ.
ки)		Владеть: категориально-понятийным аппаратом современной
		теории и методики обучения биологии, способами и техноло-
THE A		гиями диагностирования достижений обучающихся.
ПК-4	частичное	Знать: основные методы использования образовательной сре-
(способность использо-	освоение	ды для достижения личностных, предметных и метапредмет-
вать возможности об-		ных результатов обучения и обеспечения качества учебного
разовательной среды		процесса средствами биологии.
для достижения лично-		Уметь: формировать образовательную среду школы в целях
стных, метапредметных		достижения личностных, предметных и метапредметных ре-
и предметных резуль-		зультатов обучения средствами биологии; использовать обра-
татов обучения и обес-		зовательный потенциал социокультурной среды региона в
печения качества учеб-		преподавании биологии.
но-воспитательного		Владеть: содержательной интерпретацией и адаптацией тео-
процесса средствами		ретических знаний по биологии для решения образовательных
преподаваемых учеб-		задач; конструктивными умениями как одним из главных ас-
ных предметов)		пектов профессиональной культуры будущего учителя биоло-
		гии; материалом учебной дисциплины на уровне, позволяю-
		щем формулировать и решать задачи, возникающие в ходе
		учебной деятельности по биологии.

4. ОБЪЁМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоёмкость дисциплины составляет 2 зачётные единицы, 72 часа.

			тра	Виды учебной работы, включая самостоятельную работу студентов и трудоёмкость (в часах)			ючая ьную ентов ость	: применением з (в часах / %)	Формы текущего
<u>№</u> п/п	Наименование тем и / или разделов дисциплины	Семестр	Неделя семестра	Лекции	Практические занятия	Лабораторные работы	CPC	Объём учебной работы с применением интерактивных методов (в часах / %)	контроля успеваемости, форма промежуточной аттестации (по семестрам)
1	Молекулярная структура и полиморфизм ДНК	8	9—10	4		4	2	2 / 25%	
2	Структура геномов	8	11	2		2	4	2 / 50%	
3	Транскрипция у прокариот и эукариот. Хроматин	8	12	2		2	4	2 / 50%	Рейтинг-контроль 1
4	Процессинг РНК	8	13	2		2	4	2 / 50%	
5	Трансляция	8	14	2		2	4	2 / 50%	
6	Репликация ДНК	8	15	2		2	2	2 / 50%	Рейтинг-контроль 2
7	Репарация и рекомбинация ДНК	8	16	2		2	4	2 / 50%	
8	Пространственная структура белков. Фолдинг	8	17	2		2	4	2 / 50%	
9	Генетическая инженерия	8	18	2		2	4	2 / 20%	Рейтинг-контроль 3
Всего за 8-й семестр									
Наличие в дисциплине КП/КР									
Итого по дисциплине				20		20	32	18 / 45%	зачёт

Содержание лекционных занятий по дисциплине

Тема 1. Молекулярная структура и полиморфизм ДНК

Макромолекулярная структура ДНК, спирализация, разнообразие форм, структура и динамика хроматина. Рентгеноструктурный анализ, электронная микроскопия, седиментационный анализ, «метод хирургии молекул», методы определения первичной структуры биополимеров. Модификация биологических макромолекул *in vivo* и *in vitro* и изучение их функциональных свойств. Методы культуры клеток, получение моноклональных антител.

Понятие о рекомбинантных ДНК. Генетическая инженерия как технология получения функционально активных генетических структур. Рестрикция ДНК. Рестриктазы, их классификация и особенности воздействия на ДНК. Клонирование ДНК. Плазмиды, их свойства и функции. Векторы молекулярного клонирования. Цепная полимеразная реакция и аспекты ее применения. Гибридизация нуклеиновых кислот. ДНК-зонды, блоттинг и его виды. Определение нуклеотидных последовательностей ДНК: метод Максама-Гилберта, метод Сэнгера. Стратегии молекулярного клонирования. Получение генов с использованием обратной транскриптазы.

Достижения и перспективы генетической инженерии. Получение пептидных гормонов: гормон роста, инсулин. Получение интерферонов. Генная инженерия и лечение генетически детерминированных заболеваний.

