Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

роректорно ческой А.А.Панфилов
2016 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫМОНИТОРИНГ ЗДОРОВЬЯ УЧАЩИХСЯ СРЕДНЕЙ ШКОЛЫ

Направление подготовки - 44.03.05 «Педагогическое образование»

Профили – «Биология. Экология»

Уровень высшего образования -бакалавриат

Форма обучения – очная

Семестр	Трудоемкость зач. ед. / час.	Лекций, час.	Практич. занятий, час.	Лаборат. работ, час.	СРС,	Форма промежу- точного контроля (экз./зачет)	
2	4 зач. ед., 144 ч.	18	18	-	72	экзамен 36 ч.	
Итого	4 зач. ед., 144 ч.	18	18	-	72	экзамен 36 ч.	

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Мониторинг здоровья учащихся средней школы» является формирование систематизированных знаний в области генетики человека и медицинской генетики, а также изучение молекулярной природы генетических изменений, анализ закономерностей их наследования, оценка их распространенности в различных популяциях человека, изучение роли мутагенных факторов окружающей среды в возможной фенотипической изменчивости у учащихся.

Задачи дисциплины:

- 1) определить глубину профессиональных знаний студентов в области генетики человека.
- 2) изучить методов диагностики, лечения и профилактики наследственных изменений и патологий, связанных с широким спектром менделеевских, хромосомных и мультифакториальных наследственных заболеваний у человека (учащихся) с целью воспитания их генетической культуры.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Мониторинг здоровья учащихся средней школы» относится к дисциплинам по выбору вариативной части учебного плана. Дисциплина «Мониторинг здоровья учащихся средней школы» является базой для таких областей знаний, как, генетика человека, медицинская генетика, общая биология, экология и теория эволюции.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Процесс изучения дисциплины направлен на формирование и развитие профессиональных компетенций **ПК-2** и **ПК-4**:

- владение основными биологическими и генетическими понятиями, знаниями биологических и генетических знаков и явлений;
- владение знаниями об особенностях наследственности и наследственной изменчивости, организации и передачи генетического материала, типов наследования у человека, фенотипических изменениях, спровоцированных различными мутагенными факторами, понимать их роль в становлении организма и здоровья ребенка;
- способность объяснить генетические основы биологических процессов и физиологические механизмы работы различных систем и органов человеческого организма и человеческой популяции;
- способность ориентироваться в вопросах генетического единства органического мира, молекулярных основах наследственности, изменчивости и методах генетического анализа:
- владение знаниями о закономерностях развития органического мира на всех уровнях: молекулярном, клеточном, организменном, популяционном (CK 5);
- способность применять генетические, биологические и экологические знания для анализа прикладных проблем, вопросов состояния здоровья человека и взаимодействия с внешней окружающей средой;
- способность к самостоятельному проведению исследований, постановке естественнонаучного эксперимента, использованию информационных технологий для решения научных и профессиональных задач, анализу и оценке результатов лабораторных и полевых исследований.

В результате изучения дисциплины студент должен

знать:

- основные закономерности наследственности и изменчивости, установленные для живых организмов, способы их передачи на протяжении многих поколений, характер наследования мутационных изменений у человека, зависимость от условий внешней среды;
- научные представления и методы исследования в современной генетике человека;
- научные представления о классических типах наследования у человека, об аллельных и неаллельных взаимодействиях генов, о взаимодействии наследственности с условиями внешней среды;

уметь:

- сформулировать цель самостоятельной работы по изучению основных закономерностей наследственности и наследственной изменчивости у человека с использованием генеалогического метода на базе составления родословных, метода по анатомии и морфологии, поставить задачи необходимые для достижения этой цели и сформулировать выводы,
- работать с микроскопической техникой на постоянных и временных препаратах, определять систематическую принадлежность растений в полевых условиях, уметь делать анатомические срезы, окрашивать их и делать рисунки и фотографии объектов.

