Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт информационных технологий и радиоэлектроники

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ»

направление подготовки / специальность **27.03.04 – Управление в технических системах**

направленность (профиль) подготовки Управление и информатика в технических системах

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Физические основы микроэлектроники», являются: приобретение знаний о свойствах, характеристиках и параметрах полупроводниковых приборов и устройств в дискретном и интегральном исполнении, составляющих основу современной элементной базы электронной аппаратуры.

Задачи:

- изучение принципов дейчтвия, параметров и характеристик наиболее распространенных приборов электронной аппаратуры.
- изучение современных тенденций развития элементной базы электроники.
- формирование способностей правильно применять полученные знания при разработке аппаратуры систем управления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Физические основы микроэлектроник» относится о обязательной части учебного плана направления 27.03.04 — Управление в технических системах.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые ком-	Планируемые результаты обучени ствии с индикатором дости	Наиме- нование		
(код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора)	Результаты обучения по дисциплине	оценоч- ного средства	
1	2	3	4	
зировать задачи управления в технических системах на основе положений, законов и методов естественных наук и математики	ОПК-1.1. Знает: основы анализа задач управления в технических системах. ОПК-1.2. Умеет анализировать задачи, выделять базовые составляющие управления в технических системах, рассматривать возможные варианты решения задачи управления в технических системах. ОПК-1.3. Владеет навыками оценивая достоинств и недостатков возможных вариантов решения задачи.	Знать основы физических процессов Уметь использовать основные законы естественных наук и математики Владеть навыками обработки данных	Тесто- вые во- просы	
лировать задачи профес- сиональной деятельности на основе знаний, про- фильных разделов мате- матических и естествен- нонаучных дисциплин (модулей)	научных дисциплин. ОПК-2.2. Умеет формулировать задачи в области управления в технических	естественных наук и математики и современными информационно- коммуникационными технологиями в процессе профес-	Тесто- вые во- просы	

4. ОБЬЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 3 зачетных единиц, 108 час.

Тематический план форма обучения – очная

№ π/π	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Контактная работа обучающихся с педагогическим работником					Формы теку- щего контроля
				Лекции	Практические заня- тия	Лабораторные ра- боты	в форме практиче- ской подготовки	Самостоятельная работа	успеваемости, форма проме- жуточной атте- стации (по се- местрам)
1	Тема №1.Введение. Понятия и термины физики полупровод- ников. Материалы, типы проводимо- стей.	3	1						
2	Тема №2.Характеристики и параметры вентильных переходов -диодов. Вентильные диоды на основе германия, кремния. Отличия параметры, характеристики. Разновидности диодов: опорные, светофото-диоды, диоды Шотки, туннельные, обращенные. Характеристики, применения.	3	2-6	6	6			14	Рейтинг- контроль 1
3	Тема №3. Транзисторы биполярные. Принцип действия. Характеристики, параметры. Схемы включения. Интегральное исполнение БПТ. Применения БПТ.	3	7-8	2	2	4		8	

7	Тема №4. Полевые транзисторы (ПТ). Принципы действия ПТ. Характеристики, параметры.	3	9-10	2	2	4	8	
	Дискретные и интегральные исполнения ПТ. Применения ПТ							
4	Тема №5. Уравнения и параметры режима малых сигналов БПТ и ПТ. Представления о частотных характеристиках.	3	11-14	3	4	4	12	
5	Тема №6. Тиристоры, симисторы, динисторы. Принцип действия, характеристики, параметры, Применения. Силовые приборы на основе полевых и б/п структур СИТ, БСИТ, IGBT.	3	15-18	5	4	6	6	
	за Зсеместр			18	18	18	54	зачет
Налич КП/К	чие в дисциплине Р							
Итого	по дисциплине			18	18	18	54	зачет

Содержание лекционных занятий по дисциплине

Тема №1. Понятия и термины физики полупроводников, Материлы, типы примесей, проводимостей, применение интерметаллических соединений; основные и неосновные типы носителей зарядов.

Тема №2. Переходы, классификация: резкие и плавные, симметричные и несимметричные

Собственно переход, вентильные свойства перехода, принцип действия. Прямое и обратное смещение перехода. Потенциальные диаграммы. Токи через переход..

Типовая вольт-амперная характеристика (ВАХ) вентильного диода. Отличия между кремниевыми и германиевыми диодами.

Разновидности диодов: опорные, свето- фото-диолы; диоды Шотки, туннельные, обращенные. Характеристики, параметры, типовые применения.