Тема 2. Структура геномов

Организация геномов вирусов. Типы генетического материала и механизм его репликации. Структура ДНК фагов. Особенности структуры геномов ДНК-вирусов, их эволюции и форм существования. Болезни, вызываемые ДНК-содержащими вирусами. РНК-содержащие вирусы. Ретровирусы. Вирус иммунодефицита человека, его структура и цикл развития, подходы для борьбы с ним. Онкогены и протоонкогены. Современные теории вирусного канцерогенеза. Происхождение вирусов и их роль в эволюции.

Геном прокариот. Структура бактериальной хромосомы. Плазмиды.

Геном эукариот. Мозаичное строение генов эукариот.

Гены, кодирующие белки. Регуляторные элементы генов. Рибосомные гены. Гены тРНК. Гистоновые гены. Тандемные повторы. Микро- и минисателиты. Подвижные генетические элементы эукариот.

Тема 3. Транскрипция у прокариот и эукариот. Хроматин

Структура и функции РНК-полимераз. Транскриптоны и их строение. Инициация, элонгация и терминация транскрипции. Опероны бактерий, механизмы их репрессии и дерепрессии. Роль аттеньюаторов и рибосом в регуляции транскрипции у прокариот. Регуляция транскрипции у бактериофага λ .

Особенности транскрипции у эукариот. Разнообразие белков-регуляторов транскрипции у эукариот и их значение для функционирования промоторов, терминаторов, энхансеров, адапторных элементов и других контролирующих элементов эукариотических геномов. Механизмы активации белков-регуляторов транскрипции. Значение гормонов в регуляции транскрипции.

Хроматин, тотальная регуляция транскрипции.

Тема 4. Процессинг РНК

Процессинг первичных транскриптов. Процессинг тРНК и рРНК. Процессинг промРНК и созревание мРНК (сплайсинг). Механизмы сплайсинга и его виды. Альтернативный сплайсинг и его значение для молекулярной эволюции. Низкомолекулярные ядерные РНК и их участие в сплайсинге. Сплайсингосомы. Аутосплайсинг. Природные и синтетические рибозимы и перспективы их использования.

Тема 5. Трансляция

Современные представления о структуре рибосом. Прокариотические и эукариотические типы рибосом. Полирибосомы. Этапы трансляции, механизмы и регуляция у про- и эукариот. Позитивная и негативная регуляция трансляции. Регуляция трансляции у бактериофагов. Регуляция трансляции рибосомальных белков. Перепрограмирование трансляции. Механизм действия тмРНК. Механизм воздействия бактериальных токсинов на биосинтез белка.

Тема 6. Репликация ДНК

Основные принципы репликации ДНК. Особенности репликации кольцевых ДНК. Однонаправленная и двунаправленная репликация. Репликоны. Роль РНК в регуляции репликации. Точность и ошибки репликации. Механизмы коррекции ошибок репликации и их биологическое значение.

Теломерные последовательности ДНК. Структура и механизм действия ДНК- теломераз. Связь активности теломераз с числом генерации клеток и продолжительностью жизни организма. ДНК-теломеразы и канцерогенез.

Обратная транскрипция. Биосинтез ДНК на матрице РНК.

Тема 7. Репарация и рекомбинация ДНК

Виды повреждений ДНК и факторы окружающей среды их вызывающие. Естественный, химический и радиационный мутагенез. Мутагены и раковое перерождение клеток. Репарация ДНК и её виды: прямая и эксцизионная репарация. SOS-системы. Ферменты репарации. Репарация и метилирование ДНК.

Тема 8. Пространственная структура белка. Фолдинг

Возможности и закономерности пространственной организации полипептидных цепей белков. Белки-шапероны. Шаперонины, их структура и механизм действия. Трансмембранный перенос белков. Котрансляционные и посттрансляционные модификации белков.

Разнообразие структур и функции белков. Доменный принцип структурной организации и эволюции белков. Прионизация белков и патологические последствия этого явления.

Роль разных групп белков (изоферментов, металлотионеинов, белков теплового шока, иммуноглобулинов в развитии резистентности и адаптации к веществам, загрязняющим экосистемы. Конструирование каталитически активных антител (абзимов) и перспективы их применения. Понятие о белковой и ферментной инженерии. Протеомика, её задачи и перспективы развития.

Тема 9. Генетическая инженерия

Технология получения рекомбинантных ДНК. Гибридизация нуклеиновых кислот. Определение нуклеотидных последовательностей. ПЦР. Химический синтез гена. Перспективы генетической инженерии.

