Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Технологические системы в нанотехнологиях»

Направление подготовки: 28.03.02 Наноинженерия

Профиль/программа подготовки

Уровень высшего образования: бакалавриат

Форма обучения: очная

Семестр	Трудоем- Лек- кость зач. ций, ед.час. час.		Практич. занятий, час.	Лаборат. работ, час.	СРС, час.	Форма промежуточного контроля (экз./зачет)	
5	6, 216	18	36	-	126	экзамен (36ч)	
Итого	6, 216	18	36		126	экзамен (36ч)	

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины «Технологические системы в нанотехнологии» направлено на достижение следующих целей ОПОП 28.03.02 «Наноинженерия»:

Код цели	Формулировка цели
Ц1	Подготовка выпускников к научно-исследовательской и инновационной деятельности в области нанотехнологий и нанодиагностики, в том числе междисциплинарных областях, связанных с выбором необходимых методов исследования, модифицирования существующих и разработки новых технологий исходя из задач конкретного исследования.
Ц2	Подготовка выпускников к <i>проектно-конструкторской и проектно-технологическая деятельности</i> , включающей в себя участие в составе коллектива исполнителей в проведении расчетных и проектных работ при разработке процессов нанотехнологий

Целями освоения дисциплины «Технологические системы в нанотехнологии» является формирование современных представлений методах синтеза наночастиц и наноматериалов, способах контролируемого роста получения наночастиц требуемого размера и формы, методах синтеза пленок и покрытий, массивных наноструктурированных и микропористых материалов, самоорганизации наночастиц в пленках и объемных структурах, нанобиотехнологии; технологических систем, обеспечивающих указанные процессы.

Задачи изучения дисциплины является углубление теоретических и практических знаний для проведения производственных и сервисных работ, продолжение формирования профессиональных компетенций.

Виды учебной работы: лекции, практические занятия. Изучение дисциплины заканчивается экзаменом в 5-м семестре.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Технологические системы в нанотехнологии» относится к обязательным дисциплинам вариативной части.

Данная дисциплина по своему содержанию и логическому построению в учебном процессе подготовки бакалавра связана непосредственно с такими дисциплинами как «Физико-механические компоненты наносистем», «Основы нанотехнологий в машиностроении», «Физико-химические основы нанотехнологий», «Материаловедение наноматериалов и наносистем», и др.

На базе этих дисциплин формируются основные теоретические и методологические положения изучаемой дисциплины, и вырабатывается взгляд на процесс получения новых знаний, который реализуется с помощью научно-технической информации.

Изучение данной дисциплины необходимо для выполнения курсовых работ и проектов с использованием современных инструментальных средств, научно-исследовательских работ, и подготовки выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

После изучения данной дисциплины студент приобретает знания, умения и опыт, соответствующие результатам ОПОП направления 28.03.02:

P1, **P2**, **P4**, **P5** (расшифровка результатов обучения приводится в ОПОП направления 28.03.02).

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты обучения, согласующиеся с формируемым компетенциям ОПОП:

• способностью в составе коллектива участвовать в разработке макетов изделий и их модулей, разрабатывать программные средства, применять контрольно-измерительную аппаратуру для определения технических характеристик макетов (ПК-1):

Знать: основные особенности выбора и применения контрольно-измерительной аппаратуры для определения технических характеристик макетов;

Уметь: разрабатывать программные средства;

Bладеть: способностью в составе коллектива участвовать в разработке макетов изделий и их модулей;

• способностью в составе коллектива исполнителей участвовать в проведении расчетных работ (по существующим методикам) при проектировании нанообъектов и формируемых на их основе изделий (включая электронные, механические, оптические) (ПК-6):

Знать: существующие методики проектирования нанообъектов и формируемых на их основе изделий;

Уметь: выполнять при разработке операции необходимые расчеты технологических параметров обработки;

Владеть: навыками проведения расчетных работ при проектировании нанообъектов и формируемых на их основе изделий.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

«Технологические системы в нанотехнологии»

5 семестр: общая трудоемкость дисциплины составляет 6 зачетных единицы, 216 часов.