Тема №3. Транзисторы биполярные. Принцип действия. Характеристики параметры. Схемы включения: с общей базой (ОБ), с общим эмиттером (ОЭ), с общим коллектором (ОК).

Эквивалентные схемы БПТ: нелинейная и дифференциальная (линейная); параметры схем.

Интегральное исполнение БПТ. Применения БПТ.

Тема №4. Полевые транзисторы (ПТ). Типы ПТ. Принцип действия ПТ с изолированным затвором и каналом n- типа. Характеристики, параметры. Принцип действия ПТ с управля - ющим p-n- переходом и каналом n- типа. Характеристики, параметры.Схемы включения ПТ. Применения ПТ

Тема№5. Уравнения и параметры, описывющие работу БПТ и ПТ в режиме усиления малого сигнала с помощью линейных эквивалентных схем каскадов усиления. Представления о частотных характеристиках БПТ и ПТ.

Тема №6. Силовые приборы, работающие в режиме ключа: тиристоры, симисторы, динис – торы. Принцип действия, характеристики, параметры. Применения.

Универсальные силовые приборы на биполярных и полевых структур: ПТ типа MOSFET, Транзистры со статической индукцией (СИТ), БСИТ, биполярные транзисторы полевым управляющим электродом ((IGBT). Характеристики, параметры, применения.

Содержание лабораторных занятий по дисциплине

Занятие №1. Графо-аналитический расчет выпрямителей (одно- и-двух полупериодных; работа на активную нагрузку.

Занятие №2. Графо-аналитический расчет схемы с опорным диодом. (2 часа).

Занятие №3. Расчет каскадов на БПТ, работающих в режиме ключа с активной нагрузкой. 4 упражнения.

Занятие №4. Транзитсторные ключи со светодиодами в цепи коллектора. З упражнения.

Занятие №5. Каскады согласования уровней входного напряжения в транзисторных ключах. 4 упражнения.

Занятие №6. Графо-аналитический расчет каскада на БПТ и ПТ в режиме усиления малого сигнала.

Занятие №7 Способы формирования сигналов управления тиристорами и симисторами.

Занятие №8. Расчет цепи управления ПТ – MOSFET в режиме ключа. 3 упражнения.

Содержание лабораторных занятий по дисциплине

Лабораторная работа №1. ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК ДИО-ДОВ (вентильных, Шоттки, опорных, светоизлучающих), ВЫПРЯМИТЕЛЕЙ НА ВЕНТИЛЬНЫХ

ДИОДАХ.

Лабораторная работа №2. ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК БИПО-ЛЯРНЫХ ТРИОДОВ.

Лабораторная работа №3. ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК ПО-ЛЕВЫХ ТРИОДОВ.

Лабораторные работы N 4,5,6,7. ИЗУЧЕНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК БПТ, ПТ,

MOSFET, IGBT, ТИРИСТОРНЫХ ВЫПРЯМИТЕЛЕЙ – приборов, работающих в режиме ключа по выбору преподавателя.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1 Текущий контроль успеваемости

Рейтинг-контроль №1

- 1.Электронно-дырочные переходы, Определение, Классификация. Поле перехода, потенциальный барьер. Принцип действия. Равновесное состояние, прямое и обратное смещение перехода.
- 2. ВАХ перехода. Формула ВАХ. Прямая ветвь кремниевых и германиевых переходов. ТКН, дифференциальное сопротивление. Напряжение пятки.
- 3. Обратная ветвь ВАХ. Компоненты обратного тока. Типы пробоя переходов: туннельный, лавинный, поверхностный, тепловой.
- 4. Емкости переходов. Барьерная, диффузионная. Инерционность переходов. Схема замещения.
- 5. Диоды. Классификация диодов. Вентильные диоды. УГО, параметры. Импульсные и универсальные диоды. Параметры. Отличия от вентильных диодов.
- 6. Опорные диоды (стабилитроны), УГО. Характеристики, параметры, классификация, применение.
- 7. Диоды Шоттки, светодиоды, фотодиоды, туннельные диоды. УГО, характеристики, параметры, применение.
- 8. Триоды. Биполярные триоды. УГО. Структура, потенциальная диаграмма, принцип действия. Статические характеристики

