Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт прикладной математики, физики и информатики (Наименование института)

УТВЕРЖДАЮ: Директор института К.С. Хорьков «<u>30</u>» <u>08</u> 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«ИНТЕГРИРОВАННЫЕ ТЕХНОЛОГИИ И ОПТИКА <u>ЛОКАЛИЗОВАННЫХ СТРУКТУР</u>»

(наименование дисциплины)

направление подготовки / специальность

28.03.01 Нанотехнологии и микросистемная техника

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Нанотехнологии и микросистемная техника

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Интегрированные технологии и оптика локализованных структур» является ознакомление с новыми принципами нелинейно-оптического управления формированием и распространением светоиндуцированных оптических образований в перспективных оптических средах, а также с современными технологиями создания устройств для эффективной обработки информации, оптического захвата и транспорта микро и наноструктур.

Задачи дисциплины:

🗆 изучение	основ	разрабо	отки и	созда	иния в	высок	остабильных	, компактных.
реализованных в	едином	модуле	(on-chip	optical	technol	logy)	источников	локализованных
оптических состояний;								

шизучение способов генерации и экспериментального наблюдения солитонных режимов распространения оптического поля;

освоения алгоритмов численного моделирования сложных атомно-оптических систем, реализованных на основе перспективных оптических материалов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Интегрированные технологии и оптика локализованных структур» относится к дисциплинам части, формируемой участниками образовательных отношений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формирусмые компетенции	рения ОПОП (компетенци Планируемые результаты обучен видикатором достижения компете	Наименование оценочног средства			
(код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора	Результаты обучения по дисциплине	Средства		
ПК-1 Способен проводить физикоматематическое моделирование исследуемых процессов нанотехнологии и объектов нано- и микросистемной техники с использованием современных компьютерных технологий	ПК-1.1. Знает основные физико-математические модели процессов, явлений и объектов в области нанотехнологий и микросистемной техники, а также методы моделирования. ПК-1.2. Умеет проводить моделирование процессов, явлений и объектов в области нанотехнологий и микросистемной техники, в том числе с использованием современных программных средств. ПК-1.3. Владеет навыками анализа процессов и объектов нанотехнологий и микросистемной техники на основе физико-математического и компьютерного моделирования.	Знаст: основные физикоматематические модели процессов, явлений и объектов в области нанотехнологий и микросистемной техники, а также методы моделирования. Умеет: проводить моделирование процессов, явлений и объектов в области нанотехнологий и микросистемной техники, в том числе с использованием современных программных средств. Владеет: навыками анализа процессов и объектов нанотехнологий и микросистемной техники на основе физикоматематического и компьютерного моделирования.	Тестовые вопросы Ситуационные задачи Практико- ориентированное задание		
ПК-4 Способен совершенствовать процессы измерений параметров и	ПК-4.1. Знает основные методы измерений параметров и модификации свойств наноматериалов и наноструктур, а также	Знает: основные методы измерений параметров и модификации свойств наноматериалов и наноструктур, а также	Тестовые вопросы Ситуационные задачи Практико- ориентированное задание		

модификации свойств наноматериалов и наноструктур	назначение, устройство и принцип действия используемого для этого оборудования. ПК-4.2. Умеет работать на измерительном и технологическом оборудовании в соответствии с инструкциями по эксплуатации и технической документацией. ПК-4.3. Владеет навыками внедрения и контроля качества новых методов измерения параметров и модификации свойств наноматериалов и наноструктур.	назначение, устройство и принцип действия используемого для этого оборудования. Умеет: работать на измерительном и технологическом оборудовании в соответствии с инструкциями по эксплуатации и технической документацией. Владеет: навыками внедрения и контроля качества новых методов измерения параметров и модификации свойств наноматериалов и наноструктур.	
--	--	--	--

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 3 зачетных единиц, 108 часа

Тематический план форма обучения – очная

			ф		тактная раб ещногичес			Формы текущего	
№ п/п	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Лекции	Практические занятия	Лабораторные работы	в форме практическои подготовки	Самостоятельная работа	· ·
1	Общие принципы описания светоиндуцированных образований в оптических средах.	8	1-3	9	3	6		6	
2	Системы генерации и управления локализованными оптическими структурами	8	4-6	9	3	6	2	6	
n	Системы и устройства с полностью оптическим управлением на основе перспективных оптических материалов	8	6-9	9	3	6	3	6	
Всего	за 8 семестр:	8	9	27	9	18	-	18	Экзамен 36 ц
Талич	не в дисциплине КП/КР			-	100	.	*	2	O ROBINGIT DO 1.
1тогс	по дисциплине	8	9	27	9	18		18	Экзамен 36 н

Содержание лекционных занятий по дисциплине

Раздел 1. Общие принципы описания светоиндуцированных образований в оптических средах.

