Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт прикладной математики, физики и информатики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>Аддитивные технологии</u>

направление подготовки / специальность

28.03.01 Напотехнологии и микросистемная техника

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Нанотехнологии и микросистемная техника

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Аддитивные технологии» являются

- 1. Получение представления об основных направлениях развития методов аддитивного формировании новых материалов.
- 2. Мотивация студентов к проведению самостоятельных исследовательских работ по получение нано- и микросистемной техники для подготовки выпускной квалификационной работы.
- 3. Развитие навыков самостоятельного использования экспериментальной техники и представления результатов исследований.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Аддитивные технологии» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений, учебного плана.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми

Формируемые компетенции	Планируемые результаты обучения по дис достижения к	Наименование оценочного	
(код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора	Результаты обучения по дисциплине	средства
ПК-1. Способен проводить физикоматематическое моделирование исследуемых процессов нано- и объектов нано- и микросистемной гехники с использованием современных компьютерных гехнологий	ПК-1.1. Знает основные физикоматематические модели процессов, явлений и объектов в области нанотехнологий и микросистемной техники, а также методы моделирования. ПК-1.2. Умеет проводить моделирование процессов, явлений и объектов в области нанотехнологий и микросистемной техники, в том числе с использованием современных программных средств. ПК-1.3. Владеет навыками анализа процессов и объектов нанотехнологий и микросистемной техники на основе физикоматематического и компьютерного	Знать: физические и математические законы и модели физических процессов, лежащих в основе принципов действия объектов нанотехнологии и микросистемной техники. Уметь: решать задачи, использовать математический аппарат и численные методы компьютерного моделирования объектов нанотехнологии и микросистемной техники. Владеть: математическим аппаратом и методами компьютерных технологий для моделирования объектов нанотехнологии и микросистемной техники.	Отчёты по лабораторным работам. Контрольные вопросы и лабораторным работам. Контрольные вопросы и рейтинг-контролю и промежуточной аттестации.
ПК-2. Способен проводить экспериментальные исследования по синтезу и анализу материалов и компонентов нано- и микросистемной техники	пК-2.1. Знает основные физико- химические модели в области нанотехнологий и микросистемной техники, методы проведения экспериментов и наблюдений, структуру, свойства и назначение наноматериалов и наноструктур. ПК-2.2. Умеет применять методы проведения экспериментов для анализа работы и синтеза микроэлектромеханических устройств, материалов и компонентов нано- и микросистемной техники. ПК-2.3. Владеет навыками проведения экспериментов, наблюдений и измерений, анализа мультифизических	Знать: основные методики экспериментальных исследований синтеза и анализа материалов и компонентов нано- и микросистемной техники. Уметь: планировать и проводить исследования по синтезу и анализу материалов и компонентов нано- и микросистемной техники. Владеть: навыками выбора оптимальных методов проведения исследований материалов и компонентов нано- и микросистемной техники.	Отчёты по лабораторным работам. Контрольные вопросы к лабораторным работам. Контрольные вопросы к рейтинг-контролю и промежуточной аттестации.

	явлений в области нанотехнологий и микросистемной техники.		
ПК-4. Способен совершенствовать процессы измерений параметров и модификации	ПК-4.1. Знает основные методы измерений параметров и модификации свойств наноматериалов и наноструктур, а	Знать: базовое контрольно- измерительное оборудование для метрологического обеспечения исследований и промышленного	Отчёты по лабораторным работам.
свойств наноматериалов и наноструктур	также назначение, устройство и принцип действия используемого для этого оборудования. ПК-4.2. Умеет работать на измерительном и технологическом	производства наноматериалов и компонентов. Уметь: осуществлять диагностику неполадок и частичный ремонт	Контрольные вопросы к лабораторным работам.
	оборудовании в соответствии с инструкциями по эксплуатации и технической документацией.	измерительного, диагностического, технологического оборудования.	Контрольные вопросы к рейтинг-
	ПК-4.3. Владеет навыками внедрения и контроля качества новых методов измерения параметров и модификации свойств наноматериалов и наноструктур.	Владеть: навыками мониторинга диагностического, технологического оборудования.	контролю и промежуточной аттестации.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Тематический план