	Раздел (тема) дисциплины	Семестр	Неделя семестра	Виды учебной работы,					Формы	
				включая самостоятельную					Объём	текущего
				работу студентов					учебной	контроля
				и трудоемкость (в часах)				работы,	успеваемост	
No					КІ	Ы			c	и (по
31=				Лекции	Практические занятия	Jot	Лабораторные работы СРС	СРС Курсовая работа	примене	неделям
п/						pa(нием	семестра),
П						sie			интеракт	форма
11						нф			ИВНЫХ	промежуточн
						ато)		методов	ой
						opa			(в часах	аттестации
						Ia6			/%)	(по
					I	J				семестрам)
1	Раздел 1. Технологическая система – как совокупность функционально взаимосвязанных средств технологического оснащения. Методы и	5	1-6	6	12		42		9/ 50%	Рейтинг- контроль №1
	оборудование для									
	исследования наносистем. Раздел 2.									
2	Технологические системы получения наночастиц и наноматериалов.	5	7- 12	6	12		42		9/ 50%	Рейтинг- контроль №2
	Раздел 3.									
3	Технологические системы получения	5	13- 18	6	12		42		9/ 50%	Рейтинг- контроль №3
	пленок и покрытий.		10						2070	No.mpono v 123
	Итого за 5-й семестр 216 часов в т.ч. экзамен 36ч.			18	36		126		27/50%	Экзамен

Тематическое содержание курса

Раздел 1.

Технологическая система – как совокупность функционально взаимосвязанных средств технологического оснащения

Тема 1.1. Основные понятия. Технологические системы в наноинженерии.

Введение. Основные понятия. Исполнитель в технологической системе. Подсистема технологической системы. Технологический комплекс. Элемент технологической системы.

Тема 1.2. Примеры технологических систем в наноинженерии. Перспективы технологического роста «прорывных технологий».

Тема 1.3. Методы и оборудование для исследования наносистем.

Раздел 2.

Технологические системы получения наночастиц и наноматериалов

Тема 2.1. Методы синтеза наночастиц и наноматериалов.

Тема 2.2. Способы контролируемого роста получения наночастиц требуемого размера и формы.

Тема 2.3. Основы нанотехнологий получения наноразмерных элементов и объектов.

Раздел 3.

Технологические системы получения пленок и покрытий

- *Тема 3.1.* Методы синтеза пленок и покрытий, массивных наноструктурированных и микропористых материалов.
 - Тема 3.2. Методы самоорганизации наночастиц в пленках и объемных структурах.
- *Тема 3.3.* Основы методов работы основного оборудования для процессов получения наноразмерных элементов и объектов.

Тематический план практических занятий

№ п/п	Тематика практических занятий	Трудоемкость (час.)
1.	Технологические системы получения наноматерилов.	6
2.	Технологические системы нанесения структурированных	6
	нанопокрытий.	
3.	Определение необходимости применения упрочняющих	6
	нанотехнологий для инструментов.	
4.	Исследование возможности внедрения нанотехнологических	6
	разработок в машиностроительном производстве.	
5.	Технологические системы и процессы получения новых	6
	наноматериалов.	
6.	Технические средства исследования нанокомпозитных материалов	6
	и наноструктурированных покнытий.	
	Итого	36

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

На лекциях и практических занятиях используются активные формы обучения, включающие компьютерные симуляции, деловые и ролевые игры, разбор конкретных ситуаций, проблемное изложение материала, постановку и разрешение проблем при активном участии студентов, а также такие формы активизации студентов как презентации и доклады на студенческих научных конференциях, выполнение индивидуальных заданий, участие в НИРовских работах, выполняемых на кафедре.