- 1.1. Классификации оптических сред. Хроматическая дисперсия. Оптические потери. Соотношение Крамерса-Кронига. Нелинейные эффекты в оптических средах. Практический расчет нелинейных восприимчивостей.
- 1.2. Основное уравнение распространения. Метод обратной задачи рассеяния. Численные методы анализа нелинейного уравнения Шредингера. Шредингеровские солитоны.

1.3. Оптические линии связи. RZ- формат кодирования сигналов. Сосредоточенное и распределённое усиление в линиях связи. Шумы волоконных усилителей. Нелинейный ответвитель. Системы с мультиплексированием по длинам волн.

Раздел 2. Системы генерации и управления локализованными оптическими структурами

- 2.1. Оптические схемы для формирования светлых пространственных солитонов. Некер-ровские оптические среда и нелинейности высших порядков. Оптические элементы с насыщающейся нелинейностью. Переходные нелинейности и бистабильность.
- 2.2. Устойчивости солитонных решений. Линейный анализ. Метод малых возмущений. Критерий Вахитова-Колоколова. Асимптотический анализ. Столкновения солитонов. Многосолитонные взаимодействия. Бризеры и связанные солитоны.
- 2.3. Диссипативные оптические солитоны. Уравнение Гинзбурга-Ландау. Вариационный анализ. Численный анализ спектральными методами. Генерация диссипативных солитонов в волоконных лазерах.
- 2.4. Вихревые оптические пучки. Насыщающийся поглотитель. Технология оптического захвата. Генерация устойчивых оптических вихрей в полупроводниковых стркутрах.
- 2.5. Моды Лаггера-Гауса. Методы управления моментом импульса вихревых пучков. Проектирование высокоемких линий связи на основе оптических вихрей. Учет атомнооптических возмущений.

Раздел 3. Системы и устройства с полностью оптическим управлением на основе перспективных оптических материалов.

- 3.1. Оптические среды с наведенными нелинейностями. Модуляция нелинейно-дисперсионных и диссипативных характеристик в резонансных средах. Допированные оптические матрицы. "Медленный" свет.
- 3.2. Микроструктурированные оптические среды и оптические решетки. Фотонные кристаллы. Нелинейные многосердцевинные волоконные матрицы. «Правые» и «Левые» оптические среды. Отрицательный показатель преломления. Метаматериалы. Экраниров-ка электромагнитных сигналов.
- 3.3. Газонаполненные полые оптические волокна. Технологии загрузки холодных атомов. Принципы удержания холодных атомов в волноводных системах. Манипулирование микро- и нанообъектами в оптических пучках. Атомный дизайн. Способ оптического транспорта микрообъектов.

Содержание лабораторных занятий по дисциплине

- Л.Р.№1. Расчет параметров волоконных световодов.
- Л.Р.№2. Изучение дисперсных характеристик в волоконных световодов.
- Л.Р.№3. Моделирование уравнение распространения в чистом дисперсионном режиме.
- Л.Р.№4. Моделирование распространения оптических импульсов в дисперсионно-нелинейной среде.
 - Л.Р.№5. Моделирование образования ударной волны огибающей.
 - Л.Р.№6. Моделирование образования оптических солитонов.

Содержание практических занятий по дисциплине

- Тема 1. Моделирование уравнения Лагранжа в механических системах (2 ч).
- Тема 2. Моделирование уравнения движения и энергии в релятивистской механике (2ч.)
 - Тема 3. Расчет передающей волноводной линии (2ч.).
 - Тема 4. Моделирование уравнения Шредингера (3ч.).

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Вопросы для рейтинг-контроля

Рейтинг-контроль № 1

- 1. Классификации оптических сред.
- 2. Нелинейный ответвитель.
- 3. Хроматическая дисперсия.
- 4. Шредингеровские солитоны.
- 5. Оптические потери.
- 6. RZ- формат кодирования сигналов.
- 7. Соотношение Крамерса-Кронига.
- 8. Численные методы анализа нелинейного уравнения Шредингера.
- 9. Нелинейные эффекты в оптических средах.
- 10. Системы с мультиплексированием по длинам волн.

Рейтинг-контроль №2

- 11. Оптические схемы для формирования светлых пространственных солитонов.
- 12. Учет атомно-оптических возмущений.
- 13. Некерровские оптические среда и нелинейности высших порядков.
- 14. Моды Лаггера-Гауса.
- 15. Оптические элементы с насыщающейся нелинейностью.
- 16. Методы управления моментом импульса вихревых пучков.
- 17. Переходные нелинейности и бистабильность.
- 18. Вихревые оптические пучки.
- 19. Устойчивости солитонных решений.
- 20. Генерация устойчивых оптических вихрей в полупроводниковых стркутрах.