		фо	рма об	бучен	ия – оч	ная				
		Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником			133	Формы текущего контроля		
	Наименование тем и/или разделов/тем дисциплины			Лекции	Практические занятия	Лабораторные работы	в форме практической полготовки	Самостоятельная работа	успеваемости, форма промежуточной аттестации (по семестрам)	
I	История развития аддитивных технологий	7	1-2	2	=	4	4	10	рейтинг-контроль №1	
2	Основные этапы процесса формирования изделий методами аддитивных технологий	7	3-6	4	=	8	8	20		
3	Методы получения микро и наноструктурированных изделий с использованием аддитивного подхода	7	7-12	6	=	12	12	30	рейтинг-контроль №2	
4	Лазерные методы формирования прототипов и готовых изделий	7	13-16	4	-	8	8	20	рейтинг-контроль	
5	Экспериментальные модели	7	17-18	2	_	4	4	10	№3	
Всего	за 7 семестр:	=	-	18		36	36	90	зачет с оценкой	
Нали	чие в дисциплине КП/КР	-	_	-		27	20	250	7 <u>22</u>	
Итог	о по дисциплине	375	1	18	=	36	36	90	зачет с оценкой	

Содержание лекционных занятий по дисциплине

- Раздел 1. История развития аддитивных технологий.
- Лекция 1. История развития аддитивных технологий. Современные направления развития.
- Раздел 2. Основные этапы процесса формирования изделий методами аддитивных технологий.
- Лекция 2-3. САПР для формирования прототипов. Основные этапы проектирования.
- Лекция 4-5. Особенности формирования структуры прототипов.
- Раздел 3. Методы получения микро и наноструктурированных изделий с использованием аддитивного подхода.
- Лекция 6. Экструзионные методы: проблемы и преимущества.
- Лекция 7. Технологии прямой записи: ограничения и развитие.

Трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

Лекция 8. Ink-jet- технологии: перспективы развития.

Лекция 9. Spray-jet- технология: возможности и недостатки.

Лекция 10. Методы плавления и форморвки.

Лекция 11. Методы химического осаждения.

Лекция 12. Методы послойного физического осаждения.

Раздел 4. Лазерные методы формирования прототипов и готовых изделий.

Лекция 13. Лазерные методы воздействия на материалы.

Лекция 14. Лазерная стереолтиграфия.

Лекция 15. SLS/SLM - различие и сходство.

Лекция 16. Лазерная послойная обработка.

Лекция 17. Лазерное струйное осаждение.

Содержание лабораторных занятий по дисциплине

Лабораторная работа 1. Изготовление прототипов монолитных изделий простых форм (сферическая, кубическая и т.д.).

Лабораторная работа 2. Изготовление прототипов изделий с внутренними полостями.

Лабораторная работа 3. Оптимизация процесса расстановки подпорок.

Лабораторная работа 4. Оптимизация расположения детали для уменьшения плоскости роста.

Лабораторная работа 5. Конвертация модели в формат STL.

Лабораторная работа 6. Изготовление прототипа методом лазерной стерелитографии.

Лабораторная работа 7. Изготовление прототипа методом лазерного спекания металлических порошков.

Лабораторная работа 8. Постобработка прототипов.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Примерный перечень вопросов к рейтинг-контролю №1

Темы рефератов для рейтинг-контроля 1

- 1. Проектирование изделия в среде САПР (основные пакеты для проектирования прототипов)
- 2. Преобразование данных в STL формат
- 3. Преобразование данных из STL в командные коды
- 4. Особенности изготовления изделий в различных методов аддитивных технологий:
 - а) системы с использованием фотополимеров
 - б) системы с использованием порошков
 - в) системы с расплавленным материалом
 - г) твердые листовые материалы
- 5. Постобработка изделий после процесса выращивания
- 6. Ограничения различных методов

Темы рефератов для рейтинг-контроля 2

- 1. Экструзионные системы: экструзия; отверждение
- 2. FDM-технология
- 3. Технологии прямой записи
- 4. Использование технологии ink-jet
- 5. Аэрозольная прямая запись
- 6. Термическое напыление
- 7. Экструзия расплава
- 8. Распыление материала методом струйной печати
- 9. Использование различных материалов для струйной печати:

- Полимеры
- Керамика
- Металлы
- 10. Осаждение растворов и взвесей
- 11. Методы формирования капель
- 12. Методы контролируемого испарения капель
- 13. Методы распыления (непрерывный, DOD)
- 14. Использование связующих материалов для методы распыления
- 15. Формирование слоистых материалов (склеивание и адгезивное связывание)
- 16. Формирование слоистых материалов (соединение и раскрой, раскрой и соединение)
- 17. Формирование слоистых материалов (термоскрепление, прессование, ультразвуковая обработка)
- 18. Процессы направленного энерговклада.

