Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Введение в наноинженерию»

Направление подготовки: 27.03.05 Инноватика

Профиль/программа подготовки

Уровень высшего образования: бакалавриат

Форма обучения: очная

Семестр	Трудоем-кость зач. ед,час.	Лек- ции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРП, час	СРС, час.	Форма промежуточного контроля (экз./зачет)
5	7, 252	18	18	-	27	153	Экзамен (36ч.)
Итого	7, 252	18	18	-	27	153	Экзамен (36ч.)

Владимир, 2018

Est

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины «Введение в наноинженерию» направлено на достижение следующих целей ОПОП 27.03.05 «Инноватика»:

Код цели	Формулировка цели								
Ц1	Подготовка выпускников к научно-исследовательской и инновационной								
	деятельности в области нанотехнологий и нанодиагностики, в том числе								
	междисциплинарных областях, связанных с выбором необходимых методов								
	исследования, модифицирования существующих и разработки новых								
	технологий исходя из задач конкретного исследования.								
Ц2	Подготовка выпускников к проектно-конструкторской и проектно-								
	технологическая деятельности, включающей в себя участие в составе								
	коллектива исполнителей в проведении расчетных и проектных работ при								
	разработке процессов нанотехнологий								
Ц5	Подготовка выпускников к самообучению и освоению новых								
	профессиональных знаний и умений, непрерывному профессиональному								
	самосовершенствованию.								

Развитие нанотехнологии в целом ставит множество задач перед предприятиями по освоению новой техники и рациональному использованию существующей. Данная дисциплина направлена на изучение бакалаврами области и объектов своей профессиональной деятельности.

Цель дисциплины – изучить область и объекты своей профессиональной деятельности.

Виды учебной работы: лекции, практические занятия. Изучение дисциплины заканчивается экзаменом в 5-м семестре.

Задачи дисциплины

Ознакомить студентов:

- с кругом проблем, связанных с инженерной деятельностью в области нанотехнологий;
- убедить студентов в необходимости фундаментальной подготовки по гуманитарным, социально-научным, профессиональным и специальным дисциплинам;
- способствовать более быстрой адаптации студентов-первокурсников к условиям вузовской жизни и психологической подготовке к повседневной самостоятельной работе;
- вооружить студентов знанием научных основ организации и методики учебного труда, обеспечивающим высокое качество усвоения программного материала при оптимальной затрате сил и времени;
- с перспективами развития нанотехнологий, дать представление о новых технологических методах обработки материалов.

При изложении курса наряду с лекциями проводятся посещения лабораторий кафедры и факультета, ознакомление с новейшим оборудованием и средствами вычислительной техники. На лекциях проводятся встречи студентов с преподавателями кафедры.

Привить практические навыки и знания:

После изучения дисциплины «Введение в наноинженерию» студенты должны иметь представление:

- о значении и перспективах развития машиностроения как базовой отрасли народного хозяйства;
 - о видах инженерной деятельности и требованиях к выпускникам университета;
 - о новых высокоэффективных методах обработки материалов;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Введение в наноинженерию» относится к дисциплинам по выбору вариативной части.

Для успешного изучения дисциплины «Введение в наноинженерию» студенты должны быть знакомы с основными положениями курсов «Физика», «Химия» и «Математика».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

После изучения данной дисциплины студент приобретает знания, умения и опыт, соответствующие результатам ОПОП направления 27.03.05:

P1, P2, P5, P6, P9 (расшифровка результатов обучения приводится в ОПОП направления 27.03.05).