владеть:

- практическими умениями и навыками (компетенциями) при работе с учебной литературой, атласами и справочными пособиями;
- практическими умениями и навыками при работе с учебным оборудованием (микроскопы, лупы), раздаточным, демонстрационным и гербарным материалами;
- теоретическими и практическими умениями для изучения общей биологии, цитологии, основ селекции на старших курсах и смежных дисциплинах,
- навыками использования современных, интерактивных методов обучения, создания презентаций.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа

	Раздел (тема) дисциплины	Семестр	Неделя семестра	вкл	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Объем учебной работы,	Формы те- кущего контроля успеваемо- сти
№ п/п				Лекции	Практические занятия	Лабораторные работы	Контрольные работы	CPC	KII / KP	с применением интерактивных методов (в часах / %)	(по неде- лям семе- стра), форма про- межуточ- ной аттестации (по семест- рам)
1	Введение в генетику человека	2	1-2	2				12		1/25%	
2	Методы мониторинга генетики человека	2	3-6	4	4			12		4/50%	Рейтинг- контроль 1
3	Способы передачи генетического материала у человека	2	7-8	2	2			12		2/50%	

4	Организация генетического материала у человека	2	9-10	2	4		12	3/50%	
5	Типы наследования у человека и взаимодействие генов	2	11-14	4	4		12	4/50%	Рейтинг- контроль 2
6	Наследственные болезни у человека и их классифика- ция	2	15-18	4	4		12	4/50%	Рейтинг- контроль 3
	Итого			18	18		72	18/50%	экзамен

СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1. Введение в генетику человека

Введение. Генетика человека – биологическая наука, изучающая явления наследственности и изменчивости у человека, на всех уровнях его организации и существования. Цель и задачи генетики человека. История становления и развития генетики человека. Основные периоды ее развития. Значение других наук в достижениях современной генетики человека.

Место генетики среди других биологических наук. Значение её в теоретическом плане и жизнедеятельности человека. Мировоззренческое значение генетики человека и её место в решении задач медицинской генетики.

2. Методы мониторинга генетики человека

Клинико-генеалогический метод. Метод позволяет выявить наследственный характер признака и определить тип наследования. Методика составления родословной. Клинико-психологическое обследование (основные этапы). Клинико-генетическая диагностика (оценка структуры и степени выраженности ведущего нарушения, определяющего аномалию у больного).

Близнецовый метод. Метод изучения генетических закономерностей на близнецах. Сбор материала. Методы диагностики зиготности близнецов, анализ близнецовых данных. Причины многоплодия.

Популяционно-статистический метод. Метод используется при изучении наследственных болезней населения, частоты нормальных и патогенных генов, генотипов и фенотипов в человеческих популяциях, разных возрастных групп. Дрейф генов. Миграция или поток генов. Близкородственные браки.

3. Способы передачи генетического материала у человека

Типы клеточного размножения у человека. Митоз. Клеточный цикл. Фазы клеточного цикла. Поведение хромосом в митозе. Биологический смысл митоза. Разновидности: К-митоз, эндомитоз.

Мейоз — тип клеточного деления при половом размножении. Стадии и фазы мейоза. Гаплоидное и диплоидное число хромосом.

Принципиальные различия поведения хромосом в митозе и мейозе. Биологический смысл мейоза. Гаметогенез и оплодотворение.

4. Организация генетического материала у человека

Химический состав и строение молекулы ДНК. Симрилизация ДНК и ее упаковка в хромосомы.

Организация генетического материала в хромосомах человека. Видовая специфичность числа и морфологии хромосом. Кариотип, идиограмма. Кариотип человека в норме и патологии.

5. Типы наследования у человека и взаимодействие генов

Классические типы наследования у человека.

Менделирующие признаки. Аутосомно-доминантное наследование. Вертикальная передача признаков без пропусков в поколениях.

Аутосомно-рецесивный тип наследования. Гомозиготное проявление признака в рецессивном состоянии. Скрытое носительство. Горизонтальное наследование. Пропуски при передачи признака от поколения к поколению.

Другие типы наследования у человека: неполное доминирование, кодоминирование и множественный аллелизм, сверхдоминирование.

Взаимодействие неаллельных генов.

Эпистаз доминантный и рецессивный. Механизм действия генов. Супрессоры и ингибиторы.

Комплементарность. Тип взаимодействия генов. Проявления признака.