В качестве одной из мер, направленных на активизации академической активности при выполнении СРС используются контрольные вопросы, которые содержатся в лекциях и в методических указаниях к практическим работам.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Вопросы для проведения рейтинг-контроля №1

- 1. Технологические системы в наноинженерии.
- 2. Исполнитель в технологической системе.
- 3. Подсистема технологической системы.
- 4. Технологический комплекс.
- 5. Элемент технологической системы
- 6. Примеры технологических систем в наноинженерии.
- 7. Перспективы технологического роста «прорывных технологий».
- 8. Наноматериалы новая возможность повышения эффектив ности и надежности авиационно космической техники.
- 9. Конструкция зондов и требования к ним для туннельного и атомно силового микроскопов.
- 10. Основные разновидности атомно силовых микроскопов.
- 11. Принцип работы трехмерного атомно зондового томографа.
- 12. Классификация нанообъектов.
- 13. Фуллерены и нанотрубки. Принципы использования.
- 14. Объемные материалы.
- 15. Молекулярные и фрактальные кластеры. Закономерности раз вития фрактальных кластеров.
- 16. Алмазоиды. Возможные области применения.
- 17. Наноматериалы в электронике, компьютерных технологиях, робототехнике.
- 18. Наноматериалы в промышленности и космонавтике.
- 19. Возможности использования наноматериалов и нанотехнологий в медицине.

Вопросы для проведения рейтинг-контроля №2

- 1. Растворные методы.
- 2. Методы, основанные на различных вариантах смешения.
- 3. исходных компонентов.
- 4. Методы химического осаждения (соосаждения).
- Золь гель метод.
- 6. Гидротермальный метод.
- 7. Метод комплексонатной гомогенизации.
- 8. Метод замены растворителя.

- 9. Синтез под действием микроволнового излучения
- 10. Метод быстрого термического разложения прекурсоров в растворе (RTDS).
- 11. Методы, основанные на различных вариантах удаления растворителя.
- 12. Распылительная сушка.
- 13. Метод быстрого расширения сверхкритических флюидных растворов (RESS)
- 14. Криохимический метод.
- 15. Метод сжигания.
- 16. Глицин-нитратный метод.
- 17. Метод Печини.
- 18. Целлюлозная (тканевая, бумажная) технология.
- 19. Пиролиз полимерно-солевых пленок.

Вопросы для проведения рейтинг-контроля №3

- 1. Степень легирования некоторой локальной области монокристаллического кремния составляет 5×1018 см-3. Сколько атомов кремния приходится на один атом легирующей примеси?
- 2. С помощью какого из методов избирательного легирования можно получить максимальную концентрацию примеси на поверхности кристалла?
- 3. Что такое степень интеграции интегральной микросхемы?
- 4. В чем состоит разница между топологией и вертикальным профилем легирования микросхемы?
- 5. В чем состоят преимущества толстопленочной технологии производства интегральных микросхем?
- 6. Какие легирующие элементы используются для формирования в кремнии областей п-типа проводимости?
- 7. Какие легирующие элементы используются для формирования в кремнии областей р-типа проводимости?
- 8. Какие существуют механизмы диффузии атомов легирующей примеси?
- 9. Что такое позитивный, а что такое негативный процессы литографии? В чем их различия?
- 10. Чем отличаются между собой эталонный и рабочий фотошаблоны, используемые при контактной литографии?
- 11. Почему алюминий, хотя и находится в 3 группе элементов таблицы Менделеева и является акцепторной примесью, не используется в качестве диффузанта?
- 12. Почему в процессе резки слитков кремния на пластины используется инструмент с внутренней режущей кромкой?
- 13. Каковы правила образования названий полупроводниковых материалов состава АШВV?
- 14. Какое условие необходимо соблюсти при проведении процесса ионной имплантации чтобы получить профиль легирования близкий к распределению Гаусса?
- 15. Что такое гетерогенная химическая реакция? В каком технологическом процессе наноинженерии ее наличие является необходимым условием его нормального течения?
- 16. В чем состоит разница между одностадийным и двухстадийным процессами диффузии?
- 17. Что такое отжиг? В каком случае он применяется в технологическом процессе производства интегральных микросхем?
- 18. Перечислите, какие способы герметизации кристаллов интегральных микросхем Вам известны? Дайте краткую характеристику области применения каждого из них.