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты обучения, согласующиеся с формируемым компетенциям ОПОП:

способность к самоорганизации и самообразованию (ОК-7):

знать структуру познавательной деятельности и условия ее организации;

уметь ставить цели и задачи профессионального и личностного самообразования;

владеть навыками построения индивидуальной траектории интеллектуального, общекультурного и профессионального развития;

способностью разрабатывать проекты реализации инноваций с использованием теории решения инженерных задач и других теорий поиска нестандартных, креативных решений, формулировать техническое задание, использовать средства автоматизации при проектировании и подготовке производства, составлять комплект документов по (ПК-12):

знать основные этапы и средства проектирования и исследования микро- и наносистем;

уметь пользоваться современными средствами автоматизации при проектировании и подготовке производства;

владеть современными программными и аппаратными средствами поиска;

способностью конструктивного мышления, применять методы анализа вариантов проектных, конструкторских и технологических решений для выбора оптимального (ПК-15):

знать методы анализа проектных, конструкторских и технических решений;

уметь применять методы анализа вариантов проектных, конструкторских и технологических решений для выбора оптимального;

владеть способностью конструктивного мышления при анализе вариантов проектных, конструкторских и технологических решений.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5 семестр: общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа.

	Раздел (тема) дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					ную	Объем учебной	Формы текущего контроля успеваемости	
№ п/п				Лекции	Практические	Лабораторные	СРП	CP	KII / KP	работы, с применением интерактивны х методов (в часах / %)	(по неделям семестра), форма промежуточно й аттестации (по семестрам)	
1	Основные определения и понятия.		1- 2	2	2		3	17		2/50		
2	История нанонауки и нанотехнологии.		3- 4	2	2		3	17		2/50	Рейтинг- контроль №1	
3	Современный уровень развития нанотехнологий.		5- 6	2	2		3	17		2/50		
4	Применение нанотехнологий в различных отраслях.		7- 8	2	2		3	17		2/50		
5	Использование нанотехнологий в машиностроении.		9- 10	2	2		3	17		2/50	Рейтинг- контроль №2	
6	Проблемы и перспективы развития нанотехнологий в машиностроении.	5	11 - 12	2	2		3	17		2/50	Komposis (1-2	
7	Ключевые проблемы развития нанотехнологий в России.		13 - 14	2	2		3	17		2/50		
8	Общая характеристика и принципы высокоэффективной обработки материалов концентрированным и потоками энергии.		15 - 16	2	2		3	17		2/50	Рейтинг- контроль №3	
9	Виды и методы получения наноструктурированн ых покрытий.		17 - 18	2	2		3	17		2/50		
Вс	его			18	18		27	153		18/50	Экзамен (36ч.)	

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе обучения используются следующие формы образовательных технологий:

- при проведении практических занятий используется проблемный метод, в результате чего обучающиеся знакомятся с поставленными задачами и могут оценить альтернативные варианты их решения;

-экскурсии по лабораториям научного образовательного центра университета, где установлена и функционирует установка для плазменного напыления режущих инструментов износостойкими покрытиями и эксплуатируется металлорежущее оборудование с ЧПУ, выпущенное передовыми станкостроительными компаниями Германии и Японии. В ходе экскурсии обучающиеся знакомятся с современными металлорежущими станочными системами, технологической оснасткой и контрольно-измерительными приборами и организуются встречи обучающихся со специалистами, обслуживающими современное оборудование и выпускающими высокоточную машиностроительную продукцию.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМО-СТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ; УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМО-СТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Вопросы для рейтинг-контроля №1

- 1. Цель и задачи дисциплины «Введение в наноинженерию».
- 2. Определения нанотехнологий, нанотехники, нанообъектов, наноструктуры.
- 3. Размеры нанообъектов. Основные объекты нанотехнологий и применение нанотехнологий в промышденности и машиностроении.
- 4. Этапы развития нанонауки.
- 5. Современный уровень развития нанотехнологий.
- 6. Общие расходы на нанотехнологии в мире.
- 7. Центры развития нанотехнологий в мире.
- 8. Примеры применения нанотехнологий в мире.

Вопросы для рейтинг-контроля №2

- 1. Применение нанотехнологий в различных отраслях.
- 2. Наноэлектроника и нанофотоника.
- 3. Наноэнергетика.
- 4. Нанотехнологии для медицины и биотехнологии.
- 5. Использование нанотехнологий в машиностроении.
- 6. Технологические особенности применения нанотехнологий в машиностроении.
- 7. Способы получения и применения наноструктурированных покрытий.
- 8. Проблемы и перспективы развития нанотехнологий в машиностроении.
- 9. Увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий.
- 10. Широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков.
- 11. Создание с использованием нанотехнологий методов измерений и позиционирования.

