Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра ТФи КМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по дисциплине

Физико-химия металлов и неметаллических материалов

Направление подготовки 22.03.01 «Материаловедение и технологии

материалов»

Квалификация(степень) выпуска бакалавр

Форма обучения очная

Составитель

Д.т.н., профессор Христофоров А.И

Данные методические указания включают рекомендации по содержанию и выполнению практических занятий по дисциплине «Неметаллические и аморфные материалы» для студентов направления 22.03.01 «Материаловедение и технологии материалов» ВлГУ.

Методические указания составлены на основе требований ФГОС ВО и ОПОП направления 22.03.01 «Материаловедение и технологии материалов» ВлГУ, рабочей программы дисциплины «Физико-химия металлов и неметаллических материалов » Составитель д.т.н. ,профессор Христофоров А.И. - Владимир : 2019., 85 с.

Рассмотрены и одобрены на заседании УМК направления 22.03.01 «Материаловедение и технологии материалов» Протокол № 8 от 7.05. 2019 г.

Рукописный фонд кафедры ТФиКМ ВлГУ

Практические занятия

Практические занятия являются формой групповой аудиторной работы в небольших группах для освоения теоретических навыков с целью формирования основных общекультурных и профессиональных компетенций, необходимых для освоения основной образовательной программы (ПК- 4, 5, 1 1). Содержание практических занятий представлено в таблице Таблица. Содержание практических занятий

Наименование и содержание практических занятий		
Практическое занятие 1. Параметры состояния идеального газа	4	
Практическое занятие 2 Идеальный газ. Закон Бойля	7	
Примеры задач и варианты для их решения		
Практическое занятие 3 Идеальный газ. Закон Гей-Люссака для смеси иде-	10	
альных газов. Примеры задач и их решения		
Практическое занятие 4 Идеальный газ. Уравнение Менделеева-Клапейрона	13	
Примеры задач и их решения		
Практическое занятие 5. Решение задач для идеального газа с использовани-	17	
ем уравнения Менделеева-Клапейрона		
<i>Практическое занятие 6</i> Закон Авогадро. Решение задач	21	
Практическое занятие 7 Основные законы для смеси идеальных газов	25	
<i>Практическое занятие 8</i> Определения и математические формулы	32	
для влажного воздуха и пара		
Практическое занятие 9 Уравнение состояния реальных газов	38	
<i>Практическое занятие 10</i> Решение задач смеси реальных газов	44	
Практическое занятие 11 Работа изотермического процесса	49	
<i>Практическое занятие 12</i> Работа изобарического процесса	54	
Практическое занятие 13 Работа изохорного процесса	58	
Практическое занятие 14 Второй закон термодинамики. Вычисление изменения термодинамических функций	61	
Практическое занятие 15 Третий закон термодинамики Работа адиабатического и политропического процесса	66	
Практическое занятие 16 Значение третьего закона термодинамики для рас-	71	
четов равновесий.		
<i>Практическое занятие 17</i> Термодинамика растворов металлов	75	
Практическое занятие 18 Методы определения термодинамической активно-	78	
сти		
Приложение 1. Титульный лист	83	
Приложение 2. Библиографический список	84	

Оформления отчета по практическим занятиям

- 1. Титульный лист
- 2. Текст теоретической и расчетной частей (в отчет впечатываются только часть таблицы с вариантами заданий конкретного студента и их решение). В обязательном порядке требуется их решение и решение некоторых задач примеров при защите работы.
- 3. Односторонняя печать, формат А4, шрифт 14 пт, расстояние между строками 1 интервал

Практическое занятие 1. Параметры состояния идеального газа

1. Термодинамические параметры идеального газа Состояние газа отражают средние величины, основные параметры : температура, удельный объем, давление

<u>Температура</u> - это среднекинетическая энергия движения газа. Для ее определения применяют 2 шкалы: термодинамическую и международную практическую. Для каждой шкалы она выражается либо по абсолютной шкале (K), либо по шкале (0 C). <u>Термодинамическая</u> шкала имеет одну точно воспроизводимую экспериментальную тройную точку воды (в этой точке твердая, жидкая и газообразная фазы находятся в равновесии) что соответствует 273.16 К или 0,01 0 C. Второй точкой служит абсолютный нуль. <u>Термодинамическая абсолютная температура</u> обозначается T, а термодинамическая температура в 0 C –t. T -t = 273,16 - 0.01= 273.15; T = t + 273.15

Международная практическая температура основана на шести постоянных и экспериментально воспроизводимых температурах фазового равновесия. Она экспериментально наиболее точно воспроизводит термодинамическую шкалу, но на практике разницу между ними из-за предельно малых погрешностей определения не учитывают и обозначения по обеим шкалам принимают одинаковое.

<u>Удельный объем</u> v - объем занимаемый 1 кг газа (для каждой температуры свой!) ${\rm m}^3/{\rm kr}$. Плотность ${\rm p}=m/v$

<u>Давление</u> - средний результат ударов молекул газа о стенки сосуда, в котором он находится. Обозначается p ($H/m^2 = \Pi a$), $M\Pi a = 10^6\Pi a$ ($\cong 10 \text{ kr/ cm}^2$), $\kappa\Pi a = 10^3\Pi a$. Атмосферное давление называется барометрическим и при t = 0 °C и $g = 9.81 \text{ m/c}^2$ оно равно 0,1 МПа = 750 мм рт. ст. и называется бар. Если в сосуде давление больше барометрического то он находится под давлением, если меньше - под вакуумом. Манометрами измеряют избыточное (сосуд под давлением) или недостаточное (сосуд под вакуумом) давление. Физическая атмосфера = 760 мм рт. ст., (t = 0 °C и $g = 9.81 \text{ m/c}^2$). Нормальными условиями называют состояние газа при t = 0 °C, p = 1 физ. атм. = 760 мм рт. ст. = 0,1013 МПа, и $g = 9.81 \text{ m/c}^2$

Уравнения состояния идеального газа По молекулярно- кинетической теории газов

$$p=rac{2}{3}nrac{mw^{-2}}{2}$$
 [1.2] где n - число молекул, заключенных в единице объема, m- масса молекулы, w - среднеквадратичная скорость молекулы. Умножая обе части уравнения на заданный объем газа V , m^3 , получим $pV=rac{2}{3}Nrac{mw^{-2}}{2}$ [1.3] где $N=nV$ число молекул в заданном

объеме газа V. Поскольку величина $\frac{mw^2}{2}$ связана с температурой по зависимости

$$\frac{mw^{-2}}{2} = aT$$
 (а - коэффициент пропорциональности), то уравнение [1.3] примет

вид
$$pV=rac{2}{3}\,NaT\,$$
 [1.4]. Если величины N,V и T постоянны , $a=const$, то $pV=const$. При

постоянном давлении V/T = const

Для одного кг газа $v/T=1/\rho T=const$, $\rho T=const$, если газ имеет постоянный объем , то p/T=const. Все эти уравнения представляют собой математическое описание законов Бойля - Мариотта, Гей-Люссака, Шарля. Из уравнения [1.4] выходит, что для всех газов при одинаковых p,V,T число молекул N одинаково. Это положение соответствует закону Авагадро. Из него следует, что плотности газов при одинаковых p,T пропорциональны их молекулярным массам μ , т.е. $\mu_1/\rho_1=\mu_2/\rho_2$, $\mu_1/v_I=\mu_2/v_2$. Произведение μv - объем одного моля газа. При нормальных физических условиях объем 1 кмоля газа равен 22,4 м 3 . Плотность любого газа при нормальных условиях $\rho=\mu/22,4$ кг/м 3

Уравнение состояния газа умножая уравнение [1.4] на μ имеем $p\mu V$ =(2/3) $N\alpha\mu T$ [1.5], т.к $\mu v = idem$, то при одинаковых физических условиях в объеме 1 моля газа содержится одинаковое количество молекул N_{μ} , которое носит название числа Авагадро.

Обозначим $(2/3)N\alpha = R$, эта величина не зависит от состояния газа и носит название газовой постоянной. Поскольку N - число молекул в 1кг, то R относится к 1 кг газа. Подставив R в уравнение [1.4] получим $p\mu v =$

 $=R\mu T$ или $p\mu\nu/T=R\mu$ [1.6] (уравнение Менделеева- Клапейрона). $R\mu$ относится к 1 молю любого газа и определяется 0,1013 · 10^6 (Па) · 1 · 22,4 (м³)/ 273,15(К) =8314 Дж /(кмоль · К) , где p=0,1013 · 10^6 Па - это физическая атм. $R\mu$ носит название универсальной газовой постоянной и равно 8314 Дж /(кмоль · К)/ Для одного 1 газа $p\nu=RT$ [1.7] - уравнение Клапейрона. Величина $R=8314/\mu$ - газовая постоянная для конкретного газа.

Если уравнение [1.7] умножить на массу M то получим уравнение состояния для M кг газа pvM=MRT или pV=MRT [1.8]

Все эти уравнения носят названия характеристических (термических) уравнений состояния газа, отражают равновесное состояние газа при конкретных $p_1 \ V_1 \ T_1$.

Термическим уравнением состояния идеального газа является уравнение Менделеева-Клапейрона для 1 кг рабочего тела pv=RT [1.7], или p=pRT[1.9], для m кг рабочего тела pV=mRT [1.10], для 1 кмоля $pV_{\mu} = R_{\mu} T$ [1.11], в этих уравнениях R = Дж/(кг·K) и $R_{\mu} = 8314 \text{ Дж/(кмоль·K)}$ удельная и универсальная газовые постоянные.

 $R=R_{\mu}/M$ [1.12], где M - молярная масса идеального газа , V_{μ} =22,4 м 3 /кмоль – молярный объем идеального газа при нормальных условиях.

Если количество газа выражать в килограммах m и использовать универсальную газовую постоянную R_{μ} , то уравнение Менделеева- Клапейрона примет вид $PV = mR_{\mu} T/M$, откуда $m = M \, PV / R_{\mu} \, T = 22,4 \rho_0 \, PV / R_{\mu} \, T \, [1.13]$

Для смеси реальных газов на основании кинетической теории установлено следую-

щее уравнение:
$$pv = RT \left[1 - \sum_{v=1}^{v=n} \frac{v}{v+1} \frac{B_v}{v^v} \right]$$
 [1.14], где B_v и v^v – вириальные

коэффициенты для газов, зависящие от их температуры; v- удельный объем газа, входящего в смесь.

Вопросы для защиты:

- 1. Температура
- 2. Термодинамическая шкала
- 3. Термодинамическая абсолютная температура
- 4. Международная практическая температура
- 5. Удельный объем у
- 6. Давление
- 7. Нормальные условия состояние газа
- 8. Молекулярно- кинетической теории газов
- 9. математическое описание законов Бойля Мариотта,
- 10. Гей-Люссака,
- 11. Шарля.
- 12. Уравнение Клапейрона
- 13. Универсальная газовая постоянная
- 14. Уравнение Менделеева- Клапейрона 1 моля любого газа
- 15. Уравнение Менделеева- Клапейрона к т любого газа
- 16. Уравнение смеси реальных газов
- 17. Мольный объем

Практическое занятие 2 Идеальный газ. Закон Бойля . Примеры задач и варианты для их решения

Теоретическая часть

Пример 1.1. В баллоне находится 10 кг азота при давлении 10 МПа. Когда часть азота была использована для работы, давление понизилось до 8 МПа. Какое количество азота осталось в баллоне, если температура азота во время отбора не изменилась?

Решение. Объем азота до и после отбора остался прежним. Согласно уравнению [1.13] $V=m_1~R_{\mu}~T_1/MP_1=m_2~R_{\mu}~T_2/MP_2~$ или $m_1/P_1=m_2/P_2$

Подставляя в последнее выражение величины, получим

 $m_2 = m_1 P_2 / P_1 = 10.8 / 10 = 8$ кг. В баллоне осталось 8 кг азота

Пример1.2 . В баллоне емкостью $40 \cdot 10^{-3} \text{ м}^3$ находится азот при давлении 13 МПа. При проведении экспериментальных исследований на один замер используется в среднем $0.25 \cdot 10^{-3} \text{ м}^3$ азота при усредненном давлении 0.2 МПа. На сколько замеров хватит азота при условии: остаточное давление в баллоне 0.5 МПа, испытания проводятся при постоянной температуре .