- 19. От какого из примесных элементов наиболее тяжело освободиться при зонной очистке слитка кремния и почему?
- 20. Какой характер имеет в кремнии зависимость предельной растворимости легирующей примеси от температуры?
- 21. Какой из методов эпитаксии обеспечивает наиболее совершенную структуру растущей пленки?

Вопросы к экзамену

- 1. Технологические системы в наноинженерии.
- 2. Исполнитель в технологической системе.
- 3. Подсистема технологической системы.
- 4. Технологический комплекс.
- 5. Элемент технологической системы.
- 6. Примеры технологических систем в наноинженерии.
- 7. Перспективы технологического роста «прорывных технологий».
- 8. Наноматериалы новая возможность повышения эффектив ности и надежности авиационно космической техники.
- 9. Конструкция зондов и требования к ним для туннельного и атомно силового микроскопов.
- 10. Основные разновидности атомно силовых микроскопов.
- 11. Принцип работы трехмерного атомно зондового томографа.
- 12. Классификация нанообъектов.
- 13. Фуллерены и нанотрубки. Принципы использования.
- 14. Объемные материалы.
- 15. Молекулярные и фрактальные кластеры. Закономерности раз вития фрактальных кластеров.
- 16. Алмазоиды. Возможные области применения.
- 17. Наноматериалы в электронике, компьютерных технологиях, робототехнике.
- 18. Наноматериалы в промышленности и космонавтике.
- 19. Возможности использования наноматериалов и нанотехнологий в медицине.
- 20. Растворные методы.
- 21. Методы, основанные на различных вариантах смешения.
- 22. исходных компонентов.
- 23. Методы химического осаждения (соосаждения).
- 24. Золь гель метод.
- 25. Гидротермальный метод.
- 26. Метод комплексонатной гомогенизации.
- 27. Метод замены растворителя.
- 28. Синтез под действием микроволнового излучения
- 29. Метод быстрого термического разложения прекурсоров в растворе (RTDS).
- 30. Методы, основанные на различных вариантах удаления растворителя.
- 31. Распылительная сушка.
- 32. Метод быстрого расширения сверхкритических флюидных растворов (RESS)
- 33. Криохимический метод.
- 34. Метод сжигания.
- 35. Глицин-нитратный метод.
- 36. Метод Печини.
- 37. Целлюлозная (тканевая, бумажная) технология.
- 38. Пиролиз полимерно-солевых пленок.
- 39. Степень легирования некоторой локальной области монокристаллического кремния составляет 5×1018 см-3. Сколько атомов кремния приходится на один атом легирующей примеси?