Темы рефератов для рейтинг-контроля 3

- 1. Лазерные методы аддитивного производства
- 2. Лазерная фотополимеризация
- 3. Лазерное селективное спекание
- 4. Лазерное селективное плавление (лазерная наплавка)
- 5. Лазерная обработка слоистых материалов
- 6. Лазерное осаждение «чернил»
- 7. Лазерное осаждение расплавленного материала

Участие в обсуждении рефератов.

Преподаватель фиксирует активность студентов в процессе обсуждения рефератов и качество представления докладов. Поскольку основные вопросы на зачете полностью повторяют темы рефератов, то повышенная активность студентов позволяет им пройти подготовку к сдаче зачета.

Выполнение лабораторных работ.

Выполнение лабораторных работ нацелено на закрепление полученных теоретических знаний. Лабораторная работа состоит из краткой теоретической части, описания проведения работы и полученных результатов. После выполнения работы и оформления отчета происходит защита (в группах по 3-4 человека). Таким образом студенты получают навык научной работы в команде и разделению обязанностей в научной группе.

Промежуточная аттестация проходит в форме зачета с оценкой. Вопросы к зачету с оценкой охватывают всю тематику, рассмотренную в ходе представления рефератов в течение семестра.

Вопросы к зачету с оценкой:

- 1. Проектирование изделия в среде САПР (основные пакеты для проектирования прототипов)
 - 2. Преобразование данных в STL формат
 - 3. Преобразование данных из STL в командные коды
 - 4. Особенности изготовления изделий в различных методов аддитивных технологий;
 - а) системы с использованием фотополимеров
 - б) системы с использованием порошков
 - в) системы с расплавленным материалом
 - г) твердые листовые материалы
 - 5. Постобработка изделий после процесса выращивания
 - 6. Ограничения различных методов
 - 7. Экструзионные системы: экструзия; отверждение
 - 8. FDM-технология
 - 9. Технологии прямой записи
 - 10. Использование технологии ink-jet
 - 11. Аэрозольная прямая запись

- 12. Термическое напыление
- 13. Экструзия расплава
- 14. Распыление материала методом струйной печати
- 15. Использование различных материалов для струйной печати:
- Полимеры
- Керамика
- Металлы
- 16. Осаждение растворов и взвесей
- 17. Методы формирования капель
- 18. Методы контролируемого испарения капель
- 19. Методы распыления (непрерывный, DOD)
- 20. Использование связующих материалов для методы распыления
- 21. Формирование слоистых материалов (склеивание и адгезивное связывание)
- 22. Формирование слоистых материалов (соединение и раскрой, раскрой и соединение)
- 23. Формирование слоистых материалов (термоскрепление, прессование, ультразвуковая обработка)
 - 24. Процессы направленного энерговклада.
 - 25. Лазерные методы аддитивного производства
 - 26. Лазерная фотополимеризация
 - 27. Лазерное селективное спекание
 - 28. Лазерное селективное плавление (лазерная наплавка)
 - 29. Лазерная обработка слоистых материалов
 - 30. Лазерное осаждение «чернил»
 - 31. Лазерное осаждение расплавленного материала

Самостоятельная работа студентов включает в себя:

- 1. Подготовку рефератов (подбор источников по заданной теме, их анализ, написание текста, подготовку к докладу). Контроль осуществляется на занятиях. Процедура контроля описана выше.
- 2. Подготовке к выполнению лабораторных работ, оформлению отчетов по лабораторным.
- 3. Работу с дополнительной литературой по вопросам, связанным с материалом аудиторных занятий. Контроль осуществляется на экзамене. Студент должен продемонстрировать освоенные самостоятельно знания во время ответов на экзаменационные вопросы.

Распределение видов самостоятельной работы по разделам курса.

Раздел 1. Работа с дополнительной литературой (10 ч.)

