РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория автомобиля

(наименование дисциплины)

Направление подготовки - 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов»

Профиль/программа подготовки – Автомобильный сервис

Уровень высшего образования – академический бакалавриат

Форма обучения - очная

<table>
<thead>
<tr>
<th>Семестр</th>
<th>Трудоемкость зач. ед./час.</th>
<th>Лекции, час.</th>
<th>Практич. занятия, час.</th>
<th>Лаборат. работы, час.</th>
<th>СРС, час.</th>
<th>Форма промежуточного контроля (экз./зачет)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4 / 144</td>
<td>18</td>
<td>36</td>
<td>-</td>
<td>54</td>
<td>Экзамен (36)</td>
</tr>
<tr>
<td>Итого</td>
<td>4 / 144</td>
<td>18</td>
<td>36</td>
<td>-</td>
<td>54</td>
<td>Экзамен (36)</td>
</tr>
</tbody>
</table>

Владимир 2016
1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Теория автомобиля» являются формирование у студентов профессиональных знаний:
- о законах движения автомобилей;
- о взаимодействии автомобиля с дорогой и внешней средой;
- об основных эксплуатационных свойствах автомобилей.

Указанные знания, полученные в рамках дисциплины «Теория автомобиля», позволяют сформировать профессиональные компетенции бакалавра, необходимые для выполнения элементов расчетно-проектировочных работ и грамотной эксплуатации автотранспортных средств.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП-ВО

Дисциплина «Теория автомобиля» относится к вариативной части ОПОП подготовки бакалавров направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов». Дисциплина изучается в четвертом семестре. Для успешного усвоения теоретического материала дисциплины и овладения предусмотренными программой знаниями и навыками студент должен владеть:
- знаниями об устройстве автомобилей;
- знаниями в области физики и теоретической механики

Овладение указанными знаниями и навыками достигается в ходе изучения таких дисциплин как «Устройство автомобиля», «Физика», «Прикладная механика» и др.

Знания, полученные при изучении дисциплины необходимы для изучения последующих дисциплин: «Конструкция и эксплуатационные свойства автомобилей», «Безопасность автотранспортных средств», «Системы безопасности автомобилей».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

При освоении дисциплины формируются следующие компетенции:
ПК-1: готовность к участию в составе коллектива исполнителей к разработке проектно-конструкторской документации по созданию и модернизации систем и средств эксплуатации транспортных и транспортно-технологических машин и оборудования;
ПК-2: готовность к выполнению элементов расчетно-проектировочной работы по созданию и модернизации систем и средств эксплуатации транспортных и транспортно-технологических машин и оборудования;
ПК-8: способность разрабатывать и использовать графическую техническую документацию.

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:
1) Знать: элементы расчета для создания и модернизации систем и средств эксплуатации транспортных машин (ПК-2);
2) Уметь: разрабатывать и использовать графическую техническую документацию (ПК-8);
3) Владеть: готовностью к участию в составе коллектива исполнителей к разработке проектно-конструкторской документации по созданию и модернизации систем и средств эксплуатации транспортных и транспортно-технологических машин и оборудования (ПК-1).
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Раздел (тема) дисциплины</th>
<th>Семестр</th>
<th>Недели семестра</th>
<th>Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)</th>
<th>Объем учебной работы, с применением интерактивных методов (в часах / %)</th>
<th>Формы текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации (по семестрам)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Основы теории движения колеса</td>
<td>4</td>
<td>1-2</td>
<td>Лекции Практические занятия Лабораторные работы Контрольные работы СРС КП / КР</td>
<td>8</td>
<td>3 / 50 % Рейтинг-контроль № 1</td>
</tr>
<tr>
<td>2</td>
<td>Тягово-скоростные свойства автомобиля</td>
<td>4</td>
<td>3-6</td>
<td>4</td>
<td>8 +</td>
<td>4 / 50 % Рейтинг-контроль № 2</td>
</tr>
<tr>
<td>3</td>
<td>Тяговый расчет</td>
<td>4</td>
<td>7-10</td>
<td>4 16</td>
<td>12 +</td>
<td>8 / 40 % Рейтинг-контроль № 2</td>
</tr>
<tr>
<td>4</td>
<td>Тормозные свойства</td>
<td>4</td>
<td>11-12</td>
<td>2 4</td>
<td>8 +</td>
<td>2 / 33 % Рейтинг-контроль № 2</td>
</tr>
<tr>
<td>5</td>
<td>Плавность хода</td>
<td>4</td>
<td>13-14</td>
<td>2 4</td>
<td>6</td>
<td>2 / 33 % Рейтинг-контроль № 2</td>
</tr>
<tr>
<td>6</td>
<td>Устойчивость и управляемость</td>
<td>15-16</td>
<td>2 4</td>
<td>6</td>
<td>2 / 33 %</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Проходимость автомобиля</td>
<td>4</td>
<td>17-18</td>
<td>2 4</td>
<td>6</td>
<td>1 / 50 % Рейтинг-контроль № 3</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>18</td>
<td>36</td>
<td>54</td>
<td>22 / 41 %</td>
<td>Экзамен</td>
</tr>
</tbody>
</table>