- 40. С помощью какого из методов избирательного легирования можно получить максимальную концентрацию примеси на поверхности кристалла?
- 41. Что такое степень интеграции интегральной микросхемы?
- 42. В чем состоит разница между топологией и вертикальным профилем легирования микросхемы?
- 43. В чем состоят преимущества толстопленочной технологии производства интегральных микросхем?
- 44. Какие легирующие элементы используются для формирования в кремнии областей n-типа проводимости?
- 45. Какие легирующие элементы используются для формирования в кремнии областей р-типа проводимости?
- 46. Какие существуют механизмы диффузии атомов легирующей примеси?
- 47. Что такое позитивный, а что такое негативный процессы литографии? В чем их различия?
- 48. Чем отличаются между собой эталонный и рабочий фотошаблоны, используемые при контактной литографии?
- 49. Почему алюминий, хотя и находится в 3 группе элементов таблицы Менделеева и является акцепторной примесью, не используется в качестве диффузанта?
- 50. Почему в процессе резки слитков кремния на пластины используется инструмент с внутренней режущей кромкой?
- 51. Каковы правила образования названий полупроводниковых материалов состава AIIIBV?
- 52. Какое условие необходимо соблюсти при проведении процесса ионной имплантации чтобы получить профиль легирования близкий к распределению Гаусса?
- 53. Что такое гетерогенная химическая реакция? В каком технологическом процессе наноинженерии ее наличие является необходимым условием его нормального течения?
- 54. В чем состоит разница между одностадийным и двухстадийным процессами диффузии?
- 55. Что такое отжиг? В каком случае он применяется в технологическом процессе производства интегральных микросхем?
- 56. Перечислите, какие способы герметизации кристаллов интегральных микросхем Вам известны? Дайте краткую характеристику области применения каждого из них.
- 57. От какого из примесных элементов наиболее тяжело освободиться при зонной очистке слитка кремния и почему?
- 58. Какой характер имеет в кремнии зависимость предельной растворимости легирующей примеси от температуры?
- 59. Какой из методов эпитаксии обеспечивает наиболее совершенную структуру растущей пленки?

Самостоятельная работа студентов

Темы для самостоятельного изучения и оформления по разделу 1:

Факторы, влияющие на рынок НТ в России. Стратегия, объем и структура рынка НТ в России. Участники рынка НТ. Инвестиции в НТ-НИОКР.Коммерческий рынок НТ. Продукция для НТ-исследований. НТ-трубки и НТ-материалы. НТ и энергосберегающие технологии. Спрос на НТ-продукцию. Перспективные НТ-разработки. НТ в строительстве. НТ-материалы . НТ в системах безопасности. Некоторые тенденции и перспективы развития рынка НТ в России.

Методы и оборудование для исследования наносистем:

- оборудование и методы для исследования структуры наноструктурированных материалов и покрытий;
- оборудование и методы для исследования физико-механических характеристик наноструктурированных покрытий;
- рентгенодифракционные исследования многослойных гетероструктур;
- исследования многослойных гетероструктур электронно-зондовыми методами;
- исследование наноструктур методами сканирующей зондовой микроскопию

Темы для самостоятельного изучения и оформления по разделу 2:

Особенности воздействия ультразвука на твердофазные системы. Влияние ультразвукового воздействия на твердофазный синтез. Влияние ультразвукового воздействия на дислокационную структуру кристалла. Механизм разрушения хрупких и пластичных материалов при ультразвуковом воздействии. Механизм хрупкого разрушения. Механизм хрупко-пластичного разрушения. Акустопластический эффект при пластической деформации с наложением ультразвука. Влияние кавитационного ультразвукового воздействия на диспергирование порошковых материалов.

Темы для самостоятельного изучения и оформления по разделу 3:

Характеристики компактирования порошков. Оценка этапов и граничных условий процесса уплотнения порошков. Распределение давления вдоль оси прессования. Оптимизация уравнения прессования. Кривые уплотнения и упругие свойства порошкового тела. Зависимость параметров прессовки от её упругих свойств. Параметры межчастичных связей. Оптимизация внешнего воздействия.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) основная литература (библиотечная система ВлГУ):
- 1. Нелинейные явления в нано- и микрогетерогенных системах [Электронный ресурс] / С. А. Гриднев, Ю. Е. Калинин, А. В. Ситников, О. В. Стогней. М.: БИНОМ, 2012. http://www.studentlibrary.ru/book/ISBN9785996302949.html
- 2. Методы получения и свойства нанообъектов [Электронный ресурс]: учеб. пособие / Н.И. Минько, В.В. Строкова, И.В. Жерновский, В.М. Нарцев. 2-е изд., стер. М.: ФЛИНТА, 2013. http://www.studentlibrary.ru/book/ISBN9785976503267.html
- 3. Методы получения и исследования наноматериалов и наноструктур [Электронный ресурс] / Е.Д. Мишина. М.: БИНОМ, 2013. http://www.studentlibrary.ru/book/ISBN9785996321315.html
- 4. Методы компактирования и консолидации наноструктурных М54 материалов и изделий [Электронный ресурс] / О.Л. Хасанов. М.: БИНОМ, 2013. http://www.studentlibrary.ru/book/ISBN9785996321247.html
- 5. Растровая электронная микроскопия для нанотехнологий. Методы и применение [Электронный ресурс] / под ред. У. Жу, Ж.Л. Уанга. М.: БИНОМ, 2014. http://www.studentlibrary.ru/book/ISBN9785996321230.html
 - б) дополнительная литература (библиотечная система ВлГУ):
- 1. Беляев, И.В. Информационный каталог современного экспериментального оборудования и научных приборов на базе научно-образовательных организаций и ведущих предприятий Владимирской области / И. В. Беляев, В. А. Кечин, Г. А. Гладкий; Владимирская область, Администрация; НОЦ "Функциональные наноматериалы и ресурсосберегающие технологии". Владимир: Владимирский гос. университет им. А.Г. и Н.Г.Столетовых (ВлГУ), 2011. 44 с. http://e.lib.vlsu.ru/bitstream/123456789/2993/1/00588.pdf
- 2. Морозов В.В. Нанотехнологии в керамике: монография: в 2 ч. / В.В. Морозов, Э.П. Сысоев; Владимирский государственный университет (ВлГУ). Владимир: Владимирский государственный университет (ВлГУ), 2010-2011. ISBN 978-5-9984-0075-9. Ч. 1: Наночастицы [Электронный ресурс]. Электронные текстовые данные (1 файл: 18,5 Мб). 2010. 274 с.: ил. Заглавие с титула экрана. Электронная версия печатной публикации. Библиогр.: с. 262-269. Свободный доступ. Adobe Acrobat Reader 4.0. ISBN 978-5-9984-0056-8. <URL:http://e.lib.vlsu.ru/bitstream/123456789/3076/1/00687.pdf>.
- 3. Морозов В.В. Нанотехнологии в керамике: монография: в 2 ч. / В.В. Морозов, Э.П. Сысоев; Владимирский государственный университет (ВлГУ). Владимир: Владимирский государственный университет (ВлГУ), 2010-2011. ISBN 978-5-9984-0075-9. Ч. 2: Нанопленки, нанопокрытия, наномембраны, нанотрубки, наностержни, нанопроволока [Электронный ресурс]. Электронные текстовые данные (1 файл: 24,9 Мб). 2011. 167 с.: ил. В надзаг.: Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых. Заглавие с титула экрана. Электронная версия печатной публикации. Библиогр.: с. 159-165. Свободный доступ в электронных читальных залах библиотеки. Adobe Acrobat Reader. ISBN 978-5-9984-0137-4. <URL:http://e.lib.vlsu.ru/bitstream/123456789/3055/1/00633.pdf>.
- 4. Высокие технологии размерной обработки в машиностроении [Электронный ресурс]: Учебник для вузов / А.Д. Никифоров, А.Н. Ковшов, Ю.Ф. Назаров, А.Г. Схиртладзе. М.: Абрис, 2012. http://www.studentlibrary.ru/book/ISBN9785437200575.html
- 5. Основы нанотехнологий [Электронный ресурс] / Головин Ю.И. М.: Машиностроение, 2012. http://www.studentlibrary.ru/book/ISBN9785942756628.html