Решение. Если x – количество замеров, V_I – объем одного замера, то количество азота, необходимые на все замеры равно

$$xn_1 = xP_1V_1/RT_1 = (x 0.2 0.25 10^{-3})/RT_1$$
 моль N_2

по окончании последнего замера в баллоне останется $40 \cdot 10^{-3} \text{м}^3$ азота при давлении $0,5 \text{ М}\Pi a$, что составит

$$n_2 = P_1 V_2 / RT_1$$
 моль N_2

Количество азота, использованного на проведение испытаний, составило

$$n_3 = P_2 V_2 / RT_1$$
 моль N_2

По условию задачи мы имеем

$$xn_1+n_2=n_3$$
 или $n_3=xP_1V_1/RT_1+P_1V_2/RT_1=P_2V_2/RT_1$

Из этого уравнения мы получим

$$x = (P_2 - P_1) \ V_2 / \ P_1 V_1$$
; подставив цифровые значения получим
$$\mathbf{x} = (13 - 0.5) \ 40^{\cdot} \ 10^{\cdot 3} \ / (0.2^{\cdot} \ 0.25 \cdot 10^{\cdot 3}) = 10000$$

Азота хватит на 10000 замеров.

Закон Бойля

При постоянной температуре объем (V) данного количества газа обратно пропорционален давлению (P) PV = const, или, что то же

$$P_1 V_1 = P_2 V_2$$
; $P_1/P_2 = V_2/V_1$ [1.15]

Например, если газ при давлении 300 $\kappa H/M^2$ (Pi), занимает объем 50 M^3 (V_I), то при 1000 $\kappa H/M^2$ (P_2) и той же температуре он займет объем (V_2) $V_2 = (P_1 V_1)/P_2 = (300 \ \kappa H/M^2 \cdot 50 \ M^2)$ / 1000 $\kappa H/M^2 = 15 \ M^3$

Задание 1.1: а) Определить V_2 при известных P_2 , P_1 , V_1 ; б) Определить P_2 при известных V_2 , P_1 , V_1

 $\it Taблица~1.1$ Варианты задания $1.1*^{)}$

Вариант	a)		б)			
	P_1 , к Πa	V_1 , M^3	<i>P</i> ₂ , кПа	V ₂ , м ³	P_1 , к Πa	V_{I} , M^{3}
1	300	20	800	70	900	20
2	200	30	900	80	400	30
3	400	40	400	90	500	40
4	600	50	500	100	300	50
5	700	60	300	120	200	60
6	800	70	200	140	300	70
7	900	80	300	150	200	80
8	400	90	200	20	400	90
9	500	70	400	30	600	70
10	300	80	600	40	700	80
11	200	90	700	50	800	90
12	400	100	800	60	300	120
13	600	120	300	70	200	140
14	700	140	200	80	400	150
15	800	150	400	90	600	70
16	900	70	600	100	700	80
17	400	80	700	120	800	90
18	500	90	800	140	300	100
19	400	100	300	150	200	120
20	500	120	200	20	600	30
21	900	90	300	120	400	80
22	400	100	200	30	500	90
23	500	120	300	40	300	120
24	300	140	200	100	200	140
25	200	150	400	120	300	150

Продолжение табл.1.1

Вариант	Вариант а) б)		a)			
	P_1 , к Πa	V_{I} , M^{3}	<i>P</i> ₂ , кПа	V_2 , M^3	P_{l} , к Πa	V_1 , M^3
26	400	70	600	140	200	70
27	600	80	700	150	400	80
28	700	90	800	20	600	90
29	800	100	300	30	700	100
30	900	120	200	40	800	120
32	400	60	700	50	300	150
33	400	70	600	60	200	20
34	500	80	200	80	400	180
35	400	120	400	150	300	30
36	600	140	600	20	200	80
37	700	150	700	30	400	90
38	800	70	800	40	600	120
39	900	80	300	50	700	140
40	200	90	200	60	800	160

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

Контрольные вопросы:

- 1. Идеальный газ. Закон Бойля
- 2. Решение задач по заданию преподавателя

Практическое занятие 3

Идеальный газ. Закон Гей-Люссака для смеси идеальных газов Примеры задач и их решения

Теоретическая часть

Закон Гей-Люссака

Этот закон выражает зависимость между объемом и температурой идеального газа при постоянном давлении, а также между температурой и давлением этого газа при постоянном объеме.

Если давление газа остается постоянным, то при повышении температуры на 1 град объем его увеличивается приблизительно на $1/273~(0,00367)^*$ часть того объема (V_0) , который то же количество газа занимает при 0° С.

Отсюда следует, что если V_0 м³ (или дм³, см³) газа нагреть от 0° до t °C, то объем его (V) при этой температуре определится

$$V = V_0 + (V_0 \cdot t)/273 = V_0 (1 + t/273) = V_0 (1 + 0.00367t)$$
 [1.16]

откуда:

$$V = V_0 \cdot (273 + t)/273 = (V_0 \cdot T)/273$$
 [1.17]

Из уравнения [1.17] следует заключение, что объемы, занимаемые данной массой газа, при постоянном давлении относятся как их абсолютные температуры

$$(V_1/V_2) = (T_1/T_2)^{*}$$
 [1.18]

*) Реальные газы при больших давлениях отклоняются от этого закона. Но для технических расчетов коэффициент расширение 0,00367 без заметной ошибки можно принимать постоянным для любого газа.

В случае постоянства объема газа закон Гей-Люссака принимает следующую формулировку: давления данной массы газа при постоянном объеме пропорциональны абсолютной температуре этого газа.

$$P_1 / P_2 = (T_1 / T_2)$$
 [1.19]

Решая совместно уравнения [1.15] и [1.16], получим

$$(P_1 V_1)/T_1 = (P_2 V_2)/T_2$$
 [1.20]

При совместном решении уравнений [1.17] и [1.20] получаем очень часто применяемую в технических расчетах формулу для приведении объема газов к нормальным условиям (0° C и $101,3\cdot10^{3}$ H/м²; точнее, $101,325\cdot10^{3}$ H/м².

$$V_0 = (VP) / [101,3(1+0,00367t) \cdot 10^3] = (VP) / [101,3+0,372t) \cdot 10^3]$$
 [1.21]
$$V_0 = 2,7 \cdot 10^{-3} (VP) / T$$
 [1.22]

где P должно быть выражено в H/м, а 2,7 • 10^{-3} имеет размерность (H/м² град)⁻¹, точнее $2,67\cdot10^{-3}$.

 Π р и м е ч а н и е . В лабораторной практике давление иногда измеряется в атмосферах $(P_{\rm aбc},\, \kappa\Gamma/{\rm M}^2)$ и мм рт.ст $(P_{\rm mMHg})$ В этом случае уравнение [1.2219] (8) примет вид $V_0=273 V P_{aбc}\,/\, T=0.36 V P_{\rm \scriptscriptstyle MM\,Hg}\,/\, T \qquad [1.23]$

Пример 1.3. Имеется 10 м³ газа при давлении 200,0 кH/м² (200,0·10³ H/м²) и температуре 27°C (T = 300 K). Вычислить объем газа: а) при нормальных условиях; б) при P = 500 кH/м² и t = 127°C

Решение, а) Пользуясь уравнением [1.22], получим объем газа при нормальных условиях.

 $V_0 = 2.7 \cdot 10^{-3} \cdot 10 \cdot 200, 0 \cdot 10^3 / 300 = 18 \text{ m}^3$

б) При $P = 500 \ {\rm \kappa H/m}^2$ и $t = 120 {\rm ^{\circ}C}$ из [1.22] получим

$$V = V_0 T/(2,7.10^{-3}P) = 18.400/2,7.10^{-3}.500,0.10^3 = 5,33 \text{ m}^3$$

Задание 1.2 Вычислить объем газа, имеющего параметры P_1 , V_1 , t_1 , в сухом состоянии: а) при нормальных условиях б) при давлении P_2 и температуре t_2 .

 $ag{Taблица 3.1}$ Варианты задания 3.1 $^{*)}$

Вариант	<i>P</i> ₁ , кПа	V_1 , M^3	<i>t</i> ₁ , кПа	<i>t</i> ₂ , ⁰ C	<i>P</i> ₂ , кПа
1	400	40	8	48	300
2	600	50	9	56	200
3	700	60	10	58	400
4	800	70	12	60	600
5	900	80	14	62	700
6	400	90	16	64	800
7	500	70	18	68	900
8	300	80	20	72	400
9	200	90	22	74	500
10	400	100	24	76	300
11	600	120	26	78	200
12	700	140	28	92	400
13	800	150	30	8	600
14	900	70	32	9	700
15	400	80	34	10	800

Продолжение табл. 3.1

Вариант	<i>P</i> ₁ , кПа	V_1 , M^3	<i>t</i> ₁ , кПа	t_2 , 0 C	<i>P</i> ₂ , кПа
16	500	90	36	12	900
17	400	100	38	14	400
18	500	120	40	16	500
19	300	70	42	18	400
20	200	80	44	20	500
21	400	90	46	22	900
22	600	100	48	24	400
23	700	120	56	26	500
24	800	140	58	28	300
25	900	150	60	30	200
26	400	70	62	9	600
27	500	80	64	10	600
28	300	90	68	12	700
29	200	100	72	14	800
30	400	70	74	16	900
32	600	80	76	18	400
33	700	90	78	20	500
34	800	70	92	22	400
35	500	90	48	16	500
36	300	100	56	18	900
37	200	70	58	20	400
38	800	40	8	48	300
39	900	50	9	56	200
40	400	80	60	22	500

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

Контрольные вопросы:

- 1. Идеальный газ. Закон Гей-Люссака для смеси идеальных газов
- 2. Решение задач по заданию преподавателя

Практическое занятие 4 Идеальный газ. Уравнение Менделеева-Клапейрона.

Примеры задач и их решения

Теоретическая часть

Математическое обобщение законов Бойля и Гей-Люссака приводит к уравнению, связывающему объем газа с его температурой и давлением (уравнение Менделеева-Клапейрона) и характеризующего полное состояние газа. Для 1 моль газа PV=RT [1.24]; для n моль газа PV=nRT [1.25]; для m гр. или кг газа уравнение примет вид PV=(mRT)/M [1.26]. откуда m=MPV/(RT) [1.27] или $m=(22,4\cdot\rho_0\ PV)\ /\ (RT)$ [1.28]. Молекулярная масса определяется из уравнения $M=(mRT)/\ (PV)$ [1.29]

m- количество газа (кг); R- универсальная газовая постоянная (величина для всех газов постоянная 8314,4 Дж/кмоль·град = 8,3144 Дж/моль·град = 8,3144 кДж/кмоль·град = $8,32\cdot10^7$ эрг/моль·град = 1,985 кал/моль·град = 0,848 кГм/моль·град = 0,848 кГм/кмоль·град = 0,0821 дм³·ат/моль·град = 0,0821м³·ат/моль·град = 0,0821м³·ат/моль·град); T- температура газа, K; M- молекулярная масса (кг/кмоль); ρ_0 – плотность газа при нормальных условиях.

$$\rho_0 = (M P_0 V_0) / RT_0 = (M \cdot 101, 3 \cdot 10^3 V_0) R \cdot 273$$
 [1.30]

плотность при других температурах, объемах и давлении

$$\rho = (M P V)/RT = (273 M P)/22.4 \text{ m}^3 \cdot 101.3 \cdot 10^3 \cdot T = (0.12 \cdot 10^{-3} MP)/T \text{ (kg/m}^3) [1.31]$$

Если газ находится в состоянии термической диссоциации, то в уравнение Менделеева –Клапейрона вводится поправка- изотонический коэффициент $i = n'/n = [1 + \alpha \ (m-1)]$ [1.32]

n'- число молей газа после диссоциации; n- число молей газа до диссоциации; α - степень диссоциации газа; m- число частиц, на которое распадается 1 молекула исходного газа.

С учетом поправки уравнение Менделеева -Клапейрона примет вид

$$PV = inRT = [1 + \alpha (m-1)] nRT$$
 [1.33]

Пользуясь этим уравнением можно подсчитать степень диссоциации газа

Пример 1.1. Сколько содержится азота (по массе) в 50 м³ его при давлении 500 кн/м² и температуре 127°С (T= 400K).

Решение. Пользуясь уравнением [1.26], имеем

$$m = (28.500 \cdot 10^3.50) / (8314,4.400) = 212 \text{ KG}$$

Пример 1.2. Какой объем займут 560 г азота при давлении 104 кH/m^2 и температуре минус 43°C ?

Решение. Подставляя в уравнение [1.29] заданные величины ($P = 104 \text{ кH/м}^2, m = 0,560 \text{ кг}, T = 273 + 43 = 230 \text{K}, M = 28 \text{ кг/кмоль},$

 $R = 8314,4 \, \text{Дж/кмоль·град}), получим$

$$V = (0.56.8314.4.230) / (28.104.10^3) = 368 \text{ m}^3$$

Пример 1.3. $0,756\ \Gamma\ H_2O$ при $2500^{\circ}C$ и нормальном давлении, частично диссоциируя, занимают объем $9,76\ дм^3$. Вычислить степень диссоциаций H_2O при указанной температуре.