Содержание лабораторных занятий по дисциплине

Тема 1. Молекулярная структура и полиморфизм ДНК

Выделение плазмидной ДНК из дрожжей.

Тема 2. Структура геномов

Выделение геномной ДНК из дрожжей.

Тема 3. Транскрипция у прокариот и эукариот. Хроматин

Спектрофотометрическое определение концентрации ДНК.

Тема 4. Процессинг РНК

Очистка нуклеиновых кислот. Осаждение нуклеиновых кислот этанолом или изопропанолом.

Тема 5. Трансляция

Трансляция нукулеотидной последовательности.

Тема 6. Репликация ДНК

Предсказание нуклеотидной последовательности по аминокислотной.

Тема 7. Репарация и рекомбинация ДНК

Рестриктный анализ ДНК.

Тема 8. Пространственная структура белка. Фолдинг

Гель-электрофорез белков.

Тема 9. Генетическая инженерии

Расчёт праймеров и параметров ПЦР с помощью специальных программ.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Молекулярная биология» используются разнообразные образовательные технологии — как традиционные, так и с применением активных и интерактивных методов обучения.

Активные и интерактивные методы обучения:

интерактивная лекция (темы № 1, 2, 8),

групповая дискуссия (темы № 9),

применение имитационных моделей (темы № 3, 4, 5, 6, 7, 8),

разбор конкретных ситуаций (тема № 9).

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Задания к рейтинг-контролю

Рейтинг-контроль 1

1. Молекулярная биология изучает:

А протекание биологических процессов на молекулярном уровне;

Б строение клетки;

В морфологическое и физиологическое многообразие бактерий и вирусов.

2. Функции мембран:

А регуляция обмена между клеткой и средой, разделительная функция, рецепторная;

Б транспортная функция, электрическая;

В верны оба варианта ответа.

3. Мономерами белков являются:

А нуклеотиды;

Б нуклеосомы;

В аминокислоты.

4. Нуклеотид – это мономер

А белков;

Б нуклеиновых кислот;

В жиров.

5. Простые белки состоят:

А только из нуклеотидов;

Б только из аминокислот;

В из аминокислот и небелковых соединений.

6. Белки, которые растворяются и в воде и в растворе солей, называются:

А альбумины;

Б глобулины;

В фибриллярные белки.

7. В строении белков различают:

А два уровня организации молекулы;

Б три уровня организации молекулы;

В четыре уровня организации молекулы.

8. Полипептид образуется путём:

А взаимодействия аминогрупп двух соседних аминокислот;

Б взаимодействия аминогруппы одной аминокислоты и карбоксильной группы другой аминокислоты;

В взаимодействия карбоксильных групп двух соседних аминокислот.

9. Степень спирализации белка характеризует:

А первичную структуру белка;

Б вторичную структуру белка;

В третичную структуру белка;

10. Четвертичная структура белка характерна для:

А олигомерных белков;

Б фибриллярных белков;

В глобулярных белков.

11. Белки актин и миозин выполняют функцию:

А транспортную;

Б защитную;

В сократительную.

Рейтинг-контроль 2

1. ДНК содержит:

А рибозу, остаток фосфорной кислоты, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин;

Б дезоксирибозу, остаток фосфорной кислоты, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин;

В дезоксирибозу, остаток фосфорной кислоты, одно из четырех азотистых оснований: аденин, гуанин, цитозин, урацил.

3.Вырожденность генетического кода это:

А кодирование одним триплетом только одной аминокислоты;

Б кодирование одним триплетом одной либо нескольких аминокислот;

В кодирование одной аминокислоты несколькими триплетами.

4.Универсальность генетического кода – это:

А наличие единого кода для всех существ на Земле;

Б кодирование одним триплетом одной либо нескольких аминокислот;

В кодирование одной аминокислоты несколькими триплетами.

5. К первичной структурной организации ДНК относится:

А трехмерная спираль;

Б две комплементарные друг другу антипараллельные полинуклеотидные цепи;

В полинуклеотидная цепь.

8. РНК в ядре сосредоточено в:

А ядерной оболочке;

Б ядрышке;

В нуклеоплазме.

7. Сколько уровней организации имеет хроматин:

А три;

Б два;

В четыре.

8. Участок, разделяющий две нуклеосомы, называют:

А соленоид;

Б линкер;

В гистон.