Рейтинг-контроль №2

- 9. Коллекторные ВАХ БПТ. Области отсечки, насыщения, активная (ОО, ОН, АО). Эмиттерные ВАХ БПТ.
- 10. Схемы включения БПТ: с ОБ, ОЭ, ОК. Характеристики схем включения схем включения с ОБ и ОЭ.
 - 11. Частотные характеристики БПТ.
- 12. Полевые триоды. УГО, классификация. МДП, МОП-триоды с индуцированным каналом. Принцип действия Характеристики, параметры.
- 13. Полевые триоды со встроенным каналом. Принцип действия, характеристики. Полевые триоды с управляющим переходом. Принцип действия, характеристики.
- 14. Схемы замещения полевых триодов, междуэлектродные емкости, инерционность, частотные свойства.
 - 15. Параметры режима малого сигнала БПТ.
 - 16. Параметры режима малого сигнала ПТ.
 - 17. Линейные эквивалентные схемы БПТ и ПТ.

Рейтинг-контроль №3

- 18. Тиристоры, симисторы, динисторы. УГО, принцип действия. ВАХ, параметры.
 - 19. Схемы фазоуправляемых выпрямителей (одно-двухпульсные).
- 20 . Силовые приборы на основе полевых и биполярных структур. СИТ, БСИТ, IGBT. Особенности, характеристики, параметры, применения.
- 21. Режимы работы силовых приборов в схемах преобразования энергии.
 - 22. Управление БПТ режиме ключа, особенности.
 - 23 . Управление ПТ MOSFET и IGBT в режиме ключа, особенности.

5.2. Промежуточная аттестация по итогам освоения дисциплины (зачет)

Вопросы к зачету

- 1. Электронно-дырочные переходы. Классификация p-n переходов. Классификация; принцип действия; потенциальная диаграмма.
- 2. Условия работы p-n перехода . Связь между шириной перехода и высотой потенциального барьера.
- 3. ВАХ и параметры идеального и реального диода-перехода. Прямая ветвь ВАХ. Прямая ветвь ВАХ диода: дифференциальное сопротивление, напряжение «пятки», температурный коэффициент напряжения (ТКН).
- 4. Обратная ветвь ВАХ диода-перехода. Обратный ток диода. Температурная зависимость составляющих обратного тока.
- 5. Пробой перехода. Типы: лавинный, туннельный, тепловой, поверхностный. Причины пробоев.
- 6. Ёмкости переходов: барьерная, диффузионная; физический смысл, влияние на работу перехода-диода.
- 7. Процесс переключения диода-перехода (переходный процесс). Схема замещения реального диода.
- 8. Вентильные (выпрямительные) диоды (ВД). Условное графическое обозначение (УГО); характеристики, эксплуатационные параметры . Импульсные и универсальные диоды, эксплуатационные параметры. Применения.
- 9. Диоды Шоттки (ДШ), опорные диоды (ОД, стабилитроны). УГО, характеристики, параметры, применения.
- 10. Туннельные и обращенные диоды (ТД, ОД). УГО, характеристики, параметры, применения.
- 11. Светоизлучающие диоды (СИД). УГО, характеристики, применения. Фото диоды (ФД). УГО, характеристики. Включения Φ Д. Принцип действия в разных включениях. Применение.
- 12. Биполярные триоды (БПТ). Общая характеристика прибора, применение (универсальный). УГО, конструкция плоскостного БП. Принцип действия на примере включения с общей базой (ОБ). Схемы включения с ОБ, ОЭ, ОК.
- 13. Принцип действия БПТ с использованием потенциальных диаграмм БПТ (p-n-p) или n-p-n- типов).