- 6. Плазмохимический синтез нанодисперсных порошков и полимерных нанокомпозитов [Электронный ресурс] / А.А. Лепешев, А.В. Ушаков, И.В. Карпов. Красноярск: Сиб. федер. ун-т, 2012. 328 с. ISBN 978-5-7638-2502-2. http://znanium.com/bookread2.php?book=442144
 - в) периодические издания (библиотечная система ВлГУ):
- 1. Наноинженерия: ежемесячный научно-технический и призводственный журнал. Москва: Машиностроение.
- 2. Нанотехнологии: наука и производство: информационно-аналитический журнал. Москва: Образование плюс.
- 3. Нанотехнологии. Экология. Производство: научно-производственный журнал. Санкт-Петербург: Издательский дом "Нанотех".
- 4. Российские нанотехнологии. Москва: Парк-медиа.
 - в) программное обеспечение и Интернет-ресурсы

http://www.portalnano.ru/http://www.ru-tech.ru/pub/nanohttp://www.ntsr.info/http://www.nanotech.ru/http://www.nanonewsnet.ru/http://nano-info.ru/http://www.rusnanoforum.ru/http://www.iacnano.ru/http://www.nanometer.ru/http://www.nanoprom.net/

Учебно-методические издания

- 1.Иванченко А.Б. Методические указания к практическим работам по дисциплине «Технологические системы в нанотехнологии» для студентов направления 28.03.02 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2016. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 2. Иванченко А.Б. Методические рекомендации к выполнению самостоятельной работы по дисциплине «Технологические системы в нанотехнологии» для студентов направления 28.03.02 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2016. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 3. Иванченко А.Б. Оценочные средства по дисциплине «Технологические системы в нанотехнологии» для студентов направления 28.03.02 [Электронный ресурс] / сост. Иванченко А.Б.; Влад. гос. ун-т. ТМС Владимир, 2016. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1) Портал Центр дистанционного обучения ВлГУ [электронный ресурс] / Режим доступа: http://cs.cdo.vlsu.ru/
- 2) Раздел официального сайта ВлГУ, содержащий описание образовательной программы [электронный ресурс] / Режим доступа: Образовательная программа 28.03.02 «Наноинженерия» http://op.vlsu.ru/index.php?id=169

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения учебного процесса по дисциплине «Технологические системы в нанотехнологии» предусмотрено использование следующих лабораторий кафедры ТМС.

1. Лаборатория 2D- и 3D наноструктурированных покрытий (ауд. 119-4)

Краткая характеристика помещения:

Общая площадь -102 кв.м (2 этажа). 1 этаж - лабораторное и производственное оборудование (67 кв.м), 2 этаж - учебный класс на 15 посадочных мест (36 кв.м).

Оборудование:

1. Установка для нанесения наноструктурированных покрытий UniCoat 600SL+; производитель – РФ, год выпуска - 2008.

Установка для нанесения покрытий методом PVD с максимальной толщиной многослойного сэндвич-покрытия до 20 мкм на весь диапазон используемого концевого инструмента с системой визуализации, управления и термометрирования технологического процесса в течение всего цикла изготовления. Основные типы покрытий: традиционные покрытия — TiN, TiCN, Ti-C:H; 3D-нанокомпозитные покрытия; 2D-нанокомпозитные покрытия и пленки (в том числе алмазоподобные)- суперлаттики.

2. Стационарная установка для измерения микротвердости HVS 1000, производитель – Тайвань.

Предназначен для измерения микротвердости в том числе и покрытий.

3. Испытательная система на растяжение термокамерой WDW-100.

Жесткость силовой рамы: 100 кН/мм, Наибольшая предельная нагрузка: 100 кН (10 тс); Тип привода: электромеханический, Точность измерения нагрузки: $\pm 1,0\%$ (по заказу 0,5%), Диапазон измерения нагрузки: 400 H \sim 100 кН; (0.4%-100% полной шкалы, автоматически переключаемые шкалы), 6 шкал, Разрешение нагрузки: 0,001% FS , Диапазон измерения деформации: 2-100%, Точность измерения деформации: $\pm 1,0\%$.

- 4. Калотестер CSM CAT (Модель CAT-S-AE), производитель: CSM (Швейцария).
- 5. Микрокомбитестер CSM МСТ Производитель: CSM (Швейцария).
- 6. Трибометр CSM (Модель TRB-S-CE-000) Производитель: CSM (Швейцария).
- 2. Ауд.104-3. Лаборатория электронной микроскопии (входит в состав ЦКП ВлГУ).