Решение. 1 моль водяных паров образует 1,5 моль продуктов диссоциации ($H_2O = H_2 + 0,5O_2$). Следовательно, величина m в уравнении [1.33] равна 1,5. Исходя из условий задачи, определяем n

$$n = 0.576 / 18 = 0.042$$
 моль H_2O

Подставляем в уравнение [1.33] величины m =1,5, n = 0,042 m оль, P = 101,3 • 10 3 н/м 2 , V = 0,00976 м 3 , R = 8,3144 дж/моль·град, T = 2773 K и решая его в отношении α , получим 101,3 ·10 3 ·0.00976 = [1 + α (1,5 - 1)] 0.042 · 8,3144·2773

Отсюда $\alpha = 0.0424$.

Пример 1.4. Найти плотность воздуха при 315° C (T=588K) и 0,45 MH/м², если плотность его при 0° C и нормальном давлении равна 1,2928 кг/м³.

Решение. Подставляя цифровые величины в уравнение [1.30], получим

$$\rho = (\ 2.7 \cdot 10^{-3} \cdot\ 1.2928 \cdot\ 0.45 \cdot 10^6)/\ 588 = 2.67\ \text{kg/m}^3$$

<u>Задание 1.3</u> В газгольдере при давлении P к $H/м^2$ и температуре T°C (T= град.К) газ занимает объем V м 3 . Вычислить по плотности, удельному объему и по уравнению Менделеева-Клапейрона массу газа при нормальных условиях (101,3 к $H/м^3$; 0°C).

Таблица 4.1.

Варианты задания 4.1

Вариант	Газ	Р кН/м ²	T °C	V м ³
1	водород	100	20	150
2	кислород	110	30	200
3	азот	120	40	250
4	аммиак	130	50	300
5	двуокись углерода	160	60	350
6	метан	170	20	400

Продолжение табл.4.1

Вариант	Газ	Р кН/м ²	T °C	V M ³
7	этан	180	30	450
8	пропан	200	40	500
9	гелий	210	50	550
10	бутан	200	60	600
11	водород	210	20	650
12	кислород	220	30	700
13	азот	240	40	750
14	аммиак	260	50	800
15	окись углерода	180	60	550
16	метан	200	20	600
17	этан	210	30	650
18	пропан	220	40	700
19	водород	240	50	750
20	кислород	260	60	800
21	азот	280	20	900
22	аммиак	300	30	1000
23	двуокись углерода	320	40	1200
24	метан	340	50	1400
25	этан	360	60	100
26	пропан	100	20	150
27	водород	110	30	200
28	кислород	120	40	250
29	азот	130	60	300
30	аммиак	140	20	350
31	метан	150	30	400
32	этан	160	40	450
33	пропан	170	50	500
34	гелий	180	60	550
35	азот	160	30	200
36	аммиак	170	20	250
37	двуокись углерода	180	30	300
38	метан	200	40	350

Окончание табл. 4.1

Вариант	Газ	Р кН/м ²	T °C	V м ³
39	этан	210	50	400
40	пропан	140	60	450

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

Контрольные вопросы:

- 1. Уравнение Менделеева-Клапейрона:
 - для 1 моль газа
 - для п моль газа
 - для m гр. или кг газа
 - определение массы газа по уравнению Менделеева Клапейрона
 - определение массы газа по уравнению Менделеева –Клапейрона с использованием плотности и удельного объема
 - определение молекулярной массы определяется из уравнения по уравнению Менделеева Клапейрона
 - R- универсальная газовая постоянная, её значения
 - определение– плотности газа (ρ_0) при нормальных условиях.
 - определение плотности газа (р) при других температурах, объемах и давлении
- 2. Уравнение Менделеева Клапейрона для газа в состоянии термической диссоциации:
 - изотонический коэффициент і
 - подсчет степени диссоциации газа
 - 4. Решение задачи из примеров по предложению преподавателя.

Практическое занятие 5. Решение задач для идеального газа с использованием уравнения Менделеева-Клапейрона

Теоретическая часть

и примеры решения задач представлены в задании практического занятия 4

<u>Задание 5.1</u> Сколько содержится газа (по массе) в V м³ его при давлении P кн/м² и температуре T °C .

 $\it Tаблица~5.1.$ Варианты задания $5.1*^{)}$

Вариант	Газ	Р кН/м ²	T °C	V M ³
1	азот	100	20	150
2	аммиак	110	30	200
3	двуокись углерода	120	40	250
4	метан	130	50	300
5	этан	160	60	350
6	пропан	170	20	400
7	гелий	180	30	450
8	бутан	200	40	500
9	водород	210	50	550
10	кислород	200	60	600
11	азот	210	20	650
12	аммиак	220	30	700
13	окись углерода	240	40	750
14	метан	260	50	800
15	этан	180	60	550
16	пропан	200	20	600
17	водород	210	30	650
18	кислород	220	40	700
19	азот	240	50	750
20	аммиак	260	60	800
21	двуокись углерода	280	20	900
22	метан	300	30	1000

Продолжение табл.5.1

Вариант	Газ	Р кН/м ²	T °C	V M^3
23	этан	320	40	1200
24	пропан	340	50	1400
25	водород	360	60	100
26	кислород	100	20	150
27	азот	110	30	200
28	аммиак	120	40	250
29	метан	130	60	300
30	этан	140	20	350
31	пропан	150	30	400
32	гелий	160	40	450
33	окись углерода	170	50	500
34	двуокись углерода	180	60	550
35	пропан	100	40	200
36	гелий	110	50	250
37	бутан	120	60	300
38	водород	130	20	350
39	кислород	160	30	400
40	азот	170	40	450

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

<u>Задание 5.2</u> Какой объем займут m г газа при давлении P кН/м 2 и температуре T $^{\circ}$ С? Таблица 5.2

Вариант	Газ	Р кН/м ²	T °C	т, г
1	двуокись углерода	100	20	250
2	метан	110	30	300
3	этан	120	40	350

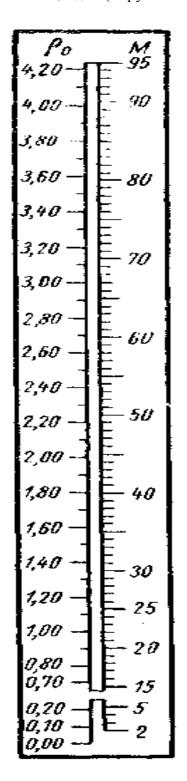
Продолжение табл.5.2

Вариант	Газ	Р кН/м ²	T °C	т, г
4	пропан	130	50	400
5	гелий	160	60	450
6	бутан	170	20	500
7	водород	180	30	550
8	кислород	200	40	600
9	окись углерода	210	50	650
10	метан	200	60	700
11	этан	210	20	750
12	пропан	220	30	800
13	водород	240	40	550
14	кислород	260	50	600
15	азот	180	60	650
16	аммиак	200	20	700
17	двуокись углерода	210	30	750
18	метан	220	40	800
19	этан	240	50	900
20	пропан	260	60	1000
21	водород	280	20	1200
22	кислород	300	30	1400
23	азот	320	40	100
24	аммиак	340	50	150
25	метан	360	60	200
26	этан	100	20	250
27	пропан	110	30	300
28	гелий	120	40	350
29	окись углерода	130	60	400
30	двуокись углерода	140	20	450
31	метан	150	30	500
32	этан	160	40	550
33	пропан	170	50	120
34	гелий	180	60	250
35	пропан	320	20	100

Окончание табл.5.2

Вариант	Газ	Р кН/м ²	T °C	т, г
36	гелий	340	30	150
37	бутан	360	40	200
38	водород	100	60	250
39	кислород	110	20	300
40	азот	120	30	350

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)


Контрольные вопросы:

- 1. Уравнение Менделеева-Клапейрона:
 - определение
 плотности газа (ρ₀) при нормальных условиях.
 - определение плотности газа (р) при других температурах, объемах и давлении
 - определение объема и массы газа при других температурах, объемах и давлении
- 2. Уравнение Менделеева Клапейрона для газа в состоянии термической диссоциации:
 - изотонический коэффициент і
 - подсчет степени диссоциации газа
- 3. Решение задачи из примеров по предложению преподавателя.

Практическое занятие 6 Закон Авогадро

Теоретическая часть

В одинаковых объемах любого идеального газа при одинаковых температуре и давлении содержится одно и то же количество молекул. Установлено, что при нормальных условиях 1 кмоль любого вещества в газообразном состоянии занимает объем 22,4 м 3 или, что то же, 1 моль — 22,4 дм 3 (округленно) и содержит 6,023· 10^{23} молекул.

Эти величины носят название: 22,4 — мольный объем, $6,023\cdot10^{23}$ — число Авогадро. Отсюда вытекает, что, зная молекулярную массу (M) газа, можно вычислить плотность его (P_o) , выраженную в кг/м³ при нормальных условиях $(0^{\circ}\text{C и }101,325 \text{ к}H/\text{m}^2)$ $\rho_0 = M/22,4 \text{ кг/m}^3$. Так, плотность оксида углерода -2 CO (мол. масса 28,0) по уравнению (23) определится $\rho_0^{\text{CO}} = 28/22,4 = 1,250 \text{ кг/m}^3$

Примечание. Так как мольный объем некоторых газов отклоняется от величины 22,4, то этот подсчет не является совершенно точным. Для технических же расчетов им вполне можно пользоваться.

Для удобства вычислений плотности газов на основании их молекулярной массы приводится номограмма (рис. 2.2), на одной шкале которого даются значения молекулярной массы (M) газа, а на другой (против этой цифры) — плотность его $(\rho_0, \kappa \Gamma/M^3)$ при 0° С и нормальном давлении.

Рисунок 6.1. Номограмма для подсчета плотности газов (ρ_0 кг/м³ при 0°C и 101,325 кН/м²) в зависимости от молекулярной массы (M)

Решение задач

<u>Задание 1.6</u> *т* H_2O при T C и давлении P к H/M^2 , частично диссоциируя, занимают объем V д M^3 . Вычислить степень диссоциаций H_2O при заданных параметрах .

 $\it Tаблица6.1.$ Варианты задания $6.1*^{\circ}$

Вариант	V, дм ³	Р , кН/м ²	T, °C	т , г
1	338	100	2500	26
2	300	110	2600	27
3	300	120	2700	29
4	320	130	2800	31
5	270	160	2500	33
6	280	170	2600	34
7	210	180	2700	28
8	166	200	2800	26
9	170	210	2650	27
10	190	200	2520	29
11	170	210	2500	26
12	180	220	2600	27
13	190	240	2700	29
14	190	260	2800	31
15	240	180	2500	33
16	260	200	2600	34
17	180	210	2700	28
18	170	220	2800	26
19	160	240	2650	27
20	150	260	2520	29
21	160	280	2800	26
22	120	300	2500	27
23	120	320	2600	29
24	120	340	2700	31
25	140	360	2800	33
26	450	100	2650	34
27	360	110	2520	28

Продолжение табл6.1

Вариант	V, дм ³	Р, кН/м ²	<i>T</i> ,°C	т, г
28	340	120	2600	26
29	270	130	2700	27
30	280	140	2800	29
31	280	150	2500	31
32	280	160	2600	33
33	280	170	2700	34
34	220	180	2800	28
35	120	130	2800	27
36	140	140	2500	29
37	450	150	2600	26
38	360	160	2700	27
39	340	170	2400	29
40	180	180	2600	31

^{*)} При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

Варианты задания 6.2*)

<u>Задание 6.2</u> Найти плотность газа при T °С и P кН/м²

Таблица 6.2

Вариант	Газ	Р, кН/м ²	<i>T</i> ,°C
1	этан	100	20
2	пропан	110	30
3	гелий	120	40
4	бутан	130	50
5	водород	160	60
6	кислород	170	20
7	окись углерода	180	30
8	метан	200	40
9	этан	210	50

Продолжение табл.6.2

Вариант	Газ	P кH/м ²	T °C
10	пропан	200	60
11	водород	210	20
12	кислород	220	30
13	азот	240	40
14	аммиак	260	50
15	двуокись углерода	180	60
16	метан	200	20
17	этан	210	30
18	пропан	220	40
19	водород	240	50
20	кислород	260	60
21	азот	280	20
22	аммиак	300	30
23	метан	320	40
24	этан	340	50
25	пропан	360	60
26	гелий	100	20
27	окись углерода	110	30
28	двуокись углерода	120	40
29	метан	130	60
30	этан	140	20
31	пропан	150	30
32	гелий	160	40
33	двуокись углерода	170	50
34	метан	180	60
35	пропан	260	30
36	водород	280	40
37	кислород	300	50
38	азот	320	60
39	аммиак	340	20
40	метан	360	30

* При выполнении домашнего задания решаются 3 задачи по вариантам соответствующим номеру студента в списке группы с последующим прибавлением числа 15 (Например, варианты: 1, 16, 31. Если третий номер выходит за число заданий = 40, то он переносится на первый десяток. Например, третий номер получился 50, то необходимо решать вариант под номером 10)

Контрольные вопросы

- 1. Число Авогадро, его определение. значение
- 2. Мольный объём
- 3. Определение плотности при известной молекулярной массе
- 4. Определение плотности газа по номограмме

Практическое занятие 7 Основные законы для смеси идеальных газов

Теоретическая часть

При горении топлива в теплотехнических агрегатах образуется смесь газов. В термодинамике смесь идеальных газов, не вступающих в реакцию, рассматривается как идеальный газ. При этом каждый газ, ведет себя так, как будто бы он один занимает весь объем, а давление, которое он оказывает на стенки сосуда, называется парциальным. Давление смеси газов складывается из парциальных давлений отдельных газов. Дальтон вывел закон:

$$p_{CM} = \sum_{i=1}^{i=n} p_i$$
 [2.1]

При расчете смеси определяют относительную молекулярную массу, газовую постоянную, плотность, парциальные давления компонентов. Состав может быть задан в массовых, объемных или мольных долях. Для сравнения объемов газов, входящих в смесь, их приводят к одинаковому давлению, которое равно давлению смеси. Объемная доля і-того компоненента \mathbf{r}_i определяется отношением парциального объема V_i і-того газа к объему смеси газов V_{cm} $r_i = V_i / V_{cm}$.