- 14. Нелинейные эквивалентные схемы БПТ (на примере триода p-n-p типа с прямой проводимостью, схема включения с ОБ). Формулы Эберса Молла.
- 15. Коллекторные BAX идеализированного БПТ, схема эксперимента . Области отсечки (OO) , насыщения (OH) , активная (AO) . Реальные коллекторные BAX , параметры триода : α , r_{κ}^{*} , $P_{\kappa, \text{доп}}$. Эмиттерные BAX триода.
 - 16. Работа БПТ в режиме усиления малого сигнала (схема включения с ОЭ).
- 17. Схема включения БПТ с ОЭ. Семейства коллекторных и эмиттерных ВАХ схемы включения с ОЭ. Параметры, особенности.
- 18. Линейные эквивалентные схемы БПТ, включения с ОБ и ОЭ. Параметры БПТ, как четырехполюсника.
 - 19. Переходные и частотные характеристики БПТ для схем включения с ОБ и ОЭ.
- 20. Работа БПТ в режиме усиления импульсного импульсного сигнала (режим ключа). Схема ключа с ОЭ. Графики, параметры процесса переключения БПТ.
 - 21. Эксплуатационные параметры БПТ в схемах включения с ОБ и ОЭ.
- 22. Полевые триоды (ПТ). Общая характеристики прибора, применение (универсальный). УГО, классификация. Полевой триод с изолированным затвором ПТИЗ и индуцированным каналом; структура, принцип действия, характеристики: стоковые и стокзатворные характеристики триодов с каналами p и n типов.
- 23. ПТИЗ с встроенным каналом (p и n типов). Семейства стоковых и стокзатворных характеристик. ПТ с управляющим p-n – переходом и каналами n и p типа. Принцип действия, семейства стоковых и сток-затворных характеристик.
- 24. Схемы включения ПТ с ОИ, ОС. Линейная схема замещения ПТ на высоких и низких частотах, параметры. Работа ПТ в режиме усиления малого сигнала.
 - 25. Эффект Миллера, представление о динамических характеристиках ПТ.
- 26. Тиристоры (динисторы), симисторы). УГО, назначение. Принцип действия на примере тиристора с управлением по катоду. ВАХ тиристора.
- 27. Способы включения и выключения тиристоров. Эксплуатационные параметры тиристоров.
 - 28. Силовые БПТ. Работа в режиме ключа, особенности. Составной триод.
- 29. Силовые (мощные) П. Работа в режиме ключа. ПТИЗ типа MOSFET: УГО, структура, схема замещения. Работа MOSFET в режиме усиления импульсного сигнала. Вольт-зарядная характеристика.
- 30. Мощные ПТ типа СИТ, БСИТ (СИТ статический индукционный транзистор, БСИТ). Особенности управления.
- 31. Биполярный триод с изолированным затвором БТИЗ (IGBT) . УГО , структура , принцип действия. ВАХ , особенности управления.

5.3. Самостоятельная работа обучающегося

В плане самостоятельной работы студентами в течении семестра выполняется углубленный поиск и изучение материала по одной из предлагаемых актуальных тем.

Темы СРС

Вопросы к самостоятельной работе студентов (СРС)

1. Влияние температуры на параметры перехода-диода.

Прямая ветвь ВАХ перехода. Что такое температурный коэффициент напряжения (ТКН)? Есть ли разница между ТКН кремниевых и германиевых переходов? Компоненты обратного

тока, диода. Какая из компонент обратного тока является основной у германиевых и кремниевых переходов? Причина теплового пробоя перехода?

2. Быстродействие вентильных диодов

Как объясняется инерционность переходных процессов в диодах? Способы увеличения быстродействия .Какая разница между p-n — переходом и переходом Шотки? Почему диоды Шотки отличаются малой инерционностью?

- 3. Природа свечения переходов , построенных на интерметаллах. От чего зависит спектр излучения перехода светодиода (СД)? Фотодиоды (ФД). Фото-э.д.с.; значения ; особенности применения Φ Д в фотодиодном режиме .
- 4. Температурная стабильность BAX биполярных триодов (БПТ). Влияние температуры на эмиттерную и коллекторные BAX в различных схемах включения. Представление о стаби лизации режимов работы БПТ. Нелинейныя и линейные схемы замещения БПТ. БПТ как четырехполюсник. Быстродействие БПТ, переходные процессы.
- 5. Отличительные особенности ВАХ полевых триодов (ПТ) разных типов. Представление о стабилизации режимов работы ПТ. Линейная схема замещения. В чем суть эффекта Миллера?

Быстродействие ПТ, переходные процессы.

- 6. Как построить эквивалентную схему простого линейного усилителя сигнала на примерах включения БПТ с общим эмиттером, ПТ с общим истоком? Провести расчет параметров по напряжению.
- 7. Отличительные особенности BAX тиристоров и симисторов от обычных вентильных диодов. Представление о применении этих приборов в схемах в силовых схемах преобра—зования энергии. Как выглядят схемы управляемых выпрямителей и регуляторов энергии?
- 8. Применение силовых приборов в схемах преобразования энергии. Переходные процессы и потери в транзисторах при работе в режиме ключа. Интеллектуальные транзисторы. Принципы управления силовыми транзисторами в преобразователях.