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ
Изучение дисциплины «Теория автомобиля» предполагает запоминание теоретического материала, анализ полученной информации, формирует умения и навыки, являющиеся основой для изучения последующих дисциплин и практической деятельности бакалавра специальности 23.03.03 - Эксплуатация транспортно-технологических машин и комплексов.
Для реализации компетентностного подхода в учебный процесс интегрированы активные и интерактивные формы проведения занятий. Основные виды занятий по дисциплине:
- чтение лекций с использованием активных и интерактивных методов (разбор конкретных ситуаций, обсуждение проблемных вопросов по теме, демонстрация слайдов и учебных фильмов и т.д.);
- практические занятия с использованием работы в группах, учебных дискуссий и т.п. формируют навыки расчетной деятельности и способности работать в коллективе;
- выполнение курсовой работы предполагает формирование навыков самостоятельной работы и закрепление способностей по выполнению расчетных работ и оформлению документации;

- самостоятельная работа студентов (СРС) заключается в выполнении разнообразных учебных и исследовательских заданий с целью закрепления знаний, приобретения умений и навыков самостоятельной и коллективной деятельности и выработки системы поведения. СРС предусматривает работу с учебной литературой, Интернет-ресурсами.

В курсовой работе студенты на основании индивидуальных исходных данных выполняют расчет по одному из вариантов:
1. Расчет тягово-скоростных характеристик существующего автомобиля;
2. Проектировочный тяговый расчет автомобиля;
3. Расчет параметров эффективности торможения автомобиля.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИН И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для текущего контроля успеваемости по дисциплине «Теория автомобиля» применяется рейтинг-контроль, проводимый на шестом, девятнадцатом и восемнадцатой неделях семестра. Промежуточная аттестация проводится в форме экзамена.

Перечень вопросов к рейтинг-контролю

Рейтинг-контроль № 1
1. Потери энергии в колесном движителе.
2. Сила сопротивления качению. Коэффициент сопротивления качению.
3. Факторы, влияющие на коэффициент сопротивления качению.
4. Коэффициент сцепления.
5. Силы в пятне контакта колеса с дорогой, реализующие по условиям сцепления.
6. Факторы, влияющие на коэффициент сцепления.
7. Внешние силы и моменты, действующие на автомобиль при движении.
8. Нормальные реакции, действующие в пятне контакта колес с дорогой.
9. Определение координат центра масс.
10. Внутренние силы и моменты. Потери мощности в силовой установке.
11. Потери мощности в агрегатах трансмиссии. КПД трансмиссии.
12. Уравнение динамики прямолинейного движения автомобиля.
13. Вывод уравнения мощностного баланса.
14. Тягово-скоростные свойства автомобиля.
15. Тяговая и динамическая характеристики автомобиля.
16. Определение пути и времени разгона.
17. Влияние конструктивных и эксплуатационных факторов на тягово-скоростные свойства шины.

Рейтинг-контроль № 2
1. Цели, задачи и последовательность проверочного тягового расчета автомобиля.
2. Особенности тягового расчета автомобилей с механической, гидромеханической и электрической трансмиссиями.
3. Выбор шин и определение статического радиуса колеса.
4. Построение теоретической внешней скоростной характеристики двигателя.
5. Определение максимальной мощности в тяговом расчете.
6. Выбор передаточных чисел трансмиссии.
7. Построение тягово-скоростной характеристики автомобиля.
8. Построение мощностной характеристики автомобиля.
9. Построение динамической характеристики автомобиля и определение ускорений при разгоне.
10. Расчет времени и пути разгона автомобиля.
11. Топливная экономичность автомобилей. Основные определения.
12. Топливная характеристика при установившемся движении.
13. Экспериментальное определение топливной характеристики.
14. Расчет удельного расхода топлива. Расход топлива на различных передачах.
15. Влияние конструктивных и эксплуатационных факторов на топливную экономическость автомобиля.
16. Тормозные свойства автомобиля. Основные показатели тормозных свойств.
17. Общие сведения о торможении. Тормозные силы.
18. Показатели тормозных свойств автомобилей: нормативы и методы определения.
19. Тормозная диаграмма и тормозной путь автомобиля.
20. Распределение тормозных сил по осям автомобиля.