Полимерия. Проявление признака, детерминированного несколькими парами неаллельных генов, обладающих одинаковым действием.

Наследование признаков сцепленных с полом и сцепленное наследование.

Генетика пола и сцепленное с полом наследование. Наследование сцепленное с Xхромосомой и наследование сцепленное с Y- хромосомой. Наследование ограниченное и контролируемое полом.

Хромосомная теория наследственности Т. Моргана. Сцепление генов и карты хромосом.

6. Наследственные болезни у человека и их классификация

Типы наследственных болезней: генные, хромосомные и болезни с наследственной предрасположенностью.

Причины и характер протекания наследственных болезней. Семейное накопление случаев болезни. Множественность (полисистемность) поражения. Наличие дисплазий и врожденных пороков развития. Резистентность и терапии.

Генные болезни. Менделирующее наследование болезней. Клинический полиморфизм и генетическая гетерогенность генных болезней.

Хромосомные болезни (синдромы). Диагностические признаки хромосомных синдромов. Механизмы геномных мутаций: нерасхождение хромосом, "анафазное отставание", полиплоидизация.

Болезни с наследственной предрасположенностью. Моногенная и полигенная предрасположенность к болезням. Мультифакториальные (или многофакторные) болезни предрасположенности. Генетические и средовые факторы, влияющие на проявление мультифакториальных болезней. Группы болезней с наследственной предрасположенностью: врожденные пороки развития и хронические заболевания неинфекционной этиологии (нервно-психические и соматические болезни).

Моногенная форма болезней с наследственной предрасположенностью. Полигенные формы болезней с наследственной предрасположенностью. Риски мультифакториальной предрасположенности.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки бакалавра реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий. В рамках учебного курса по дисциплине «Мониторинг здоровья учащихся средней школы» используются следующие образовательные технологии:

— интерактивные формы проведения занятий (работа с мультимедийными программами и оборудованием);

- технология формирования приемов учебной работы с использованием мультимедийных технологий;
 - технология дифференцированного обучения;
- технология проблемного обучения (решение ситуативных задач на лабораторных работах);
 - проведение конкурсов презентаций с использованием Power Point;
 - интенсивная внеаудиторная работа (подготовка рефератов и презентаций);

На проведение занятий в интерактивной форме отводится 50% занятий, что соответствует норме согласно $\Phi\Gamma OC$.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

ЗАДАНИЯ К РЕЙТИНГ-КОНТРОЛЮ

Рейтинг-контроль 1

1. В анафазе митоза к разным полюсам расходятся:

- А) гомологичные хромосомы;
- Б) сестринские хроматиды;
- В) не гомологичные хромосомы.

2. В анафазе І мейоза к разным полюсам расходятся:

- А) гомологичные хромосомы;
- Б) сестринские хроматиды;
- В) не гомологичные хромосомы.

3. В анафазе ІІ мейоза расходятся:

- А) гомологичные хромосомы;
- Б) сестринские хроматиды;
- В) не гомологичные хромосомы.

4. Кроссинговер происходит в:

- А) профазе митоза;
- Б) профазе І мейоза;
- В) профазе ІІ мейоза.

5. Наследственность – это:

- А) процесс передачи наследственного материала;
- Б) свойство структур клетки и организма в целом обеспечивать материальную и
- функциональную преемственность между организмами;
- В) свойство живых организмов размножаться.

6. Первый закон Г. Менделя основан на:

- А) независимом расхождении негомологичных хромосом в мейозе;
- Б) гомозиготности родительских особей;
- В) гипотезе "чистоты" гамет.

7. Второй закон Г. Менделя основан на:

- А) независимом расхождении негомологичных хромосом в мейозе;
- Б) гомозиготности родительских особей;
- В) гипотезе "чистоты" гамет.

8. Третий закон Г. Менделя основан на:

- А) независимом расхождении негомологичных хромосом в мейозе;
- Б) гомозиготности родительских особей;
- В) гипотезе "чистоты" гамет.