Вопросы для рейтинг-контроля №3

- 1. Ключевые проблемы развития нанотехнологий в России.
- 2. Формирование круга наиболее перспективных их потребителей, которые могут обеспечить максимальную эффективность применения современных достижений.
- 3. Повышение эффективности применения наноматериалов и нанотехнологий.

- 4. Разработка новых промышленных технологий получения наноматериалов.
- 5. Обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства.
- 6. Общая характеристика и принципы высокоэффективной обработки материалов концентрированными потоками энергии.
- 7. Новые высокоэффективные методы обработки: электронно-лучевая, лазерная, электроэрозионная,
- 8. Новые высокоэффективные методы обработки: электроплазменная, электрохимическая обработка,
- 9. Новые высокоэффективные методы обработки: обработка струей жидкости высокого давления.
- 10. Перспективы применения новых инструментальных материалов при лезвийной обработке и покрытия инструментов.
- 11. Виды и методы получения наноструктурированных покрытий.

Вопросы к экзамену

- 1. Цель и задачи дисциплины «Введение в наноинженерию».
- 2. Определения нанотехнологий, нанотехники, нанообъектов, наноструктуры.
- 3. Размеры нанообъектов. Основные объекты нанотехнологий и применение нанотехнологий в промышденности и машиностроении.
- 4. Этапы развития нанонауки.
- 5. Современный уровень развития нанотехнологий.
- 6. Общие расходы на нанотехнологии в мире.
- 7. Центры развития нанотехнологий в мире.
- 8. Примеры применения нанотехнологий в мире.
- 9. Применение нанотехнологий в различных отраслях.
- 10. Наноэлектроника и нанофотоника.
- 11. Наноэнергетика.
- 12. Нанотехнологии для медицины и биотехнологии.
- 13. Использование нанотехнологий в машиностроении.
- 14. Технологические особенности применения нанотехнологий в машиностроении.
- 15. Способы получения и применения наноструктурированных покрытий.
- 16. Проблемы и перспективы развития нанотехнологий в машиностроении.
- 17. Увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий.
- 18. Широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков.
- 19. Создание с использованием нанотехнологий методов измерений и позиционирования.
- 20. Ключевые проблемы развития нанотехнологий в России.
- 21. Формирование круга наиболее перспективных их потребителей, которые могут обеспечить максимальную эффективность применения современных достижений.
- 22. Повышение эффективности применения наноматериалов и нанотехнологий.
- 23. Разработка новых промышленных технологий получения наноматериалов.
- 24. Обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства.
- 25. Общая характеристика и принципы высокоэффективной обработки материалов концентрированными потоками энергии.
- 26. Новые высокоэффективные методы обработки: электронно-лучевая, лазерная, электроэрозионная,
- 27. Новые высокоэффективные методы обработки: электроплазменная, электрохимическая обработка,
- 28. Новые высокоэффективные методы обработки: обработка струей жидкости высокого давления.

- 29. Перспективы применения новых инструментальных материалов при лезвийной обработке и покрытия инструментов.
- 30. Виды и методы получения наноструктурированных покрытий.

Самостоятельная работа студентов

- 1. Нанотехнологии, как обязательная составляющая технического прогресса.
- 2. Наноматериалы новая возможность повышения эффективности и надежности продукции машиностроения.
- 3. Фуллерены и нанотрубки. Принципы использования.
- 4. Молекулярные и фрактальные кластеры. Закономерности развития фрактальных кластеров.
- 5. Алмазоиды. Возможные области применения.
- 6. Туннельный сканирующий микроскоп, принцип действия и его возможности.
- 7. Зондовая микроскопия. Принцип работы зондового микроскопа.
- 8. Атомно-силовая микроскопия. Основные разновидности атомно-силовых микроскопов.
- 9. Туннельная микроскопия. принцип работы и ее возможности.
- 10. Электронная микроскопия (ПЭМ, РЭМ).
- 11. Спектральные методы исследования состав и структуры нанообъектов.
- 12. УФ-, ИК-спектроскопия в исследованиях наноматералов.
- 13. РФЭ-спектроскопия в исследованиях наноматералов.
- 14. Рентгеноспектральный анализ в исследованиях наноматералов.
- 15. Рентгенофазовый анализ . в исследованиях наноматералов.
- 16. Наноматериалы в авиации и космонавтике.
- 17. Возможности использования наноматериалов и нанотехнологий в медицине.
- 18. Перспективы развития нанотехнологий.
- 19. Позитивные и негативные последствия применения нанотехнологий.
- 20. Нанотехнлогии и будущие глобальные изменения привычной цивилизации.
- 21. Философско-методологические проблемы нанотехнологий.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Основная литература (библиотечная система ВлГУ):