Рейтинг-контроль № 3
1. Поворачиваемость автомобиля. Кинематика поворота двухосного автомобиля с передними управляемыми колесами.
2. Кинематика поворота автомобиля с учетом бокового увода шин.
3. Устойчивость автомобиля. Показатели устойчивости.
4. Устойчивость при прямолинейном движении автомобиля.
5. Устойчивость автомобиля при движении по радиусу.
6. Устойчивость автомобиля на косогоре.
7. Управляемость автомобиля. Показатели управляемости.
8. Колебания управляемых колес. Обеспечение стабилизации управляемых колес.
9. Углы установки колес автомобиля.
10. Плавность хода автомобиля. Параметры плавности хода.
11. Критерии оценки плавности хода.
12. Моменты инерции автомобиля и их связь с параметрами плавности хода и устойчивости.
13. Виды колебаний кузова (рамы) и отдельных частей автомобиля.
14. Собственные и вынужденные колебания. Влияние колебаний на организм человека.
15. Экспериментальное определение моментов инерции автомобиля и его составных частей.
16. Определение понятия «проходимость» автомобиля. Оценочные показатели проходимости.
17. Профильная (геометрическая) проходимость автомобиля.
18. Тягово-сцепная проходимость автомобиля.
19. Мероприятия для повышения проходимости транспортных средств.

Экзаменационные вопросы
1. Основные параметры автомобиля.
2. Внешняя скоростная характеристика ДВС и её влияние на эксплуатационные свойства современных автотранспортных средств.
3. Построение внешней скоростной характеристики бензинового двигателя.
4. Построение внешней скоростной характеристики дизельного двигателя.
5. Радиусы качения колеса
6. Координаты центра масс автомобиля. Влияние центра масс на эксплуатационные свойства автомобиля.
7. Экспериментальное определение координат центра масс автомобиля.
8. КПД трансмиссии и его влияние на топливную экономическость автомобиля.
9. Моменты инерции автомобиля относительно осей X, Y, Z и их влияние на эксплуатационные свойства.
10. Методы определения моментов инерции автомобиля и его частей.
11. Динамика колеса в ведущем режиме.
12. Динамика колеса в ведомом режиме. КПД ведущего колеса.
13. Коэффициент сопротивления качению автомобильной шины. Факторы, влияющие на сопротивление качению.
14. Определение коэффициента сопротивления качению методом «выбега» дорожными испытаниями.
15. Понятие о коэффициенте сцепления шины с дорогой. Влияние коэффициента сцепления на безопасность дорожного движения.
16. Факторы, влияющие на коэффициент сцепления шины с дорогой.
17. Методы определения коэффициента сцепления в стендах с дорожных условиях.
18. Силы сопротивления качению, действующие на автомобиль в общем случае движения.
19. Аэродинамика автомобиля. Понятие о коэффициенте аэродинамического сопротивления (Сx).
20. Определение Сx в аэродинамической трубе и дорожными испытаниями. Методы снижения Сx в условиях эксплуатации.
21. Реакции, действующие на колеса автомобиля в общем случае движения в продольном и поперечном направлениях.
22. Тягово-скоростные и динамические качества автомобиля. Вывод уравнения силового баланса. Графическая интерпретация уравнения.
23. Уравнение мощностного баланса.
24. Расчет параметров разгона автомобиля.
25. Методика построения топливо-экономической характеристики автомобиля.
26. Топливная экономичность автомобиля. Методы снижения расхода топлива в условиях эксплуатации.
27. Исследование тягово-скоростных и динамических качеств автомобиля по результатам тягового расчета. Параметры для сравнения.
28. Проходимость автомобиля. Определение по ГОСТ. Классификация автомобилей по проходимости. Критерии оценки.
29. Проходимость автомобилей классической компоновки. Проходимость переднеприводных автомобилей. Проходимость полноприводных автомобилей.
30. Преодоление максимальных углов подъёма по условиям буксования и опрокидывания. Сравнительная оценка проходимости по конструктивным параметрам автомобилей.
31. Управляемость. Определения по ГОСТ. Оценочные показатели и методы экспериментального определения параметров управляемости.
32. Силы, действующие на автомобиль при повороте.
33. Расчетный метод определения параметров движения на повороте.
34. Устойчивость. Определения. Оценочные показатели.
35. Поперечная устойчивость. Коэффициент поперечной устойчивости.
36. Плавность хода. Определения. Оценочные показатели и нормы.
37. Автомобиль как колебательная система. Упрягая и амплитудно-частотная характеристики подвески.
38. Свободные колебания подрессоренной массы без учета затухания.
39. Свободные колебания с учетом затухания. Вынужденные колебания.
40. Особенности экспериментального определения показателей плавности хода.
41. Увод автомобильного колеса. Кинематика поворота автомобиля без учета и с учетом углов увода.
42. Управляемость. Определения. Требования к управляемости. Методы оценки управляемости.