ви:	
	A) I, IV;
	Б) II, III;
	B) III, IV.
	Рейтинг-контроль 2
	1. В семье резусположительных родителей родился резусотрицательный ребенок. Генотипы
родите	
	A) RhRh, rhrh;
	Б) Rhrh, Rhrh;
	B) RhRh, Rhrh.
	2. В семье, где мать и отец страдают одной и той же формой глухонемоты, а по другой форме немоты они гетерозиготны (обе формы глухонемоты определяются рецессивными аутосомными пленными генами), вероятность рождения детей глухонемыми составляет:
	A) 75%;
	Б) 100%;
	B) 50%.
законс	3. Создать хромосомную теорию наследственности Т. Моргана помогло открытие следующих ов:
5411011 0	 A) сцепленного наследования и наследования признаков, сцепленных с полом; Б) I, II, III законов Γ. Менделя;
	В) закона гомологических рядов в естественной изменчивости Н. Вавилова.
	4. При сцепленном наследовании гены располагаются:
	А) на гомологичных хромосомах;
	Б) на негомологичных хромосомах;
	В) на одной хромосоме.
	5. Число групп сцепления у человека равно:
	A) 22;
	Б) 46;
	B) 23.
	6. Одним из типов взаимодействия аллельных генов является:
	А) комплементарность;
	Б) кодоминирование;
	В) полимерия.
	7. Гетерогаметным является женский пол у:
	А) человека;
	Б) птиц;
	В) дрозофил.
	8. У матери – носительницы гемофилии и здорового отца дети могут быть:
	А) все здоровые;
	Б) девочки здоровы, мальчики больные;
	В) девочки здоровые, у мальчиков расщепление 1:1.
гомози	9. В брак вступили: голубоглазая женщина – носительница гена дальтонизма и кареглазый иготный мужчина с нормальным зрением. В этой семье дети могут быть:
	А) все дети кареглазые дальтоники;
	Б) девочки кареглазые с нормальным зрением, мальчики – голубоглазые дальтоники;
	В) девочки кареглазые с нормальным зрением, мальчики – кареглазые и расщепление 1:1 по зрению.
	Рейтинг-контроль 3
	1. Половые клетки женщин содержат:
	A) 44 аутосомы + XX хромосомы;
	Б) 22 аутосомы + XX хромосомы;

9. Родители имеют I и IV группы крови (в системе A, B, O). Их дети могут иметь группы кро-

- В) 22 аутосомы + Х хромосома. 2. При эпистотическом взаимодействии геном можно ожидать расщепления по фенотипу в F2: A) 9:3:3:1; Б) 15:1; B) 13:3. 3. При полимерии можно ожидать расщепления по фенотипу в F₂: A) 9:3:3:1; Б) 15:1; B) 13:3. 4. При комплементарном взаимодействии генов расщепления по фенотипу в F2: A) 9:3:3:1; Б) 15:1; B) 13:3. 5. Самые высокие люди – три гомозиготы по доминантным аллелям – имеют рост 180 см. самые низкие – три гомозиготы по рецессивным аллелям – 150 см. Вклад одного доминантного аллеля в формирование этого количественного признака составляет: А) 155 см: Б) 5 см; В) 30 см. 6. В генетике человека используется метод: А) генеалогический; Б) гибридологический; В) метод селективных сред. 7. Человек с синдромом Клайнфельтера имеет кариотип: A) 44+ XX: Б) 44+ ХО; B) 44+ XXY. 8. Человек с синдромом Дауна имеет кариотип: A) 46; Б) 47; B) 45.

 - 9. Человек с синдромом Шерешевского-Тернера имеет кариотип: A) 44 + XX;
 - Б) 44+ ХО;
 - B) 44+ XXY.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

- 1. Кариотип человека в норме и патологии.
- 2. Эпистаз доминантный и рецессивный.
- 3. Супрессоры и ингибиторы.
- 4. Менделирующее наследование болезней.
- 5. Механизмы геномных мутаций.
- 6. Генные болезни.
- 7. Хромосомные болезни.
- 8. Мультифакторные наследственные болезни.

ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Предмет изучения генетики человека. Краткая история развития генетики.
- 2. Понятие о врожденных и наследственных заболеваниях и заболеваниях с наследственной предрасположенностью у человека.