При одинаковой температуре газ занимает объем смеси и находится под своим парциальным давлением и когда находится под давлением смеси он занимает парциальный объем.

В соответствии с законом Бойля-Мариотта
$$p_i V_{c_{\mathcal{M}}} = p_{c_{\mathcal{M}}} V_i$$
 , тогда $V_{\mathcal{CM}} = \sum_{i=1}^{l=n} V_i$;

 $\stackrel{i=n}{\underset{i=1}{\Sigma}}r_i=1$. Молярная доля $\,$ i-того компонента χ_i определяется отношением числа молей

компонента k_i к числу молей смеси $k_{\scriptscriptstyle {\it CM}}$. Молярные доли, исходя из закона Авогадро равны объемным долям:

$$r_{i} = \frac{Vi}{V_{CM}} = \frac{r_{i}(\mu v)_{i}}{k_{CM}(\mu v)_{CM}} = \chi_{i}, k_{CM} = \sum_{i=1}^{i=n} k_{i}$$
 [2.2]

Плотность газовой смеси $\rho_{\text{см}} = \sum \rho_i r_i$ или при определении через массовые и і-тые доли плотности $\rho_{\text{см}} = \sum (m_i/\rho_i)$. Молекулярная масса смеси газов $\mu_{\text{см}}$ определяется через массовые и объемные доли компонентов $\mu_{\text{см}} = \sum \mu_i r_i$; газовая постоянная смеси определяется $R_{\text{см}} = \sum m_i R_i$. Под удельной теплоемкостью вещества понимают количество теплоты, которое необходимо сообщить или отнять от единицы вещества (1 кг, 1 м³, 1 моль), чтобы изменить его температуру на 1 градус.

Различают, соответственно: массовую [c, Дж/(кг[·]К)], объемную [c', Дж/(м³ [·]К)]и молярную теплоемкости [μ c, Дж/(моль[·]К)]. Между собой они связаны: $c=\mu c/\mu$; $c'=\mu c/22,4$; $c'=c/\rho$ [2.3]

Истинной теплоемкостью называется теплоемкость, когда подвод бесконечно малой величины тепла dq к 1 кг газа приводит к изменению его температуры на бесконечно малую величину dt; c = dq/dt.

В технике различают тепловые процессы, протекающие при постоянном объеме газа (изохорный процесс), соответственно, теплоемкости: массовая [c_v , Дж/(кг·К)], объемная [c_v ', Дж/(м³·К)], молярная изохорная теплоемкость [μc_v , Дж/(моль·К)]; процессы , протекающие при постоянном давлении (изобарные процессы) имеют соответствующие теплоемкости и обозначаются с подстрочным индексом p: c_p , c_p ', μc_p .

По уравнению Майера: c_p - $c_v=R$; μc_p - $\mu c_v=R\mu=8314$ Дж/(кмоль К) = 2 ккал/ (кмоль К). [2.4]

<u>Для одноатомных газов</u>: $\mu c_{\nu} = 12,48$ кДж/(кмоль К) = 3 ккал/ (кмоль К); $\mu c_{p} = 20,8$ кДж/(кмоль К) = 5 ккал/ (кмоль К).

<u>Для двухатомных газов</u>: $\mu c_{\nu} = 20.8 \text{ кДж/(кмоль K)} = 5 \text{ ккал/ (кмоль K)};$

 $\mu c_p = 29,12 \text{ кДж/(кмоль K)} = 7 \text{ ккал/ (кмоль K)}.$

Теплоемкость газовой смеси: массовая $c_{c_M} = \sum_{i=1}^{i=n} c_i m_i$; [2.4]

объемная
$$c'_{cM} = \sum_{i=1}^{i=n} c'_{i} r_{i}$$
. [2.5]

Закон Дальтона. Газовые смеси. Примеры задач и варианты для их решения

Если имеется смесь газов, составные части которой друг с другом химически не взаимодействуют, то, по закону Дальтона, общее давление ее (P) равно сумме парциальных давлений (P_1 , P_2 , P_3) отдельных составных частей

$$P = P_1 + P_2 + P_3 + \dots$$
 [2.8]

На основании этой зависимости, а также из закона Бойля получаем следующее равенство: $p_i = v_i P$ [2.9]

где p_i — парциальное давление отдельного газа, входящего в состав газовой смеси; v_i — парциальный объем этого газа в единице объема газовой смеси; P — общее давление газовой смеси. Из закона Дальтона вытекает очень важное следствие, к которому часто прибегают в расчетной практике: если известен объемный (или мольный) состав смеси газов, то все физические константы ее (молекулярная плотность, удельный объем, теплоемкость и т. д.) подчиняются правилу аддитивности, т. е. их можно вычислить по правилу смешения *.(* Этому правилу газовые смеси не подчиняются в том случае, если смешение их сопровождается изменением объема.). Допустим, что k_1 k_2 k_3 ...— константы составных частей газовой смеси, а v_1 , v_2 , v_3 ... — мольные (или объемные) доли этих частей в смес v_1 , v_2 , v_3 ... и. Тогда общая константа (K) смеси определится

$$K = k_1 v_1 + k_2 v_2 + k_3 v$$
 [2.10]

Пользуясь законом Дальтона и уравнением Менделеева-Клапейрона, можно подсчитать концентрации отдельных компонентов газовой смеси в κ моль/ κ 3, зная их процентное содержание. Если общее давление газовой смеси равно ρ 4, а количество какого-либо компонента ρ 5 ней равно ρ 6 (объемных, или, что то же, мольных), то парциальное давление этого компонента составит

$$p_A = Pa_0/100$$
 [2.11]

Отсюда получим

$$p_A V = nRT [2.12]$$

где p_A — парциальное давление компонента A в смеси $Pa_0/100$ [2.13]

V — общий объем газовой смеси, который в данном случае принимаем равным единице, так как мы выводим расчетную формулу для 1 M^3 газа; n — число молей компонента A в общем объеме смеси (в данном случае в $1 M^3$); R — газовая постоянная, равная 8314,4 $\partial \mathcal{H}/\kappa$ моль град;

T—абсолютная температура газа.

Подставляя указанные величины в уравнение [2.12], найдем значение n, т. е. количество компонента A в $\kappa моль$ на 1 M^3 смеси в зависимости от процентного содержания его, температуры и общего давления P (в $H M^2$) смеси: $n=V Pa_0/100RT$ [2.14]

Подставляя в это выражение величины V = 1 и R = 8314,4, получим

$$n = Pa_0/831,44T$$
 моль/м³ [2.15]

или
$$m = Pa_0M / 831,44 \cdot 10^3 T \,\mathrm{Kr/M}^3$$
 [2.16]

Пример 2.2. Газовая смесь состава 30% CO, 60% N_2 и 10% H_2 находится под давлением 5,0 $M_{\rm H}/{\rm M}^2$. Найти парциальные давления каждой составной части смеси.

Решение. Пользуясь уравнением [2.9], получим

$$p_{CO} = 5.0 \cdot 0.30 = 1.5 \text{ MH/m}^2$$
,

$$p_{N2} = 5.0 \cdot 0.60 = 3.0 \text{ MH/m}^2$$
,

$$p_{H2} = 5.0 \cdot 0.10 = 0.5 \text{ MH/m}^2$$

Пример 2.3. Подсчитать плотность ρ и приведенную молекулярную массу (*M*) воздуха, если состав его (по объему): 21% O_2 , 78% N_2 и 1% Aг, а плотность кислорода 1,429, азота 1,251, аргона 1,781 $\kappa \epsilon / m^3$.

Решение. По уравнению [2.10] имеем

$$P = 0.21 \cdot 1.429 + 0.78 \cdot 1.251 + 0.01 \cdot 1.785 = 1.293 \text{ K} \Gamma/\text{M}^3$$

Определяем $M_{\text{возд}}$

$$M_{\text{возд}} = 0.21 \cdot 32.0 + 0.78 \cdot 28.0 + 0.01 \cdot 39.9 = 28.96$$

Пример 2.4. Газ содержит (по массе) 82 % N_2 , 8 % SO_2 и 10 % O_2 ; удельная теплоемкость $c_{N2}=1{,}045,\ c_{SO2}=0{,}628,\ c_{O2}=0{,}920$ Дж/кг

Так как удельная теплоемкость относится к весовым единицам, то состав смеси при подсчетах необходимо выражать в весовых процентах.)

Решение. Теплоемкость газа указанного состава равна

$$C = 0.82 \cdot 1.045 + 0.08 \cdot 0.628 + 0.10 \cdot 0.920 = 1.00$$
 Дж/кг

Пример 2.5. Водород при 127°С (T = 400°К) находится под давлением $82,4\cdot10^3$ Н/м². Определить содержание его в кмоль/м³.

Решение. По уравнению [2.14] имеем ($a_a = 100\%$)

$$n = 100 \cdot 82, 4 \cdot 10^3 / 831, 44 \cdot 10^3 \cdot 400 = 0,024$$
 кмоль

или (килограмм-молекулярная масса водорода 2 кг/кмоль)

$$n' = 0.0248$$
 (кмоль) • 2 (кг/ кмоль) = 0.0496 кг.

<u>Задание 7.1</u> Газовая смесь состава g CO $_2$ мас. ч.; g CH $_4$ мас. ч. и g N $_2$ мас. ч. находится под давлением P кН/м 2 . Найти парциальные давления каждой составной части смеси.

Таблица 7.1

Варианты задания 7.1

Вариант	Р, кН/м ²	g, CO ₂ мас. ч	<i>g</i> , СН ₄ мас. ч.	g, N ₂ мас. ч
1	100	1000	20	150
2	110	1200	1200 30	
3	120	1400	40	250
4	130	100	50	300
5	160	150	60	350
6	170	200	20	400
7	180	250	30	450
8	200	300	40	500
9	210	350	50	550
10	200	400	60	600
11	210	450	20	650
12	220	500	30	700
13	240	150	40	750
14	260	200	50	800
15	180	250	60	550
16	200	300	20	600
17	210	350	30	650
18	220	400	40	700
19	240	450	50	750
20	260	500	60	800
21	280	550	20	900
22	300	600	30	1000
23	320	650	40	1200
24	340	700	50	1400
25	360	750	60	100
26	100	800	20	150
27	110	550	30	200
28	120	600	40	250
29	130	650	60	300
30	140	700	20	350
31	150	750	30	400

Продолжение табл. 7.1

Вариант	Р кН/м ²	g CO ₂ мас. ч	g СH ₄ мас. ч.	g N ₂ мас. ч
32	160	800	40	450
33	170	900	50	500
34	180	1000	60	550
35	320	600	50	150
36	340	650	60	200
37	360	700	20	250
38	100	750	30	300
39	110	800	40	350
40	120	550	60	400

Задание 7.2 Подсчитать плотность ρ и приведенную молекулярную массу (М) газовой смеси, представленной в табл. 7.1 при температуре 30 0 C

<u>Задание 7.3</u> Подсчитать удельную теплоемкость газовой смеси, представленной в табл. 7.1 (Так как удельная теплоемкость относится к массовым единицам, то состав смеси при подсчетах необходимо выражать в массовых процентах.)

<u>Задание 7.5</u> Газ при температуре T °C находится под давлением P к $H/м^2$. Определить содержание его в $\kappa моль/м^3$.