Краткая характеристика помещения:

Общая площадь – 52 кв.м., климат-контроль, число посадочных мест – 3.

Оборудование: сканирующий электронный микроскоп Quanta 200-3D, производитель FEI (Нидерланды).

Позволяет производить широкий диапазон метрологических исследований. Имея уникальное поле сканирования до нескольких см, он позволяет, благодаря современной системе фокусировки электронного луча, получать разрешения до 3 нм. Применение данного комплекса дает возможность существенно расширить измерительную линейку аналитической техники.

3. Лаборатория зондовой микроскопии (входит в состав ЦКП ВлГУ, ауд.419-3).

Краткая характеристика помещения:

Общая площадь – 52 кв.м., климат-контроль, число посадочных мест – 6. Оборудование:

сканирующая зондовая нанолаборатория «Интегра Аура», производитель HT-MДТ (РФ).

Уникальный комплексный прибор, реализующий все основные методики AFM (атомно-силовой) сканирующей микроскопии. Дополнительно реализован режим отражательной SNOM (ближнеполевой) микроскопии. Комплекс позволяет проводить измерения в условиях вакуума до 10-2 Торр, что предоставляет целый ряд преимуществ. Это относится как к повышению чувствительности измерений за счет повышения добротности колебаний кантилевера, так и к возможности проведения измерений без вредного влияния поверхностного адсорбата.

4. Лаборатория получения и исследования углеродных нанотрубок (ауд. 108а-4). Краткая характеристика помещения:

Общая площадь -102 кв.м (2 этажа). 1 этаж - лабораторное и производственное оборудование (67 кв.м), 2 этаж - исследовательская лаборатория на 6 посадочных мест (36 кв.м).

Оборудование:

установка для получения углеродных нанотрубок и волокон «Таунит», производитель — $P\Phi$, год выпуска — 2008. Промышленный реактор для получения углеродных нанотрубок, нановолокон в объеме 2000 кг в год.

- установка ультразвуковой мойки, производитель УЗ техника (РФ). Предназначена для предварительной очистки и подготовки режущего инструмента к напылению.
- диспергатор, производитель УЗ техника (РФ). Предназначен для разделения нанотрубок и нанопорошка и подготовки коллоидных растворов.

ВО по направлению 28.03.02 «Наноинженерия»
Рабочую программу составил <u>к.т.н., дация Ивантинго 4. Б.</u> #Wf-
(ФИО, подпись)
Рецензент: (представитель работодателя) ООО «Металл Групп», технический директор
Деев М.А. Деев М.А.
(место работы, должность, ФИО, подпись)
(interespectation)
Программа рассмотрена и одобрена на заседании кафедры Технология машиностроения
Протокол № <u>9//</u> от <u>&/.04. &о/с</u> года
Заведующий кафедрой д.т.н., профессор Морозов В.В.
(ФИО, полись)
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
направления 28.03.02 «Наноинженерия»
Протокол № <u>9/1</u> от <u>21.04. 2016 года</u>
Председатель комиссии д.т.н., профессор Морозов В.В.

(ФИО, подпись)

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 2001/2018 учебный год	
Протокол заседания кафедры № от № Дога года	
Заведующий кафедрой д.т.н., профессор Морозов В.В	for
Рабочая программа одобрена на 2018 /2019 учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой д.т.н., профессор Морозов В.В	fy-
Рабочая программа одобрена на мер / мого учебный год	
Протокол заседания кафедры №	
Заведующий кафедрой д.т.н., профессор Морозов В.В	fung!
Рабочая программа одобрена на 20ho/2021 учебный год	
Протокол заседания кафедры № от от от от от от	P
Заведующий кафедрой д.т.н., профессор Морозов В.В	f