Вопросы и задания для самостоятельной работы студентов
1. Изучить классификацию автомобильных шин и их маркировку.
2. Изучить эксплуатационные факторы, влияющие на топливную экономичность автомобиля.
3. Найти силу, необходимую для удержания автомобиля массой 1500 кг на уклоне в 30°. Чему должен быть равен коэффициент сцепления колес с дорогой.
4. Определить коэффициент суммарного дорожного сопротивления, если коэффициент сопротивления качению равен 0,01, а угол подъема составляет 10°.
5. Построить кривые идеальных тормозных сил на оси амортизаторной коробки для коэффициента торможения от 0,1 до 0,8. Параметры автомобиля принять на основании данных лабораторной работы по определению координат центра масс.
6. Выполнить расчетный анализ тягово-цепных свойств автомобилей с задним, передним и полным приводом при движении на подъем. Принять, что все параметры автомобилей одинаковы.
7. Исследовать влияние количества передач на приемистость автомобиля и его разгонную динамику.
8. Расчетным методом оценить как влияет распределение момента между мостами полноприводного автомобиля на его проходимость.
9. Изучить влияние эксплуатационных факторов на углы увода автомобильных шин при повороте.
10. В чем отличие свойств: маневренность, управляемость и поворачиваемость?
11. Изучить способы регулирования тормозных сил.
12. С помощью каких средств электронные системы повышают безопасность автомобиля при торможении, при маневрировании, при движении на вираже?
13. Построить расчетную топливно-экономическую характеристику автомобиля (по указанию преподавателя).
14. Рассчитать максимально-допустимую скорость движения легкового автомобиля по кривой радиусом 50 м при коэффициентах сцепления 0,25; 0,50 и 0,75.
15. Что происходит раньше засос или опрокидывание для автомобиля, имеющего высоту центра масс 1,5 м и колеи 1,4 м, на кривой радиусом 40 м и коэффициентом сцепления колес с дорогой 0,7.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МЮДУЛЯ)

а) основная литература:
1. Теория эксплуатационных свойств автомобиля: Учебное пособие / Н.А. Кузьмин, В.И. Песков. - М.: Форум: НИЦ Инфра-М, 2013. - 256 с.: - (Высшее образование: Ба-

Б) дополнительная литература:

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

В качестве материально-технического обеспечения дисциплины используются:
1. оборудование лаборатории 104-4: измерительный комплекс на базе тензостанции A-17-T8, комплект весов ВА-15с-1, стенд тормозной СТС-10у-СП-11П, измеритель эффективности тормозных систем «Эффект»-02.01, динамический тестер-измеритель мощности Reiner-3000, специализированные лабораторные стенды;
2. Иллюстративный и текстовый раздаточный материал в электронном виде;
3. Плакаты;
4. Презентатор с мультимедиа технологиями;
5. Комплект слайдов.
Рабочая программа дисциплины «Теория автомобиля» составлена в соответствии с требованиями ФГОС ВО №1470 от 14.12.15 г. и учебного плана подготовки бакалавров по направлению 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» по программе (профилю) подготовки «Автомобильный сервис»

Рабочую программу составил Нуждин Р.В.
(ФИО, подпись)

Рецензент
(представитель работодателя) директор филиала ООО "ТД "Русэлпром" г. Владимир
Алексин Дмитрий Борисович
(место работы, должность, ФИО, подпись)

Программа рассмотрена и одобрена на заседании кафедры «Автомобильный транспорт»
Протокол № 7 от 22.01.2016 года

Заведующий кафедрой А.Г. Кириллов
(подпись)

Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов»
Протокол № 18 от 26.01.2016 года

Председатель комиссии А.Г. Кириллов
(подпись)
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ
РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)
«ТЕОРИЯ АВТОМОБИЛЯ»

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________

Рабочая программа одобрена на ___________ учебный год
Протокол заседания кафедры № ______ от ________ года
Заведующий кафедрой __________________________