Таблица 7.5 Варианты задания 7.5

Вариант	Газ	Р кН/м ²	T °C
1	аммиак	100	30
2	метан	110	40
3	этан	120	50
4	пропан	130	60
5	гелий	160	20
7	двуокись углерода	180	40
8	метан	200	50
9	этан	210	60
10	пропан	200	20
11	гелий	210	30
12	двуокись углерода	220	40
13	метан	240	60
14	этан	260	20

Продолжение табл. 7.5

Вариант	Газ	Р кН/м ²	T °C
15	пропан	180	30
16	гелий	200	40
17	бутан	210	50
18	водород	220	60
19	кислород	240	20
20	окись углерода	260	30
21	метан	280	40
22	этан	300	50
23	пропан	320	60
24	водород	340	20
25	кислород	360	30
26	азот	100	40
27	аммиак	110	50
28	двуокись углерода	120	60
29	метан	130	20
30	этан	140	30
31	пропан	150	40
32	водород	160	50
33	кислород	170	60
34	азот	180	20
35	гелий	260	60
36	бутан	280	20
37	водород	300	30
38	кислород	320	40
39	окись углерода	340	50
40	метан	360	60

Контрольные вопросы

- 1. Закон Дальтона
- 2. Объемная доля і-того компоненента r_i
- 3. Молярная доля $\,$ і-того компонента χ_i В соответствии с законом Бойля-Мариотта
- 4. Плотность газовой смеси при определении через массовые и і-тые доли плотности.

- 5.Молекулярная масса смеси газов μ_{cm} определяемая через массовые и объемные доли компонентов
- 6. Газовая постоянная смеси определяется.
- 7. Удельная теплоемкость вещества: массовая, объемная, молярная теплоемкости
- 8. Связь между теплоемкостями
- 9. Истинная теплоемкость.
- 10. Уравнению Майера для теплоемкостей газовой смеси: массовой, объемной

Практическое занятие 8 Определения и математические формулы для влажного воздуха и пара

Теоретическая часть

Водяной пар встречается в различных состояниях:

- водяной пар является частью газовых смесей, которые получаются при сгорании топлива в различных агрегатах. В этом случае парциальное давление мало, температура пара высокая и он далек от состояния жидкости. Здесь его считают идеальным газом. Водяной пар считают идеальным газом и в составе атмосферного воздуха. По закону Дальтона общее барометрическое давление влажного воздуха В составляет : $B=p_B+p_\Pi$ где p_B - парциальное давление сухого воздуха; p_Π - парциальное давление водяного пара.

Максимальное давление p_{π} при данной температуре представляет собой давление насыщенного водяного пара. Если этот пар является сухим, то и влажный воздух, содержащий его, называется <u>насыщенным.</u> При охлаждении его будет происходить конденсация водяного пара. Если при данной температуре в воздухе пар находится в перегретом состоянии, то влажный воздух называется <u>ненасыщенным</u> - он способен к дальнейшему увлажнению. Количество паров воды, содержащихся в 1 м³ влажного воздуха, называется <u>абсолютной влажностью.</u> Она равна плотности пара при его парциальном давлении и температуре воздуха и обозначается ρ_{π} .

Отношение абсолютной влажности ненасыщенного воздуха к абсолютной влажности насыщенного воздуха ρ_H называется относительной влажностью $\phi = \rho_\Pi / \rho_H$. Для насыщенного воздуха $\phi = 1$, для ненасыщенного $\phi < 1$. Парциальные давления пара в ненасыщенном воздухе зависят от температуры. И поскол вку при атмосферном давлении парциальное давление пара очень мало, его можно отнести к идеальным газам, который подчиняется закону Бойля - Мариотта. Это позволяет для одной и той же температуры заменить $\phi = \rho_\Pi / \rho_H$ на $\phi = \rho_\Pi / \rho_H$

где p_{π} и p_{μ} парциальные давления пара и воздуха. Для нахождение парциального давления пара пользуются гигрометрами, по которым определяют точку росы.

Точка росы- это температура, до которой необходимо охладить ненасыщенный воздух при постоянном давлении, чтобы он стал насыщенным. Зная точку росы t_p , можно по таблицам водяного пара определить парциальное давление пара в воздухе как давление насыщения, соответствующее t_p . Плотность влажного воздуха определяют по сумме масс

1 м 3 сухого воздуха и водяных паров, в нем содержащихся. $\rho = \rho_{\rm II} + \rho_{\rm B} = \frac{p_{_{\it B}}}{R_{_{\it E}}T} + \frac{\varphi}{v''}$. Молеку-

лярную массу влажного воздуха определяют по формуле $\mu = 28,95$ - $10,934 \varphi$ (p_{μ}/B); p_{μ} и v'' при температуре t берут из таблиц для водяного пара, φ - по данным психрометра, а B - по барометру

Влагосодержание это отношение массы водяного пара к массе сухого воздуха в единице объема $d=m_{\text{п}}/m_{\text{в}}==0,622~(\phi\cdot p_{\text{н}})/(B-\phi\cdot p_{\text{н}})$ Максимальное влагосодержание при $\phi=1~d=0,622p_{\text{н}}/(B-p_{\text{н}})$. Так как давление насыщения растет при росте температуры, то максимальное содержание влаги в воздухе растет с ростом температуры.

Отношение $d/d_{H} = \psi$ - степень насыщения влажного воздуха.

Газовая постоянная влажного воздуха равна

$$R = 8314/\mu = 8314/(28.95 - 10.9340 p_H/B)$$
 [2.6]

Объем влажного воздуха $V_{e.r.e} = RT/B$, удельный объем $v = V_{e.r.e}/(1+d)$, удельная массовая теплоемкость $c_{c.m} = \sum c_i m_i = c_e + d c_n$

(для сухого воздуха до $100~^{0}$ C она равна 1,0048~кДж/(кг⁻K); для перегретого пара средняя изобарная теплоемкость при атмосферном давлении и не высоких степенях перегрева равна 1,96~кДж/(кг⁻K).

При работе водяного пара в тепловых двигателях или в теплообменных аппаратах пренебрегать межмолекулярным взаимодействием нельзя, т.к. за счет сжатия он приближается к состоянию жидкости; этот газ называется реальным и законам идеального газа не подчиняется.

2.3 Закон Гей-Люссака для смеси идеальных газов. Примеры задач и варианты для их решения

Закон Гей-Люссака

С учетом давления водяных паров (в H/M^2) в составе газа объем его в сухом состоянии следует подсчитывать по формуле

$$V_0 = 2.7 \cdot 10^{-3} (P - \epsilon) \ V / T$$
 [2.7]

Таблица 8.1

Давление $(\mathbf{\emph{e}})$ насыщенного водяного пара (H/M^2) при различных температурах

Температура, °C	Давление, <i>P</i> , Н/м ²	Темпе- ратура, °С	Давление, P , H/M^2	Темпе- ратура, °С	Давление, <i>P</i> , H/м ²
-60	1,333	10	1225	30	4250
-50	5,332	11	1306	31	4460
-40	16,00	12	1400	32	4720
-30	40,00	13	1470	33	5000
-20	120	14	1600	34	5270
-10	254	15	1710	36	5900
-9	274	16	1816	38	6670
-8	307	17	1940	40	7330
-7	334	18	2070	42	8150
-6	360	19	2100	44	9060
-5	400	20	2340	46	10000
-4	440	21	2430	48	11100
-3	480	22	2640	50	12300
-2	520	23	2830	60	19900
-1	560	24	2990	70	31400
0	615	25	3180	80	47200
2	706	26	3380	90	70100
4	814	27	3580	100	101300
6	935	28	3800	42	8150
8	1065	29	4020	44	9060

Пример 8.1. При давлении 105 кH/m^2 и температуре 40°C (T=313K) влажный газ занимает объем 10 м^3 . Вычислить объем влажного и сухого газа при нормальных условиях (101,3 кH/м³; 0°C).

Решение. Объем влажного газа по уравнению

$$V_0 = 10 \cdot 2,7 \cdot 10^{-3} \cdot 105 \cdot 10^3 / 313 = 9,05 \text{ m}^3$$

Объем того же количества газа в сухом состоянии по уравнению

$$V_0 = 10 \cdot 2,7 \cdot 10^{-3} \cdot (105 - 7,3) \cdot 10^3 / 313 = 8,43 \text{ m}^3$$

где $7,3\cdot 10^3$ — давление (в H/m^2) водяных паров в газе при 40° С, найденное по табл. 8.1 Объем газа V_0 возможно определять с применением номограммы 1 (рис.1). Для этого на шкале V найдем значение заданного объема V (например V=10), а на шкале t значение , например, t=27. Соединяем эти точки прямой. Затем через точку пересечения этой прямой со шкалой x (точка x_1) и через точку на шкале давлений P (например P=200) проводим прямую. На шкале V_0 отложилось деление 18. Таким образом, объем газа при нормальных условиях равен 18 m^3 .

На шкале V нанесены деления от 1 до 20. Если в задании V будет больше 20 (например, 45 м³), то на этой шкале надо брать деление в 10 раз меньше заданного (т. е. вместо 45 брать 4,5) и находить значение Vo, как указано выше. Затем найденное значение Vo надо увеличить в 10 раз, что и будет соответствовать заданному V. При значениях же V < 1 необходимо поступать наоборот, т. е. увеличить в 10 раз, а найденное Vo уменьшить в 10 раз

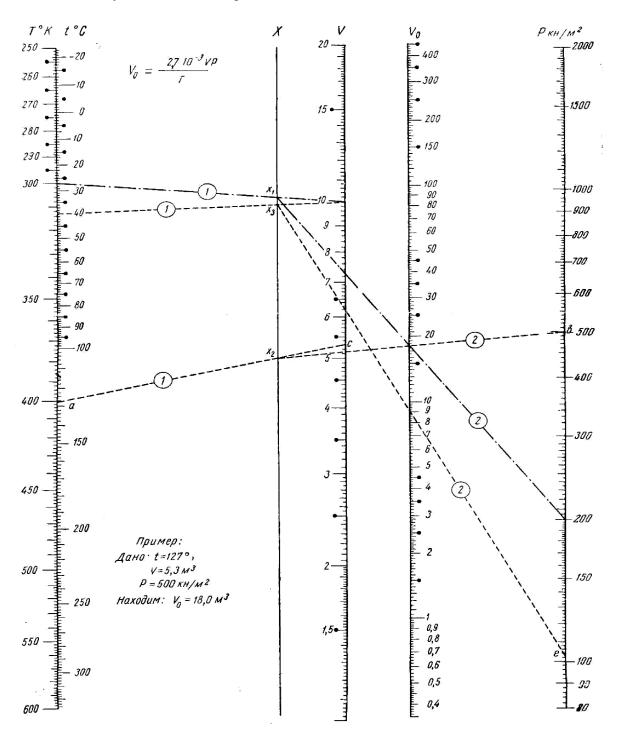


Рисунок1. Номограмма 1

 $\underline{\it 3adahue~8.1}$ Вычислить объем газа с учетом давления водяных паров в составе газов : а) при нормальных условиях; б) при давлении P_2 и температуре t_2 . если имеется V_1, P_1, t_1 газа

Варианты задания 8.1

Вариант	P ₁ , кПа	V_1, M^3	t_1 , 0 C	t_2 , 0 C	P ₂ , кПа
1	400	40	8	48	300
2	600	50	9	56	200
3	700	60	10	58	400
4	800	70	12	60	600
5	900	80	14	62	700
6	400	90	16	64	800
7	500	70	18	68	900
8	300	80	20	72	400
9	200	90	22	74	500
10	400	100	24	76	300
11	600	120	26	78	200
12	700	140	28	92	400
13	800	150	30	8	600
14	900	70	32	9	700
15	400	80	34	10	800
16	500	90	36	12	900
17	400	100	38	14	400
18	500	120	40	16	500
19	300	70	42	18	400
20	200	80	44	20	500
21	400	90	46	22	900
22	600	100	48	24	400
23	700	120	56	26	500
24	800	140	58	28	300
25	900	150	60	30	200
26	400	70	62	9	600
27	500	80	64	10	600
28	300	90	68	12	700
29	200	100	72	14	800
30	400	70	74	16	900
32	600	80	76	18	400
33	700	90	78	20	500
34	800	70	92	22	400
35	400	120	14	56	900
36	600	140	16	58	400
37	700	150	18	60	500
38	800	70	20	62	300
38	900	80	22	64	200
40	400	90	24	68	600

Таблица 8.2

<u>Задание 8.2</u> В газгольдере при давлении P кН/м² и температуре T°С (T=град.К) влажный газ занимает объем V м³. Вычислить аналитически и по номограмме объем влажного и сухого воздуха при нормальных условиях (101,3 кн/м³; 0°С).