9. Информация о строении белка передается в цитоплазму:

А матричной РНК;

Б транспортной РНК;

В рибосомной РНК.

10. Процессинг – это:

А Синтез РНК;

Б Созревание РНК;

В Созревание ДНК.

Рейтинг-контроль 3

1. Репликация – это:

А копирование ДНК с образованием 2-х идентичных дочерних молекул;

Б процесс переписывания информации с ДНК на РНК;

В процесс синтеза белка.

2. В репликации ДНК участвует совокупность ферментов и белков, которые образуют:

А репликазу;

Б рестриктазу;

В реплисому.

3. Основной фермент репликации:

А ДНК-полимераза;

Б геликаза;

В лигаза.

4. Начало репликации связано с образованием:

А репликационной вилки и глазка;

Б праймеров;

В фрагментов ДНК на ведущей и отстающей цепи.

5. За расплетение молекулы ДНК ответственен фермент:

А ДНК – полимераза;

Б лигаза;

В геликаза.

6. Механизм репликации ДНК является:

А полуконсервативным;

Б консервативным;

В неконсервативным.

7. Синтез дочерних цепей ДНК осуществляется:

A от 5^{\prime} конца к 3^{\prime} концу;

Б от 3^{7} конца к 5^{7} концу;

В на ведущей и отстающей цепях направление синтеза противоположно.

8. Фрагмент Оказаки – это:

А короткий участок отстающей цепи ДНК;

Б длинный участок ведущей цепи ДНК;

В участок материнской цепи ДНК.

9. Транскрипция – это:

А Процесс самокопирования ДНК с образованием двух идентичных дочерних молекул;

Б Процесс переписывания информации, содержащейся в РНК, в форме ДНК.

В Процесс переписывания информации, содержащейся в ДНК, в форме РНК.

10. Основной фермент транскрипции:

А ДНК-полимераза;

Б РНК-полимераза;

В рестриктаза.

11. Участок ДНК, с которым связывается РНК-полимераза, называется:

А промотор;

Б терминатор;

В транскриптон.

Задания для самостоятельной работы студентов

№ п/п	Тема	Форма контроля	Кол-во часов
1	Молекулярная структура гена. Определение нуклеотидной последовательности.	собеседование	6
2	Расшифровка генетического кода. Чтение генетического кода, триплеты.	реферат	6
3	Транспортная РНК – трансляционный посредник. Кодон-антикодоновое узнавание.	реферат	4
4	«Фабрики» синтеза белка – рибосомы. Активные центры рибосом. Строение малой и большой субъединиц.	реферат	6
5	РНК-полимеразы – транскрипционный аппарат клетки. Промоторы и терминаторы.	реферат	6
6	Исследование ДНК. Получение химерной ДНК. Клонирование ДНК	реферат	4

Итого: 32 часа

Вопросы к зачёту

- 1. Структурные компоненты нуклеиновых кислот. Молекулярная структура и полиморфизм ДНК.
 - 2. Нуклеизиды и нкулеотиды. Первичная структура нуклеиновых кислот.
- 3. Вторичная структура ДНК B, A и Z формы. Третичная структура ДНК. Этапы формирования хромосом.
 - 4. Структура и функции кодирующих и не кодирующих белок РНК. Мир РНК.
 - 5. Информационные, транспортные и рибосомальные РНК.
 - 6. Структура геномов вирусов, про- и эукариот.
- 7. Репликация ДНК. Полуконсервативный тип репликации ДНК. Строение репликативной вилки и реплисомы.
 - 8. Репликация ДНК в клетках про- и эукариот.
 - 9. Генетическая рекомбинация. Репарация ДНК.
 - 10. Транскрипция у про и эукариот.
 - 11. Хроматин. Общая регуляция транскрипции у эукариот.
 - 12. Процессинг информационной РНК.
 - 13. Генетический код.
 - 14. Этапы и регуляция трансляции.
 - 15. Методы генетической инженерии.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Книгообеспеченность