- 1. Основы нанотехнологии [Электронный ресурс] / Н.Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. М.: БИНОМ, 2014. http://www.studentlibrary.ru/book/ISBN9785996323784.html.
- 2. Очарование нанотехнологии [Электронный ресурс] / Хартманн У. М.: БИНОМ, 2014. http://www.studentlibrary.ru/book/ISBN9785996313259.html.
 - б) Дополнительная литература (библиотечная система ВлГУ):
- 1. Малые объекты большие идеи. Широкий взгляд нананотехнологии [Электронный ресурс] / Генрих Эрлих. 3-е изд. (эл.). М.: БИНОМ, 2015. http://www.studentlibrary.ru/book/ISBN9785996329281.html.
- 2. Наполовину мертвый кот, или Чем нам грозятнанотехнологии [Электронный ре-сурс] / С.Б. Тараненко, А.А. Балякин, К.В. Иванов. М.: БИНОМ, 2013 http://www.studentlibrary.ru/book/ISBN9785996321902.html.
- 3. Квантовая физика и нанотехнологии [Электронный ресурс] / Неволин В.К. Издание 2-е, испр. и доп. М.: Техносфера, 2013. http://www.studentlibrary.ru/book/ISBN9785948363615.html.
- 4. Наноматериалы, наноструктуры, нанотехнологии. [Электронный ресурс] / Гусев А. И. 2-е изд., испр., М.: ФИЗМАТЛИТ, 2009. http://www.studentlibrary.ru/book/ISBN9785922105828.html.

в) Периодические издания:

- 1. Российские нанотехнологии. Москва: Парк-медиа.
- 2. Нанотехнологии: наука и производство: информационно-аналитический журнал. Москва: Образование плюс.

г) Интернет-ресурсы:

http://window.edu.ru/

http://hi-news.ru/tag/nanotexnologii

http://www.nanonewsnet.ru/

http://nanodigest.ru/

http://www.portalnano.ru/

Учебно-методические издания

- 1. Жарков Н.В. Методические указания к практическим работам по дисциплине «Введение в наноинженерию» для студентов направления 27.03.05 [Электронный ресурс] / сост. Жарков Н.В.; Влад. гос. ун-т. ТМС Владимир, 2018. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 2. Жарков Н.В. Методические рекомендации к выполнению самостоятельной работы по дисциплине «Введение в наноинженерию» для студентов направления 27.03.05[Электронный ресурс] / сост. Жарков Н.В.; Влад. гос. ун-т. ТМС Владимир, 2018. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/
- 3. Жарков Н.В. Оценочные средства по дисциплине «Введение в наноинженерию» для студентов направления 27.03.05 [Электронный ресурс] / сост. Жарков Н.В.; Влад. гос. унт. ТМС Владимир, 2018. Доступ из корпоративной сети ВлГУ. Режим доступа: http://cs.cdo.vlsu.ru/

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1) Портал Центр дистанционного обучения ВлГУ [электронный ресурс] / Режим доступа: http://cs.cdo.vlsu.ru/
- 2) Раздел официального сайта ВлГУ, содержащий описание образовательной программы [электронный ресурс] / Режим доступа: Образовательная программа Образовательная программа 27.03.05 «Инноватика» http://op.vlsu.ru/index.php?id=167

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения учебного процесса по дисциплине «Введение в наноинженерию» предусмотрено использование следующих лабораторий кафедры ТМС:

Лаборатория 2D- и 3D наноструктурированных покрытий (ауд. 119-4)

Краткая характеристика помещения:

Общая площадь – 102 кв.м (2 этажа). 1 этаж – лабораторное и производственное оборудование (67 кв.м), 2 этаж – учебный класс на 15 посадочных мест (36 кв.м).