Вариант	P, кH/м²	<i>T</i> ,°C	V , M^3
1	90	20	100
2	100	30	150
3	110	40	200
4	120	50	250
5	130	60	300
6	140	20	350
7	150	30	400
8	160	40	450
9	170	50	500
10	180	60	550
11	200	20	600
12	210	30	650
13	220	40	700
14	240	50	750
15	260	60	800
16	280	20	900
17	300	30	1000
18	320	40	1200
19	340	50	1400
20	360	60	100
21	100	20	150
22	110	30	200
23	120	40	250
24	130	50	300
25	160	60	350
26	170	20	400
27	180	30	450
28	200	40	500
29	210	50	550
30	200	60	600
31	210	20	650
32	220	30	700
33	240	40	750
34	260	50	800
35	170	30	300
36	180	40	350
37	200	50	400
38	210	60	450
39	200	20	500
40	210	30	550

Контрольные вопросы

- 1. Водяной пар, различные состояниях
- 2. Общее барометрическое давление влажного воздуха В
- 3. Давление насыщенного водяного пара.
- 4. Понятие насыщенного пара
- 5. Понятие ненасыщенного влажного воздуха
- 6. Абсолютная влажностью, определение
- 7. Относительноя влажность, определение
- 8. Парциальные давления пара в ненасыщенном воздухе, определение
- 9. Точка росы.
- 10. Определение плотности влажного воздуха
- 11. Определение молекулярной массы влажного воздуха
- 12. Влагосодержание водяного пара, определение
- 13. Степень насыщения влажного воздуха.
- 14. Газовая постоянная влажного воздуха
- 15. Объем влажного воздуха
- 16. Удельная массовая теплоемкость c_{cm} влажного воздуха
- 17. Изобарная теплоемкость при атмосферном давлении и не высоких степенях перегрева влажного воздуха
- 18. Закон Гей-Люссака с учетом давления водяных паров, вычисление

Практическое занятие 9 Уравнение состояния реальных газов

Теоретическая часть

Чем больше плотность газа, т. е. чем меньше расстояние между его частицами, тем больше такой газ отклоняется от идеального состояния. Силы взаимного притяжения частиц, называемые Ван-дер-Ваальсовыми силами, могут рассматриваться как внутреннее давление газа, и величина их в первом приближении обратно пропорциональна квадрату объема, занимаемого газом. Таким образом, реальное состояние газа можно выразить следующими уравнениями (Ван-дер-Ваальса) для 1 моля

$$(P+a/V^2)\cdot(V-b)=RT$$
, откуда $P=[RT/(V-b)]-a/V^2$ для n молей $P_n=n$ { $[RT/(V-nb)]-na/V^2$ } где a и b — константы, зависящие от природы газа. Значения констант a и b для некоторых газов приведены в табл. 9.1

 ${\it Taблица}~9.1$ Значения констант для некоторых газов

Газ	Константы уравне	ния Ван-дер-Ваальса
	a , Дж·м 3 /кмоль	<i>b</i> , м ³ /кмоль0,щ366
Азот	0,1363	0,0335
Аммиак	0,423	0,0373
Аргон	0,137	0,0375
Ацетилен	0,437	0,0512
Воздух	0,135	0,0366
Водород	0,0248	0,0219
Водяные пары	0,555	0,0326
Гелий	0,00345	0,0237
Кислород	0,138	0,0318
Метан	0,228	0,0428
Оксид углерода, СО	0,148	0,0394
Диоксид углерода, СО2	0,365	0,0427
Этилен	0,455	0,0572

Применяя уравнение к состояниям газа при T_1 и T_2 , получим

$$\{V_2^2(P_1V_1^2 + n^2a)\cdot(V_1 - nb)\}/\{V_1^2(P_2V_2^2 + n^2a)\cdot(V_2 - nb)\} = T_1/T_2$$
 [9.3]

где P_1 , V_1 и T_1 — начальное состояние газа; P_2 , V_2 и T_2 — конечное состояние его.

В связи с тем, что уравнения сравнительно громоздки, в расчетной практике для реальных газов обычно пользуются уравнением Клапейрона—Менделеева, вводя в него коэффициент сжимаемости β, который определяется уравнением

$$\beta = -(1/V) \cdot (dV/dT)$$
, $H \cdot M = Дж$

или в упрощенном виде

$$\beta' = PV/RT$$

Коэффициент сжимаемости определяется опытным путем и для расчетов берется из таблиц. В табл. [9.2] даны значения коэффициента сжимаемости газов в зависимости от величины приведенного давления π и приведенной температуры τ , которые определяются уравнениями

$$\pi = P/P_{\kappa p}$$
; $\tau = T/T_{\kappa p}$ [9.6]

Зависимость коэффициента сжимаемости $\beta' = PV/RT$ газов от приведенного давления π и приведенной температуры τ

Приведенная тем-			Приведе	енное давле	ение π		
пература, т	10	15	20	25	30	35	40
1,0	1,22	1,78	2,24	2,80	-	-	-
1,1	1,21	1,70	2,04	2,67	-	-	-
1,2	1,20	1,65	2,04	2,52	-	-	-
1,3	1,20	1,59	1,98	2,38	-	-	-
1,4	1,20	1,56	1,92	2,30	-	-	-
1,6	1,20	1,51	1,81	2,13	2,44	2,76	3,01
1,8	1,20	1,48	1,74	2,61	2,29	2,56	2,80
2,0	1,20	1,44	1,68	1,94	2,17	2,40	2,64
2,5	1,20	1,40	1,58	1,78	1,97	2,16	2,32
3,0	1,20	1,36	1,52	1,68	1,84	2,00	2,14
3,5	1,20	1,34	1,48	1,60	1,74	1,88	2,00
4,0	1,20	1,32	1,43	1,54	1,66	1,78	1,88
5,0	1,20	1,30	1,39	1,47	1,57	1,66	1,74
6,0	1,16	1,24	1,34	1,40	1,50	1,58	1,66
7,0	1,14	1,20	1,29	1,36	1,43	1,50	1,57
8,0	1,13	1,18	1,26	1,32	1,37	1,44	1,50
9,0	1,12	1,16	1,22	1,28	1,34	1,39	1,44
10,0	1,10	1,15	1,20	1,25	1,30	1,35	1,40
15,0	1,07	1,10	1,15	1,19	1,22	1,26	1,30
20,0	1,06	1,08	1,11	1,14	1,17	1,20	1,22

3.2 Примеры задач и варианты для их решения

Пример 9.1. Подсчитать давление при 100° С одного моля оксида серы, заключенной в сосуд на $10 \, \pi$.

Pешение. Подсчитаем давление SO_2 в баллоне, пользуясь уравнением для идеальных газов

$$P = nRT/V$$
 [9.7]

Подставляя сюда n=1,0; R=8,3144 Дж/моль·град; T=(273+100)=373 К и V=0,01 м³, получим

$$P = (1.8,3144.373) / 0.01 = 310,1 \text{ kH/m}^2$$

Подставляя в уравнение [9.1] для реальных газов числовые значения, получим $P' = (8.3144 \cdot 373)/(0.01 - 0.0565 \cdot 10^{-3}) = 311.9 \text{ кH/m}^2$

Пример 9.2. В сосуде емкостью 5л находится 208,2 г ацетилена при 727°С. Подсчитать давление ацетилена в сосуде.

Решение. Из условий следует n = m/M = 208,2 / 26,0 = 8,0 моль

$$T = (273 \text{ H- } 727) = 1000$$
°K; $a = 0.437 \cdot 10^{-3} \text{ Дж·м}^3/\text{моль}^2 *$

R = 8,3144 Дж/моль·град; $b = 0.0512 \cdot 10^{-3}$ м³/моль.*

* Значение a и b в табл. 9.1 даны на 1 кмоль газа. Мы в данном примере подсчет ведем на массу газа, выраженную в молях (1 *моль*). Следовательно, табличные значения a и b выражены также на 1 *моль*;

Подставляя эти данные в уравнение [9.2], получим $P_n = n \left\{ [RT/(V-nb)] - na/V^2 \right\} = 8.0 \left\{ (8.3144 \cdot 1000) / [5 - (8.0 \cdot 0.0512) \cdot 10^{-3}] \right\} - (8.0 \cdot 0.437 \cdot 10^{-3} / 0.005^2) = 14.489 \cdot 10^6 \text{ H/m}^2 = 14.489 \text{ MH/m}^2 = 14.489 \text{ MHa}$

Вычисляем давление P' по уравнению для идеальных газов:

$$P = nRT/V = 8.0.8,3144.1000/0,005 = 13,303 \text{ M}\Pi a$$

Это отличается от вычисленного выше значения P на

$$(14,489 - 13,303) \cdot 100 / 14,489 = 8,2 \%$$

Подсчитаем то же самое, пользуясь коэффициентом сжимаемости. Критическая температура ацетилена 36°C (309°K), критическое давление 6,2 МПа. Отсюда приведенные температура и давление будут

$$\tau = 1000/309 = 3,236;$$
 $\pi = 13,303/6,2 = 2,146$

По табл. 9.2 интерполяцией (для T) и экстраполяцией (для π) находим коэффициент сжимаемости, β равный примерно 1,09 ÷1,08. Отсюда имеем

$$P = 1,085 \cdot 13,303 = 14,434 \text{ M}\Pi a$$

Это практически совпадает с вычисленным значением давления по уравнению Вандер-Ваальса.

Пример9.3. Газгольдер емкостью 2000 м 3 наполнен азотом; давление в газгольдере 125 к H/m^2 , температура 22°C. Привести объем азота к нормальным условиям и вычислить массу азота.

Решение. Так как запорной жидкостью в газгольдере служит вода, то азот здесь насыщен водяными парами. Поэтому подсчет значения Vo производим по уравнению [2.7пр 8]. Давление водяных паров при 22°C равно 2,64 $\kappa h' m^2$ (табл. 2.1 пр 8). Таким образом,

$$V_0 = 2.7 \cdot 10^{-3} (P-e) \ V/T = 2.7 \cdot 10^{-3} \cdot 2000 \cdot (125-2.64) \cdot 10^3 / 295 = 2240 \ \text{m}^3$$

Подсчитаем массу азота в газгольдере.

<u>Первый метод</u>. Так как плотность азота $1,252 \text{ кг/м}^3$, то масса азота в газгольдере

$$m=2240\cdot1,252=2800$$
 кг

 $\underline{Bmopoй\ memod}$. Мольный объем азота 22,4 м³. Следовательно, 2240 м³ его составят n=2240/22,4=100,0 кмоль, или

$$m = 100, 0.28 = 2800 \text{ kg}$$

<u>Третий метоо</u>. Расчет ведем по уравнению Клапейрона—Менделеева. Выражая в уравнении [2.7] давление в к H/m^2 , R в кДж/кг·град и вводя в уравнение поправку на давление паров воды, получим

$$m = [28 \cdot (125 - 2.64) \cdot 2000] / 8.3144 \cdot 295 = 2800 \text{ kg}$$

<u>Задание 9.1</u> Газгольдер емкостью V м³ наполнен газом; давление в газгольдере P к $H/м^2$, температура t°C. Привести объем газа к нормальным условиям и вычислить массу газа тремя методами.

Варианты задания 9.1

Вариант	Газ	Р кН/м ²	<i>t</i> °C	V M ³
1	Азот	100	20	150
2	Аммиак	110	30	200
3	Аргон	120	40	250
4	Ацетилен	130	50	300
5	Воздух	160	60	350
6	Водород	170	20	400
7	Водяные пары	180	30	450
8	Гелий	200	40	500
9	Кислород	210	50	550
10	Метан	200	60	600
11	Оксид углерода, СО	210	20	650
12	Диоксид углерода, СО2	220	30	700
13	Этилен	240	40	750
14	Аргон	260	50	800
15	Ацетилен	180	60	550
16	Воздух	200	20	600

Таблица 9.3.

Продолжение таблицы 9.3.

Вариант	Газ	Р кН/м ²	t°C	V M^3
17	Водород	210	30	650
18	Водяные пары	220	40	700
19	Гелий	240	50	750
20	Кислород	260	60	800
21	Метан	280	20	900
22	Оксид углерода, СО	300	30	1000
23	Диоксид углерода, СО2	320	40	1200
24	Этилен	340	50	1400
25	Водяные пары	360	60	100
26	Гелий	100	20	150
27	Кислород	110	30	200
28	Метан	120	40	250
29	Оксид углерода, СО	130	60	300
30	Диоксид углерода, CO ₂	140	20	350
31	Этилен	150	30	400
32	Аргон	160	40	450
33	Водород	170	50	500
34	Водяные пары	180	60	550
35	Гелий	160	30	200
36	Кислород	170	20	250
37	Метан	180	30	300
38	Гелий	200	40	350
39	Кислород	210	50	400
40	Метан	140	60	450

Контрольные вопросы

- 1. Уравнения (Ван-дер-Ваальса) для 1 моля влажного газа
- 2. Уравнения (Ван-дер-Ваальса) для n молей влажного газа
- 3. Уравнение состояния газа при T_1 и T_2 ; P_2 , V_2 и T_2
- 4. Уравнение Клапейрона—Менделеева для влажного газа
- 5. Коэффициент сжимаемости β, выбор.
- 6. Приведенное давление π
- 7. Приведенная температуры т

Практическое занятие 10 Решение задач смеси реальных газов

Теоретическая часть (В практических занятиях 8, 9 - в отчете практики 10 не показывать)

Пример10.1. Определить плотность водяного газа при 0,25 МПа (МН/м²) и 427°C, если состав его: 50% $\rm H_2$, 38% $\rm CO$, 6% $\rm N_2$. 0,2% $\rm O_2$, 5% $\rm CO_2$ и 0,8% $\rm CH_4$

Решение. В соответствии с законом Дальтона находим приведенную молекулярную массу (M) водяного газа (мол. масса H_2 2,0; CO 28,0; N_2 28,0; CO $_2$ 44,0; O_2 32,0; CH $_4$ 16,0):

$$M = 2,0.0,5+28.0,38+28.0,06+32.0,002+44.0,005+16.0,008 = 15,71$$

Плотность газа указанного состава определится по уравнению $\rho = 0.12 \cdot 10^{-3} MP/T = 0.12 \cdot 10^{-3} \cdot 15,71 \cdot 0.25 \cdot 10^{6} / 700 = 0,675 \text{ кг/м}^{3}$

<u>Задание 10.1</u> Определить плотность смеси газов при P МПа (МН/м 2) и температуре t°C, если состав его представлен в табл. 10.1

Таблица 10.1. Варианты задания 10.1.