- 3. Способы деления клетки, их биологический смысл.
- 4. Митоз. Фазы митоза. Разновидности митоза.
- 5. Мейоз. Редукционное и эквационное деление. Биологический смысл.
- 6. Наследственность и наследственная изменчивость у человека.
- 7. Наследование признаков сцепленных с полом (Х- и У –хромосомы).
- 8. Менделевское наследование (аутосомно-доминантное, аутосомно-рецесивное, сцепленное с полом).
 - 9. ДНК основа наследственной информации.
- 10. Основные методы изучения генетики человека: клинико-генеалогический, близнецовый, популяционно-статистический, цитогенетический.
- 11. Молекулярные методы изучения генетики человека: метод генетики соматических клеток, биохимический метод, молекулярно-генетические методы..
 - 12. Современное состояние знаний генетики человека.
 - 13. Генетическая организация хромосом эукариот.
 - 14. Кариотип человека, идиограмма.
 - 15. Методы дифференциального окрашивания хромосом.
 - 16. Хромосомная теория наследственности Т. Моргана.
 - 17. Взаимодействие аллельных генов. Множественный аллелизм.
 - 18. Кодоминирование. Группа крови АВО у человека.
 - 19. Неполное доминирование и сверхдоминирование у человека.
 - 20. Взаимодействие неаллельных генов у человека. Виды взаимодействия.
 - 21. Эпистаз рецессивный и доминантный.
 - 22. Комплементарность доминантных генов.
 - 23. Полимерия. Примеры кумулятивной полимерии.
 - 24. Наследственные болезни: причины и характер протекания.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основная литература:

- 1. Тульчинская, В. Д. Здоровье детей / В. Д. Тульчинская. Ростов н/Д.: Феникс, 2014. 200 с. (Библ. ВлГУ)
- 2. Хандогина, Е. К. Генетика человека с основами медицинской генетики / Е. К. Хандогина [и др.]. 2-е изд. М.: ГЭОТАР-Медиа, 2014. 192 с. (Библ. ВлГУ)
- 3. Медицинская генетика / Л. В. Акуленко [и др.] ; под ред. О. О. Янушевича. М. : ГЭОТАР-Медиа, 2015. 128 с. (Библ. ВлГУ)

Дополнительная литература:

- 1. Мастюкова, Е. М., Основы генетики. Клинико-диагностические основы коррекционной педагогики и специальной психологии / Е. М. Мастюкова, А. Г. Московкина. М.: ВЛАДОС, 2010. 368 с. (Библ. ВлГУ)
- 2. Шевченко, В. А. Генетика человека / В.А. Шевченко, Н.А. Топорнина, Н.С. Стволинская. М.: ВЛАДОС, 2008. 240 с. (Библ. ВлГУ)
- 3. Рубан, Э. Д. Генетика человека с основами медицинской генетики / Э. Д. Рубан. Изд. 3-е. Ростов н/Д: Феникс, 2013. 319 с. ISBN 978-5-222-21045-1. (Библ. ВлГУ).

Периодические издания

- 1. Воспитание и обучение детей с нарушениями развития. (Библ. ВлГУ)
- 2. Известия РАН. Серия биологическая. (Библ. ВлГУ)
- 3. Валеология. (Библ. ВлГУ)

Программное обеспечение и Интернет-ресурсы

- 1. www.genomed.ru/
- 2. https://www.natural-sciences.ru
- 3. vse-pro-geny.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Комплект цветных таблиц, схем и рисунков. Слайды и презентации.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению 44.03.05 «Педагогическое образование» и профилю подготовки «Биология. Экология».

Рабочую программу составил Ларионов Н. П. д. м. н., профессор кафедры биологического и географического образования

Рецензент (представитель работодателя): Плышевская Е. В., к.б.н., зам. директора по учебно-воспитательной работе МАОУ «Гимназия» № 35, г. Владимир

Программа рассмотрена и одобрена на заседании кафедры биологического и географического образования.

Протокол № 9 от 15 марта 2016 года.

Заведующий кафедрой: Грачева Е. П.

Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 44.03.05 «Педагогическое образование».

Протокол № 3 от 17 марта 2016 года.

Председатель комиссии: Артамонова М. В.