Оборудование:

1. Установка для нанесения наноструктурированных покрытий UniCoat 600SL+; производитель – $P\Phi$, год выпуска - 2008.

Установка для нанесения покрытий методом PVD с максимальной толщиной многослойного сэндвич-покрытия до 20 мкм на весь диапазон используемого концевого инструмента с системой визуализации, управления и термометрирования технологического процесса в течение всего цикла изготовления. Основные типы покрытий: традиционные покрытия – TiN, TiCN, Ti-C:H; 3D-нанокомпозитные покрытия; 2D-нанокомпозитные покрытия и пленки (в том числе алмазоподобные)- суперлаттики.

2. Стационарная установка для измерения микротвердости HVS 1000, производитель – Тайвань.

Предназначен для измерения микротвердости в том числе и покрытий.

3. Испытательная система на растяжение с термокамерой WDW-100.

Жесткость силовой рамы: 100 кH/мм, Наибольшая предельная нагрузка: 100 кH (10 тc); Тип привода: электромеханический, Точность измерения нагрузки: $\pm 1,0\%$ (по заказу 0,5%), Диапазон измерения нагрузки: $400 \text{ H} \sim 100 \text{ кH}$; (0.4%-100% полной шкалы, автоматически переключаемые шкалы), 6 шкал, Разрешение нагрузки: 0,001% FS, Диапазон измерения деформации: 2-100%, Точность измерения деформации: $\pm 1,0\%$.

- 4. Калотестер CSM CAT (Модель CAT-S-AE), производитель: CSM (Швейцария).
- 5. Микрокомбитестер CSM MCT, производитель: CSM (Швейцария).
- 6. Трибометр CSM (Модель TRB-S-CE-000), производитель: CSM (Швейцария).

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОВЗ

9.1. Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

9.2. Материально-техническое обеспечение дисциплины для лиц с ОВЗ

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема-передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

9.3. Требования к фонду оценочных средств для лиц с ОВЗ

Для студентов с ограниченными возможностями здоровья предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 1.

Таблица 1 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных	Формы контроля и оценки
	средств	результатов обучения
С нарушениями слуха	Тесты, письменные лабораторные	Преимущественно письменная
	работы, вопросы к зачету,	проверка
	контрольные работы	
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная
	проверка (индивидуально)	
С нарушениями	Решение дистанционных тестов,	Преимущественно
опорно-двигательного	контрольные работы, письменные	дистанционными методами
аппарата	лабораторные, самостоятельные	
_		

С ограничениями по	Тесты, письменные лабораторные,	Преимущественно проверка
общемедицинским	самостоятельные работы, вопросы к	методами, исходя из состояния
показаниям	зачету, контрольные работы, устные	обучающегося на момент
	ответы	проверки

9.4. Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы.

Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС
ВО по направлению <u>27.03.05 «Инноватика»</u>
Рабочую программу составил <i>Морков Н. В. таука</i> (ФИО, подпись)
Рецензент (представитель работодателя): Главный инженер ООО «ТАГ-Инжиниринг» (место работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании кафедры Технология машиностроения
Протокол № <u>1</u> от <u>3.09, 2018</u> года
Заведующий кафедрой д.т.н., профессор Морозов В.В. (ФИО, полись)
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
направления 27.03.05 «Инноватика»
Протокол № от года Председатель комиссии д.т.н., профессор Морозов В.В
(ФИО, ПОДПИСЬ)

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на моро учебный год	
Протокол заседания кафедры №	
Заведующий кафедрой д.т.н., профессор Морозов В.В.	
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой д.т.н., профессор Морозов В.В	
Рабочая программа одобрена на учебный год	
Протокол заседания кафедры № от года	
Заведующий кафедрой д.т.н., профессор Морозов В.В.	