Вариант			Смесь газ	вов, мас. ч			P	t°C
Вариант	Ar	He	N_2	CO	CH ₄	O_2	кH/м ²	ıC
1	20	40	12	14	16	0,4	100	20
2	18	42	10	16	18	0,2	110	30
3	22	44	8	18	20	0,3	120	40
4	24	48	6	20	24	0.5	130	50
5	26	12	4	24	12	0,6	160	60
6	16	16	12	12	14	0,4	170	20
7	20	18	10	14	16	0,2	180	30
8	18	20	8	16	18	0,3	200	40
9	22	26	6	18	16	0.5	210	50
10	24	28	4	20	18	0,6	200	60
11	26	24	12	24	20	0,2	210	20
12	16	40	10	12	24	0,3	220	30
13	20	42	8	14	12	0.5	240	40
14	18	44	6	16	14	0,6	260	50
15	22	48	4	18	16	0,4	180	60
16	24	12	12	20	18	0,2	200	20
17	26	16	10	24	20	0,3	210	30
18	16	18	8	12	24	0.5	220	40
19	20	20	6	14	16	0,6	240	50
20	18	26	4	16	18	0,2	260	60
21	22	28	12	18	20	0,3	280	20
22	24	24	10	20	24	0.5	300	30
23	26	40	8	24	12	0,6	320	40
24	16	42	6	12	14	0,4	340	50
25	22	44	4	16	16	0,2	360	60
26	24	48	8	18	18	0,3	100	20

Продолжение таблицы 10.1

Вариант			Смесь газ	вов, мас. ч			P	t°C
	Ar	He	N_2	CO	$\mathrm{CH_4}$	O_2	кН/м ²	
27	26	12	6	20	16	0.5	110	30
28	16	16	4	24	18	0,6	120	40
29	20	18	12	12	20	0,2	130	60
30	18	20	10	14	24	0,3	140	20
31	22	26	8	16	12	0.5	150	30
32	24	28	6	18	14	0,6	160	40
33	26	24	4	20	16	0,4	170	50
34	16	48	8	24	18	0,2	180	60
35	20	12	6	16	20	0,3	160	30
36	18	16	4	18	20	0.5	170	20
37	26	18	12	20	24	0,6	180	30
38	16	20	10	24	12	0,2	200	40
39	20	48	8	12	14	0,3	210	50
40	18	12	6	14	16	0.5	140	60

Пример 10.2. Какой объем сухого воздуха потребуется для испарения 900 ε воды при 5°C, если давление насыщенного водяного пара при этой температуре равно 870 μ/m^2 .

Решение. Подставляя числовые данные в уравнение $V = mR_{ii} T/MP$, получим

$$V = (0.9.8314, 4.278) / (18, 0.870) = 133 \text{ m}^3$$

Пример 10.3. При 27°C (300 K) относительная влажность воздуха 51,5%. Парциальное давление водяных паров (определяется при 100%-ной влажности) при этой температуре 3,58 кн/м 2 (3580 н/м 2). Определить массу водяных паров, содержащихся в 1 M^3 воздуха при этой температуре.

Решение. Парциальное давление водяных паров в воздухе при относительной их влажности 51.5% (0,515) составит p_{H2O} = $0.515 \cdot 3580 = 1840 \text{ H/M}^2$

Следовательно, масса их в 1 M^3 воздуха равна

 $m_{\rm H2O}$ = 18·1840·1 /8314,4·300= 0,0132 кг (13,2 г)

Пример 10.4. В сосуде емкостью 2,0 ∂m^3 находится 5,23 ε азота и 7,10 ε водорода. Какое давление будет в сосуде при 25°С?

Решение. В сосуде находится

$$5,23/28,0=0.187$$
 моль N_2 и $7,10/2,0=3,550$ моль H_2

всего,187 + 3,550 = 3,737 *моль* газовой смеси, которая занимает объем 2,0 ∂M^3 (0,002 M^3). Давление смеси водорода и азота при 25°C (T= 298 K) определится по уравнению

$$3,737 \cdot 8,3144 \cdot 298 / 0,002 = 4,63 \cdot 10^6 \text{ H/m}^2 = 4,63 \text{ MH/m}^2 = 4,63 \text{MH/m}^2$$

Задание 10.2. В сосуд емкостью 30,0 дм 3 под вакуумом ввели 8 кг смеси газов при температуре t°C представленных в табл. 10.5. Подсчитать, какое давление окажется в сосуде.

Таблица 10.2. Варианты задания 10.2

Domyyoyy	Смесь газов, мас. ч					t°C	
Вариант	Ar	Не	N_2	CO	CH ₄	O_2	
1	20	40	12	14	16	0,4	20
2	18	42	10	16	18	0,2	30
3	22	44	8	18	20	0,3	40
4	24	48	6	20	24	0.5	50
5	26	12	4	24	12	0,6	60
6	16	16	12	12	14	0,4	20
7	20	18	10	14	16	0,2	30
8	18	20	8	16	18	0,3	40
9	22	26	6	18	16	0.5	50
10	24	28	4	20	18	0,6	60
11	26	24	12	24	20	0,2	20
12	16	40	10	12	24	0,3	30
13	20	42	8	14	12	0.5	40
14	18	44	6	16	14	0,6	50
15	22	48	4	18	16	0,4	60
16	24	12	12	20	18	0,2	20
17	26	16	10	24	20	0,3	30
18	16	18	8	12	24	0.5	40
19	20	20	6	14	16	0,6	50
20	18	26	4	16	18	0,2	60
21	22	28	12	18	20	0,3	20
22	24	24	10	20	24	0.5	30
23	26	40	8	24	12	0,6	40
24	16	42	6	12	14	0,4	50
25	22	44	4	16	16	0,2	60
26	24	48	8	18	18	0,3	20
27	26	12	6	20	16	0.5	30
28	16	16	4	24	18	0,6	40
29	20	18	12	12	20	0,2	60
30	18	20	10	14	24	0,3	20
31	22	26	8	16	12	0.5	30
32	24	28	6	18	14	0,6	40
33	26	24	4	20	16	0,4	50
34	16	48	8	24	18	0,2	60
35	20	12	6	16	20	0,3	30
36	18	16	4	18	20	0.5	20
37	26	18	12	20	24	0,6	30
38	16	20	10	24	12	0,2	40
39	20	48	8	12	14	0,3	50
40	18	12	6	14	16	0.5	60

Пример 10.5. В сосуд емкостью 6,0 дм³ под вакуумом ввели по 1 г. воды и гексана, которые нагреты до 250°С. Подсчитать, какое давление окажется в сосуде.

Решение. Общее давление P в сосуде составится из парциальных давлений воды $p_{\rm H2O}$ и гексана $p_{\rm C6H14}$ Парциальные давления паров воды (мол. масса=18,0) и гексана (мол. масса = 76,0) определятся по уравнению:

$$p_{\text{H2O}} = n_{\text{H2O}}RT/V;$$
 $p_{\text{C6H14}} = n_{\text{C6H14}}RT/V$

Отсюда общее давление в сосуде

$$P = n_{\rm H2O}RT/V + n_{\rm C6H14}RT/V = (m_{\rm H2O}/V_{\rm H2O} + m_{\rm C6H14}/V_{\rm C6H14}) \cdot RT/V$$

После подстановки в это уравнение числовых данных получаем $P = 50800 \text{ H/m}^2 = 50800 \text{ \Pia}.$

<u>Задание 10.3</u>. В сосуд емкостью 30,0 дм³ под вакуумом ввели 8 кг смеси газов и воду при температуре t°С представленных в табл. 3.5. Подсчитать, какое давление окажется в сосуде. (При решении задачи сначала массовые доли необходимо перевести в мас. %, затем определить массу каждого газа в сосуде и далее расчет вести по примеру).

Таблица 10.3. Варианты задания 10.3.

Вариант		Смесь газов, мас. ч						
Бариант	Ar	Не	N_2	CO	CH ₄	H ₂ O	-	
1	20	40	12	14	16	1,4	20	
2	18	42	10	16	18	2,2	30	
3	22	44	8	18	20	1,3	40	
4	24	48	6	20	24	1,5	50	
5	26	12	4	24	12	0,6	60	
6	16	16	12	12	14	1,4	20	
7	20	18	10	14	16	1,2	30	
8	18	20	8	16	18	1,3	40	
9	22	26	6	18	16	1,5	50	
10	24	28	4	20	18	1,6	60	
11	26	24	12	24	20	1,2	20	
12	16	40	10	12	24	1,3	30	
13	20	42	8	14	12	0,5	40	
14	18	44	6	16	14	0,6	50	
15	22	48	4	18	16	1,4	60	
16	24	12	12	20	18	1,2	20	
17	26	16	10	24	20	1,3	30	
18	16	18	8	12	24	1,5	40	
19	20	20	6	14	16	1,6	50	
20	18	26	4	16	18	2,2	60	
21	22	28	12	18	20	2,3	20	
22	24	24	10	20	24	2,5	30	
23	26	40	8	24	12	0,6	40	

Продолжение табл. 10.3

							t°C	
Рорионт		Смесь газов, мас. ч						
Вариант	Ar	Не	N_2	CO	CH_4	H_2O		
24	16	42	6	12	14	2,4	50	
25	22	44	4	16	16	1,2	60	
26	24	48	8	18	18	2,3	20	
27	26	12	6	20	16	1,5	30	
28	16	16	4	24	18	3,6	40	
29	20	18	12	12	20	2,2	60	
30	18	20	10	14	24	1,3	20	
31	22	26	8	16	12	2,5	30	
32	24	28	6	18	14	1,6	40	
33	26	24	4	20	16	1,4	50	
34	16	48	8	24	18	3,2	60	
35	20	12	6	16	20	0,3	30	
36	18	16	4	18	20	3,5	20	
37	26	18	12	20	24	0,6	30	
38	16	20	10	24	12	1,2	40	
39	20	48	8	12	14	1,3	50	
40	18	12	6	14	16	1,5	60	

Контрольные вопросы (теоретическая часть практических занятий 8 и 9)

- 1. Парциальные давления пара (газа) в ненасыщенном воздухе (смеси газов), определение
- 2. Определение плотности влажного воздуха (смеси газов)
- 3. Определение молекулярной массы влажного воздуха (смеси газов)
- 4. Газовая постоянная влажного воздуха (смеси газов)
- 5. Объем влажного воздуха (смеси газов)
- 6. Удельная массовая теплоемкость c_{cm} влажного воздуха (смеси газов)
- 7. Изобарная теплоемкость при атмосферном давлении и не высоких степенях перегрева влажного воздуха (смеси газов)
- 8. Закон Гей-Люссака с учетом давления водяных паров, вычисление (смеси газов)
- 9. Уравнения (Ван-дер-Ваальса) для *п* молей влажного газа (смеси газов)
- 10. Уравнение состояния газа при T_1 и T_2 ; P_2 , V_2 и T_2
- 11. Уравнение Клапейрона—Менделеева для влажного газа (смеси газов)
- 12. Коэффициент сжимаемости β, выбор.
- 13. Приведенное давление π
- 14. Приведенная температуры т

Практическое занятие 11 Работа изотермического процесса

Теоретическая часть

Изотермическим процессом называется процесс, идущий при постоянной температуре. Если газу сообщается Q Дж (кДж) тепла, причем температура, а следовательно, и внутренняя энергия его остаются постоянными (dU= 0), то все тепло, которое получает газ, идет только на совершение внешней работы L (при этом работа - максимальна)

$$dQ = PdV$$
 [5.11] или

$$Q = L = \int_{V_1}^{V_2} PdV.[5.11]$$

Подставляя значение для P из уравнения Менделеева -Клапейрона и интегрируя [5.11] получаем

$$Q = L = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{P_1}{P_2}.[5.12]$$

или, выражая n (число молей вещества) через его массу m и молекулярную массу M получим

$$Q = L = \frac{m}{M} RT \ln \frac{V_2}{V_1} = \frac{m}{M} RT \ln \frac{P_1}{P_2}.[5.13]$$

где P_1 и V_1 — давление и объем газа до расширения (или сжатия); P_2 и V_2 — давление и объем газа до сжатия (или расширения); T- абсолютная температура газа в процессе; R- газовая постоянная кДж/кмоль град (Дж/моль град); n — число молей газа; m — масса газа в системе, кг; M- молекулярная масса газа. Заменив натуральные логарифмы на десятичные и подставив значение R получим:

$$Q = L = 19,1nT \lg \frac{V_2}{V_1} = 19,1nT \lg \frac{P_1}{P_2}, \kappa \square \varkappa . [5.14]$$

для R, выраженной в Дж/кг град, получим

$$Q = L = 19100 \frac{m}{M} T \lg \frac{V_2}{V_1} = 19100 \frac{m}{M} T \lg \frac{P_1}{P_2},$$
Джс[5.15]

Пример 11.1. Изотермически сжимают 100 м^3 азота с 200 кПа до 1200 кПа (кН/м²). Температура азота 20 °C. Вычислить: 1) объем азота после сжатия; 2) работу , затраченную на сжатие; 3) количество тепла, выделенное при сжатии.