Раздел 2. Работа с дополнительной литературой (10 ч.); Подготовка реферата (10 ч.), подготовка лабораторных работ (4 ч)

Раздел 3. Работа с дополнительной литературой (10 ч.); Подготовка реферата (10 ч.), подготовка лабораторных работ (8 ч)

Раздел 4. Работа с дополнительной литературой (10 ч.); Подготовка реферата (10 ч.), подготовка лабораторных работ (8 ч)

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕННОСТЬ		
		Наличие в электронном каталоге ЭБС		
Основн	ая литература			

1 О.С.Сироткин Основы современного материаловедения: М.: НИЦ ИНФРА-М, 2015 364 C	2015	http://znanium.com/catalog.php?bookinfo=432594
2. А.А. Ильин, В.В. Плихунов, Л.М. Петров и др. Вакуумная ионно-плазменная обработка: Учебное пособие / - М.: Альфа-М: НИЦ ИНФРА-М, 2014 160 с	2014	http://znanium.com/catalog.php?bookinfo=426490
3. В.А. Горохов Материалы и их технологии. В 2 ч. Ч. 2.: М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2014 533 с.	2014	http://znanium.com/catalog.php?bookinfo=446098
Дополнител	ьная лите	ратура
1. Федотов, А.К. Физическое материаловедение. Ч. 2. Фазовые превращения в металлах и сплавах [Электронный ресурс]: учеб. пособие. Минск: Выш. шк., 2012. – 446 с.	2012	http://znanium.com/catalog.php?bookinfo=508082
2. Лепешев, А. А. Плазменное напыление аморфных и нанокристаллических материалов [Электронный ресурс]: монография / А. А. Лепешев Красноярск: Сиб. федер. ун-т, 2013 224 с.	2013	http://znanium.com/catalog.php?bookinfo=492492
3 А.А.Ильин, Г.Б.Строганов, С.В.Скворцова Покрытия различного назначения для металлических материалов: Учебное пособие / - М.: Альфа-М: НИЦ ИНФРА-М, 2013 - 144 с.	2013	http://znanium.com/catalog.php?bookinfo=415572

6.2. Периодические издания

- 1. Журнал «Новости материаловедения. Наука и техника». Режим доступа (электронная библиотека elibrary.ru)
- 2. Журнал «Успех физических наук». Архив номеров. Режим доступа: http://www.rufn.ru/archive/
- 3. Журнал Металлообработка № 05-06.2013: журнал / под ред. Г.Ф. Мощенко. М.: Издательство "Политехника" Режим доступа (студенческая электронная библиотека studerium.ru).

6.3. Интернет-ресурсы

1. Аддитивные технологии. Режим доступа: http://make-3d.ru/articles/chto-eto-takoe-additivnye-texnologii/

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий практического/лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной.

Лекционные аудитории, оснащённые доской и переносным проектором для проведения занятий с применением компьютерных презентаций и демонстрационных роликов (420-3, 430-3; 431-3; 318-3).

Аудитории для проведения практических и лабораторных занятий, оснащённые современными персональными компьютерами, объединёнными в локальную вычислительную сеть и укомплектованными необходимым системным и прикладным программным обеспечением (1226-3) и научные лаборатории (104-3, 107а-3, 107-3, 123-3, 419-3, лаборатории послойного роста 2 и 4 корпусов), где размещены современные лазерные комплексы.

Перечень используемого лицензионного программного обеспечения:

Перечень используемого оборудования:

1)Фемтосекундный лазерный комплекс Ті:SP

Рабочую программу составил дир, ИПМФИ Хорьков К.С.

(ФИО, должность, подпись)

Рецензент	Marian
Генеральный директор ООО «ВладИнТех»	А.В. Осипов
(место ра	боты, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании к	афедры ФиПМ
Протокол №1 от 30.08.2021 года	
Заведующий кафедрой	С.М. Аракелян
ФИО, п	одпись)
Рабочая программа рассмотрена и одобрена	20.02.01
на заседании учебно-методической комиссии напр	авления 28.03.01
Протокол №1 от 30.08.2021 года	
Председатель комиссии	С.М. Аракелян ИО, должность, подпись)
/ (Ψ	ио, должность, подпись)
лист переутв	г рж п гни я
РАБОЧЕЙ ПРОГРАММІ	
Рабочая программа одобрена на 20 22 / 20 23 уч	ебный года
Протокол заседания кафедры № 1 от 30.08 ра	Ж года
Заведующий кафедрой	c.v. organien
Λ	
Рабочая программа одобрена на 20/ 20/	ебный года
Протокол заседания кафедры № от	года
Заведующий кафедрой	
Рабочая программа одобрена на 20 / 20 уч	ебный года
Протокол заседания кафедры № от	года