<u>Рейтинг-контроль №3</u>

- 21. Оптические среды с наведенными нелинейностями.
- 22. Газонаполненные полые оптические волокна.
- 23. Модуляция нелинейно-дисперсионных и диссипативных характеристик в резонансных средах.
 - 24. Атомный дизайн.
 - 25. Допированные оптические матрицы.
 - 26. Манипулирование микро- и нанообъектами в оптических пучках.
 - 27. Микроструктурированные оптические среды и оптические решетки.
 - 28. Способ оптического транспорта микрообъектов.
 - 5.2. Промежуточная аттестация по итогам освоения дисциплины

Вопросы к экзамену

- 1. Классификации оптических сред. Материалы и изготовление. Хроматическая дисперсия. Оптические потери. Соотношение Крамерса-Кронига.
- 2. Нелинейные эффекты в оптических средах. Микроскопические выражения для нелинейных восприимчивостей. Практический расчет нелинейных восприимчивостей.
- 3. Основное уравнение распространения. Численные методы анализа нелинейного уравнения Шредингера.
 - 4. Метод обратной задачи рассеяния. Шредингеровские солитоны.
- 5. Вынужденное комбинационное рассеяние (ВКР). Генерация солитонов ВКР. Волоконные ВКР-усилители. Вынужденное комбинационное саморассеяние. Фемтосекундные солитоны.
- 6. Оптические линии связи. RZ- формат кодирования сигналов. Сосредоточенное и распределённое усиление в линиях связи. Шумы волоконных усилителей. Нелинейный ответвитель.
- 7. Темные солитоны. Взаимодействие темных солитонов. Передача оптической информации с помощью темных солитонов.

- 8. Системы с мультиплексированием по длинам волн. Проектирование систем на основе солитонов с управляемой дисперсией. Солитонные технологии по принципу "на одном чипе".
- 9. Оптические схемы для формирования светлых пространственных солитонов. Пространственная форма нелинейного уравнения Шредингера. Системы управления пространственно-временной динамикой оптических локализованных структур.
- 10. Некерровские оптические среда и нелинейности высших порядков. Оптические элементы с насыщающейся нелинейностью. Переходные нелинейности и бистабильность.
- 11. Устойчивости солитонных решений. Линейный анализ. Метод малых возмущений. Критерий Вахитова-Колоколова. Асимптотический анализ.
- 12. Столкновения солитонов. Многосолитонные взаимодействия. Бризеры и связанные солитоны.
- 13. Диссипативные оптические солитоны. Уравнение Гинзбурга-Ландау. Вариационный анализ. Численный анализ спектральными методами. Генерация диссипативных солитонов в волоконных лазерах.
- 14. Вихревые оптические пучки. Насыщающийся поглотитель. Технология оптического захвата. Генерация устойчивых оптических вихрей в полупроводниковых структурах.
- 15. Моды Лаггера-Гауса. Методы управления моментом импульса вихревых пучков. Проектирование высокоемких линий связи на основе оптических вихрей. Учет атомнооптических возмущений.
 - 16. Оптические пули. Столкновения лазерных пуль.
- 17. Оптические среды с гигантскими нелинейностями. Модуляция нелинейно-дисперсионных и диссипативных характеристик в резонансных средах. Допированные оптические матрицы. "Медленный" свет.
- 18. Микроструктурированные оптические среды и оптические решетки. Фотонные запрещенные зоны. Фотонные кристаллы. Метод конечных элементов. Нелинейные многосердцевинные волоконные матрицы.
- 19. «Правые» и «Левые» оптические среды. Отрицательный показатель преломления. Метаматериалы. Решение проблемы дифракционного предела. Экранировка электромагнитных сигналов.
- 20. Нелинейные взаимодействия одиночных фотонов. Временное кодирование квантовых оптических состояний. Обработка оптической информации в каскадных оптических схемах.
- 21. Манипулирование микро- и нанообъектами в оптических пучках. Атомный дизайн. Способ оптического транспорта микрообъектов.
- 22. Газонаполненные полые оптические волокна. Технологии загрузки холодных атомов. Принципы удержания холодных атомов в волноводных системах. Генерация оптических структур в газозаполненных волокнах.

5.3. Самостоятельная работа обучающегося.