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год из- дания	КНИГООБЕСПЕЧЕН- НОСТЬ Наличие в электронном ка- талоге ЭБС
1	2	3
Основная лите	ратура*	
1.Коммисаров Ю.А., Бабокин Г.И.	2016	http://znanium.com/ca - ta-
Общая электротехника и электро – ника М.: ИНФА-		log php?boorinfo=48
M.,2016. 480c.		7480
2.Основы электроники.Уч. пособие/	2016	http://znanium.com/ca – ta-

Водовозов А.М. – Инженерия 2016 – 130c. ISBN 978-5-	•	log/product/760204
9729-0137-1.	2017	
3. Физические основы электроники.		http.//znanium.com/ca-
Сборник задач и примеры их решения: Учебно-		talog/product/672993
методическое пособие/ Аристов А.В.,Перович В.П. –		
Томск. Из-во Томского политех. Ун-та 2015- 100с.		
Дополнительная литерат	ypa	
1. Электротехника и Электроника.	2011	библиотека ВлГУ
Подеин Ю.Г.,Чигуров Т.Г.,Данилов		
Ю.И. Серия бакалавриат, Издат.Центр Академия -		
M.:2011, 430c.		
2.Электроника. Учебное пособие/	2012	библиотека ВлГУ
А.А.Сигов, В.И. Нефедов, А.А.Щука; Издат.Абрис –		
M.: 2012, 348c.		
3Электротехника и электроника	2012	http//www.studentlibra-
(Электронный ресурс):Учебник для вузов/Немцов М.В.		ru.ru/book/ISBN978543
– M.:Абрис.2012 – 560c.		720035.html
4.Игумнов Д.В. и Костюнин Г.П.	2011	библиотека ВлГУ
Основы полупроводниковой электроники. Горячая ли-		
ния. Телеком.М.: 2011. 394с.		

6.2. Периодические издания

- 1. Журнал: Автоматизация и моделирование в проектировании и управлении. Изд-во ФГБОУ ВО «Брянский государственный технический университет», ISSN print 2658-3488: online 2658-6436
- 2. Журнал: Современные технологии автоматизации. Изд-во «СТА-ПРЕСС». ISSN 0206-975X
- 3. Журнал: Проектирование и технология электронных средств. Изд-во ВлГУ ISSN печатной версии: 2071-9809

6.3. Интернет-ресурсы

- 1. http://www.google.ru /search Электроника и электротехника. Учебники и справочники.
- 2 . ftp://niktest.g-servis.ru/.../bi01/электроника/ Основы электроники. Учебное пособие для ВУЗ-ов. Марченко А.Л. Изд. ДМК Пресс , М.: 2008 , 294с.
- 3. http://www.renesas.com/ Фирма Mitsubisthi Electric corp.
- 4. http://www.semiconductors.philips.com/ Фирма Philips Semiconductors.
- 5.twirpx.com>files/equipment/periodic...elektronika/ Силовая электроника. Все для студента.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий практического/лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лабораторные занятия проводятся в компьютерных классах кафедры ВТиСУ 109-3, 111-3, 117-3, оснащенных современными персональными компьютерами с установленной операционной системой Windows 8 (10).

Перечень используемого лицензионного программного обеспечения: MS DOS фирмы Microsoft (режим эмуляции), Windows 2008, MS Office 2010.

	,
Рабочую программу составил к.т.н., доцент	А.Б. Градусов
Рецензент (представитель работодателя): Зам.начальника отдела ЗАО «Автоматика» к.т.н.	У В.М. Дерябин
Программа рассмотрена и одобрена на заседании кафедры <u>ВТ и СУ</u> Протокол №от <u>31-08. 2</u> года Заведующий кафедрой ВТ и СУ	В.Н. Ланцов
Программа рассмотрена и одобрена на заседании учебно-методической направления 27.03.04 «Управление в технических системах» Протокол № / от УЛОЛ. КОЗ года	и́ комиссии
Председатель комиссии	А.Б.Градусов

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 20 🏄	1 20 D	учебный года	
Протокол заседания кафедры №	_ от 31.0	8. lel/roga	
Заведующий кафедрой			К.В.Куликов
	/		,
Рабочая программа одобрена на 20 <u>2</u> 2	_		
Протокол заседания кафедры № _/Д	отл.	<i>%. Х.</i> 2 года	
Заведующий кафедрой			К.В.Куликов
Рабочая программа одобрена на 20	_/20	_ учебный года	
Протокол заседания кафедры №	_ OT	года	
Заведующий кафедрой			К.В.Куликов
	1		
Рабочая программа одобрена на 20	_ / 20	_ учебный года	
Іротокол заседания кафедры №	_ OT	года	
Заведующий кафедрой			К.В.Куликов