		КНИГООБЕСПЕЧЕННОСТЬ			
Наименование литературы: автор, название, вид издания, издательство	Год издания	Количество эк- земпляров из- даний в библио- теке ВлГУ	Наличие в электронной библиотеке ВлГУ		
1	2	3	4		
	Основная лит	гература			
1. Нуклеиновые кислоты: от А до Я: пер. с англ. / Б. Аппель [и др.]; ред. С. Мюллер; перевод под ред. А. А. Быстрицкого, Е. Г. Григорьевой. — М.: Бином. Лаборатория знаний. — 413 с. — ISBN 978-5-9963-0376-2.	2012		http://www.studentlibrary.ru/book/ ISBN9785996324064.html		
2. Принципы и методы биохимии и молекулярной биологии: учеб. пособие / Э. Эйткен [и др.]. — М.: БИНОМ. Лаборатория знаний. — 853 с. — ISBN 978-5-9963-2877-2.			http://www.studentlibrary.ru/book/ ISBN9785996328772.html		

1	2	3	4
3. Комов, В. П. Биохимия: учебник для ву-	2008	15	
зов по направлению 655500 Биотехнология /			
В. П. Комов, В. Н. Шведова. — 3-е изд.,			
стер. — М. : Дрофа.— 639 с. — ISBN 978-5-			
358-04872-0.			
Доп	олнительная	литература	
1. Спирин, А. С. Молекулярная биология.	2015		http://www.studentlibrary.ru/book/
Рибосомы и биосинтез белка: учебник / А.			<u>ISBN9785769566684.html</u>
С. Спирин. — М.: Академия — 496 с. —			
ISBN 978-5-7695-6668-4.			
2. Разин, С. В. Хроматин. Упакованный ге-	2015		http://www.studentlibrary.ru/book/
ном / С. В. Разин, А. А. Быстрицкий. — М.:			<u>ISBN9785996329502.html</u>
БИНОМ. Лаборатория знаний. — 189 с. —			
ISBN 978-5-9963-2950-2.			
4. Северин, Е. С. Биохимия [Электронный	2016		http://www.studentlibrary.ru/book/
ресурс]: учебник / под ред. Е. С. Северина.			<u>ISBN9785970437629.html</u>
— 5-е изд., испр. и доп. — M. : ГЭОТАР-			
Медиа. — 768 с. — ISBN 978-5-9704-3762-9.			

7.2. Периодические издания

- 1. «Биотехнология».
- 2. «Биохимия».
- 3. «Вестник МГУ: биология».

7.3. Интернет-ресурсы

- 1. http://www.molbiol.ru
- 2. http://www.hij.ru
- 3. http://www.xumuk.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лабораторные работы проводятся в лаборатории органической и биологической химии (403-7).

Учебно-методические материалы — учебники, методические пособия, тесты.

Аудиовизуальные средства обучения — слайды, презентации, видеофильмы.

Лабораторное оборудование — центрифуги, весы аналитические, спектрофотометр, рН-метры, вытяжные шкафы, термостаты.

Расходные материалы: химические реактивы, химическая посуда.

Рабочую программу составил профессор кафедры биологического и географическог
образования Ларионов Н. П.
Рецензент (представитель работодателя): директор МБОУ СОШ № 29 г. Владимир
Плышевская Е. В.
Программа рассмотрена и одобрена на заседании кафедры биологического и географи
ческого образования.
Протокол № 11 от 25.06.2019 года.
Заведующий кафедрой доцент Грачёва Е. П.
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комис
сии направления 44.03.05 Педагогическое образование.
Протокол № 3 от 01.07.2019 года. Председатель комиссии Организацирентор ПИ ВлГУ Артамонова М. В.

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на		_ учебный год	
Протокол заседания кафедры №	от _	года	
Заведующий кафедрой			
Рабочая программа одобрена на		_ учебный год	
Протокол заседания кафедры №	от _	года	
Заведующий кафедрой			
Рабочая программа одобрена на		_ учебный год	
Протокол заседания кафедры №	от _	года	
Заведующий кафедрой			
Рабочая программа одобрена на		_ учебный год	
Протокол заседания кафедры №	OT _	года	
Заведующий кафедрой			
Рабочая программа одобрена на		_ учебный год	
Протокол заседания кафедры №	OT	года	
Заведующий кафедрой			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины

Молекулярная биология

образовательной программы направления подготовки 44.03.05 Педагогическое образование, направленность: Биология. География

Номер изменения	Внесены изменения в части/разделы рабочей программы	Исполнитель ФИО	Основание (номер и дата протокола
1			заседания кафедры)
2			
D 1	. ,		

Зав. кафедрой	/	
	Подпись	ФИО