Вопросы к самостоятельной работе студента

- 1. Оптические солитоны: фундаментальные солитоны и солитоны высших порядков.
- 2. Взаимодействие оптических солитонов.
- 3. Сжатие оптических импульсов: волоконно-решетчатые компрессоры.
- 4. Сжатие оптических импульсов: компрессоры на многосолитонном сжатии.
- 5. Параметрическое взаимодействие фемтосекундных импульсов: генерация второй гармоники (ГВГ).
 - 6. Параметрическое усиление коротких импульсов.
 - 7. Генерация суммарных и разностных частот. Параметрические солитоны.
 - 8. Метод обратной задачи рассеяния при решении НУШ.
 - 9. Волоконные лазеры.

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕННОСТЬ				
	nagarin.	Наличие в электронном каталоге ЭБС				
	Основна	я литература*				
1. Численные методы [Электронный ресурс] / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков 8-е изд. (эл.) М. : БИНОМ, 2015 (Классический университетский учебник).	2015	http://www.studentlibrary.ru/book/ISBN9785996326167.htm				
2. Физика. От теории к практике. В 2 кн. Кн. 1: Механика, оптика, термодинамика [Электронный ресурс] / Бёрд Дж М.: ДМК Пресс, 2016 (Серия "Карманный справочник") ISBN 9785941200764	2016	http://www.studentlibrary.ru/book/ISBN9785941200764.htm				
3. Кузнецов, С. И. Физика. Волновая оптика. Квантовая природа излучения. Элементы атомной и ядерной физики: учеб. пособие / С.И. Кузнецов, А.М. Лидер. — 3-е изд., перераб. и доп. — Москва: Вузовский учебник: ИНФРА-М, 2018. — 212 с ISBN 978-5-16-100426-5.	2018	https://znanium.com/catalog/product/950965				
4. Пинский, А. А. Физика: учебник / А.А. Пинский, Г.Ю. Граковский; под общ. ред. Ю.И. Дика, Н.С. Пурышевой. — 4-е изд., испр. — Москва: ФОРУМ: ИНФРА-М, 2017. — 560 с.: ил. — (Среднее профессиональное образование) ISBN 978-5-16-102411-9.	2017	https://znanium.com/catalog/product/559355				
Д	ополнител	ьная литература				
I. Борисов А.Б., Киселев В.В, Квазиодномерные магнитные солитоны [Электронный ресурс] - М. : ФИЗМАТЛИТ, 2014ISBN 978-5-9221- 1590-2.	2014	http://www.studentlibrary.ru/book/ISBN9785922115902.htm				
2. К теории двумерных и трехмерных систем автоматического регулирования [Электронный ресурс] / А.Г. Барский М. Логос, 2015 ISBN 978-5-98704-807-8.	2015	http://www.studentlibrary.ru/book/ISBN9785987048078.html				
3. Лекции по теории вероятностей и математической статистике [Электронный ресурс]: учебник / Прохоров Ю.В., Пономаренко Л.С 2-е изд., испр. и доп М. : Издательство Московского государственного университета, 2012 Классический университетский учебник). ISBN 978-5-211-06234-4.	2012	http://www.studentlibrary.ru/book/ISBN9785211062344.html				
Математические вопросы численного решения гиперболических систем равнений [Электронный ресурс] / Суликовский А.Г., Погорелов Н.В., Семёнов А.Ю М.: ФИЗМАТЛИТ, 2012 SBN 978-5-9221-1198-0.	2012	http://www.studentlibrary.ru/book/ISBN9785922111980.html				

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает:

аудитории для проведения лекционных, практических и лабораторных занятий, оснащённые современными персональными компьютерами, объединёнными в локальную вычислительную сеть и укомплектованными необходимым системным программным обеспечением (511-3, 100-3,1226-3,106-3);

 система математических и инженерных расчётов МАТLAB; кафедральные мультимедийные средства (ауд. 430-3,420-3); 	
 электронные записи лекций. 	
Рабочую программу составил доцент кафедры ФиПМ Прохоров А. В. (должность, ФИО, подпись)	7
Рецензент	
Генеральный директор ООО «ВладИнТех» А.В. Осипов (место работы, должность, ФИО, подпись)	
Программа рассмотрена и одобрена на заседании кафедры ФиПМ	
Протокол №1 от 30.08.2021 года	
Заведующий кафедройС.М. Аракеля	łН
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 28.03.01 Нанотехнологии и микросистемная техника Протокол №1 от 30.08.2021 года Председатель комиссии	нк
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	
Рабочая программа одобрена на 20 22 / 20 23 учебный года Протокол заседания кафедры № _/ от 20 08 1012 года Заведующий кафедрой	
Рабочая программа одобрена на 20/20учебный года Протокол заседания кафедры № от года Заведующий кафедрой	
Рабочая программа одобрена на 20/ 20 учебный года Протокол заседания кафедры № от года Заведующий кафедрой	