Решение. Количество азота (кмоль)по уравнению Менделеева-Клапейрона: n = PV/RT = $(200 \cdot 100)/(8,3144 \cdot 293) = 8,2$ кмоль

- 1) объем азота после сжатия $V_2 = P_1 \cdot V_1 / P_2 = 200 \cdot 100 / 1200 = 16,7 \text{ м}^3$
- 2) работа сжатия L= 19,1· 8,2· 293·lg (200/1200)= 45889,66·(-0,7781)=
- -35705,11 кДж = -35,70511 МДж (знак "-" показывает, что работа затрачивается на систему)
- 3) количество тепла, выделенное системой равно Q = 35,70511 MДж

Пример 11.2. Необходимо понизить давление 200 м^3 гелия со 100 кH/м^2 до 20 кH/м^2 при температуре 10 °C. Подсчитать: 1) объем гелия после разряжения; 2) работу расширения; 3) количество тепла, поглощенного системой

Решение. Количество гелия (кмоль)по уравнению Менделеева-Клапейрона: n = PV/RT = $(200 \cdot 100)/(8,3144 \cdot 283) = 8,5$ кмоль

- 1) объем гелия после разряжения $V_2 = P_1 \cdot V_1 / P_2 = 200 \cdot 100 / 20 = 1000,0 \text{ м}^3$
- 2) работа сжатия $L=19,1\cdot 8,5\cdot 283\cdot \lg (100/20)=45945,05\cdot (0,699)=32115,6$ кДж =32,1156 МДж (знак "+" показывает, что работа **совершена системой**)
- 3) количество тепла, поглощенное системой, равно $Q = -32,1156\,$ МДж (при расширении газа тепло поглощается)

Задание 11.1. Изотермически сжимают V м³ газа с 2,0 кПа до P кПа (кН/м²). Температура газа T °C. Вычислить: 1) объем газа после сжатия;

2) работу, затраченную на сжатие; 3) количество тепла, выделенное при сжатии.

Таблица 11.1.

Варианты задания 11.1.

Вариант	Газ	Р кН/м ²	T °C	V м ³
1	воздух	100	20	150
2	водяные пары	110	30	200
3	кислород	120	40	250
4	окись углерода	130	50	300
5	сероводород	160	60	350
6	этан	170	20	400
7	Азот	180	30	450
8	Аргон	200	40	500

Продолжение табл.11.1

			11p 0 0 0 110	menue muon.11.1
Вариант	Газ	Р кН/м ²	T °C	V M ³
9	Аммиак	210	50	550
10	Ацетилен	200	60	600
11	окись углерода	210	20	650
12	сероводород	220	30	700
13	воздух	240	40	750
14	водяные пары	260	50	800
15	кислород	180	60	550
16	окись углерода	200	20	600
17	сероводород	210	30	650
18	этан	220	40	700
19	Азот	240	50	750
20	Аргон	260	60	800
21	Аммиак	280	20	900
22	Ацетилен	300	30	1000
23	окись углерода	320	40	1200
24	сероводород	340	50	1400
25	воздух	360	60	100
26	водяные пары	100	20	150
27	кислород	110	30	200
28	окись углерода	120	40	250
29	сероводород	130	60	300
30	этан	140	20	350
31	Азот	150	30	400
32	Аргон	160	40	450
33	Аммиак	170	50	500
34	Ацетилен	180	60	550
35	окись углерода	100	40	200
36	сероводород	110	50	250
37	этан	120	60	300
38	Азот	130	20	350
39	Аргон	160	30	400
40	Аммиак	170	40	450

<u>Задание 11.2.</u> Необходимо понизить давление V м³ газа с P кН/м² до 10 кН/м² при температуре 10 °C. Подсчитать:1) объем гелия после разряжения; 2) работу расширения; 3) количество тепла, поглощенного системой

Таблица 11.2. Варианты задания 11.2.

Вариант	Газ	Р кН/м ²	T °C	V м ³
1	кислород	100	20	150
2	окись углерода	110	30	200
3	сероводород	120	40	250
4	этан	130	50	300
5	Азот	160	60	350
6	Аргон	170	20	400
7	Аммиак	180	30	450
8	Ацетилен	200	40	500
9	окись углерода	210	50	550
10	сероводород	200	60	600
11	воздух	210	20	650
12	водяные пары	220	30	700
13	кислород	240	40	750
14	окись углерода	260	50	800
15	сероводород	180	60	550
16	этан	200	20	600
17	Азот	210	30	650
18	Аргон	220	40	700
19	Аммиак	240	50	750
20	Ацетилен	260	60	800
21	окись углерода	280	20	900
22	сероводород	300	30	1000
23	этан	320	40	1200
24	Азот	340	50	1400
25	Аргон	360	60	100
26	Аммиак	100	20	150

Продолжение табл. 11.2

Вариант	Газ	Р кН/м ²	T °C	V м ³
27	воздух	110	30	200
28	водяные пары	120	40	250
29	кислород	130	60	300
30	окись углерода	140	20	350
31	Ацетилен	150	30	400
32	сероводород	160	40	450
33	этан	170	50	500
34	Азот	180	60	550
35	Аргон	100	40	200
36	воздух	110	50	250
37	водяные пары	120	60	300
38	кислород	130	20	350
39	окись углерода	160	30	400
40	Ацетилен	170	40	450

Контрольные вопросы:

- 1. Понятие изотермического процесса
- 2. Определение внешней работы в общем виде при сообщении газу Q Дж (кДж) тепла при изотермическом процессе
- 3. Определение внешней работы при сообщении газу Q Дж (кДж) тепла при изотермическом процессе по уравнению Менделеева-Клапейрона для n молей газа
- 4. Определение внешней работы при сообщении газу Q Дж (кДж) тепла при изотермическом процессе по уравнению Менделеева-Клапейрона для m κz газа и молекулярную массу M
- 5. Определение внешней работы при сообщении газу Q Дж (кДж) тепла при изотермическом процессе по уравнению Менделеева-Клапейрона для m κz газа и молекулярную массу M при замене натуральных логарифмов на десятичные и подставив значение R

Практическое занятие 12 Работа изобарического процесса

Теоретическая часть

Процесс, идущий при постоянном давлении, называется изобарическим.. Подставляя в уравнение [5.11] P= const и интегрируя получаем:

$$L=nP(V_2-V_1)$$
 [12.16]; $L=nR(T_2-T_1)$ [12.17]

Количество тепла отданное или полученное газом равно

$$Q=n\overline{C}_{p}(T_{2}-T_{1})$$
 [12.18]; $Q=n\overline{C}_{p}T(V_{2}-V_{1})/V_{1}$ [12.19]

где \bar{C}_p - средняя мольная теплоемкость газа в пределах температур T_2 и T_I при постоянном давлении, n- число киломолей газа, участвующего в процессе.

Как следует из первого закона термодинамики, все тепло, сообщенное газу при изобарическом процессе идет на изменение его внутренней энергии, на повышение температуры. Подробный анализ уравнения [12.19] показывает, что на повышение температуры газа расходуется $Q(1/\chi)$, а на работу расширения $Q[1-(1/\chi)]$ единиц тепла. Здесь величина χ представляет отношение теплоемкости газа при постоянном давлении к теплоемкости его при постоянном объеме. Данные приведены в табл. 12.1

Таблица 12.1.

Значение величины χ - отношения теплоемкости газа при постоянном давлении к теплоемкости его при постоянном объеме для некоторых газов.

Газ	$\chi = \bar{C}_p / \bar{C}_v$	газ	$\chi = \bar{C}_p / \bar{C}_v$
Азот	1,404	Аммиак	1,31
Аргон	1,67	Ацетилен	1,26
воздух	1,4	водород	1,41
водяные пары	1,324	гелий	1,67
кислород	1,401	метан	1,31
окись углерода	1,404	пропилен	1,17
сероводород	1,32	углекислый газ	1,304
этан	1,41	этилен	1,255

Пример 12.3 Произвести расчет работы при расширении 5 кмоль газа при его расширении от объема 20 м^3 до 40 м^3 при постоянном давлении 400 кH/m^2 .

Решение Подставляя значение в уравнение [5.16] получим

$$L=nP(V_2 - V_I) = 5 \cdot 400 \cdot (40-20) = 40000 \text{ кдж} = 40 \text{ МДж}$$

Пример 12.4 Какое количество тепла необходимо подвести к 8 кмоль газа, чтобы повысить его температуру с 10 °C до 90 °C, если давление газа остается постоянным 0,1 МН/м²; средняя теплоемкость газа в пределах этих температур равна 32,5 Дж/моль. Подсчитать: 1) какая часть тепла при этом расходуется на повышение температуры газа и какая часть на работу его расширения; 2) теплоемкость газа при постоянном объеме.

Решение Из уравнения [5.18] находим

$$Q = 8 \cdot 32,5 \cdot (363 - 283) = 20800 кДж$$

Работа расширения газа определится из уравнения [5.17]

$$L=nR(T_2-T_1)=8.8,1344.(363-283)=5206,016$$
 кДж (= Q_1)

На повышение температуры расходуется часть тепла

$$Q_1/Q=5206,016$$
 кДж /20800 кДж= 0,2502, или 25,02 %

Теплоемкость газа при постояннос давлении определится из соотношения

а)
$$\chi = \bar{C}_p / \bar{C}_v$$
 u б) $Q_I = Q[\ 1 - (1/\chi)]$, откуда $Q_I / Q = 1 - \bar{C}_v / \bar{C}_p$ или $\bar{C}_v = \bar{C}_p - \bar{C}_p \cdot Q_I / Q = 32.5 - 32.5 \cdot 0.2502 = 24.3685 Дж/моль$

В зависимости от условий проведения процесса для расчета средняя мольной теплоемкости газа при температурах от θ до $t^{o}C$ пользоваться данными, представленными в табл. 12.4

<u>Задание 12.1.</u> Произвести расчет работы при расширении n кмоль газа при его расширении от объема V_1 м³ до V_2 м³ при постоянном давлении P кН/м².

Таблица 12.2. Варианты задания 12.1.

Вариант	Количество газа, n кмоль	Р кН/м ²	$V_{I} \mathrm{m}^3$	V_2 M^3
1	6	100	20	150
2	4	110	30	200
3	3	120	40	250
4	2	130	50	300
5	8	160	60	350
6	7	170	20	400
7	9	180	30	450
8	5	200	40	500
9	6	210	50	550
10	4	200	60	600
11	3	210	20	650
12	2	220	30	700
13	8	240	40	750
14	7	260	50	800
15	9	180	60	550
16	5	200	20	600

Продолжение табл. 12.2

			прооблясс	ние тиол. 12.2
Вариант	Количество газа, n кмоль	Р кН/м ²	T °C	V м ³
17	4	210	30	650
18	8	220	40	700
19	7	240	50	750
20	9	260	60	800
21	5	280	20	900
22	6	300	30	1000
23	4	320	40	1200
24	3	340	50	1400
25	2	360	60	100
26	8	100	20	150
27	7	110	30	200
28	9	120	40	250
29	5	130	60	300
30	4	140	20	350
31	8	150	30	400
32	7	160	40	450
33	9	170	50	500
34	2	180	60	550
35	3	100	40	200
36	2	110	50	250
37	8	120	60	300
38	7	130	20	350
39	9	160	30	400
40	5	170	40	450

Задание 12.2. Какое количество тепла необходимо подвести к n кмоль газа, чтобы повысить его температуру с t_1 °C до t_2 °C, если давление газа остается постоянным P кН/м²; средняя теплоемкость газа в пределах этих температур равна \overline{C}_p (табл. 12.6.) Дж/моль. Подсчитать: 1) какая часть тепла при этом расходуется на повышение температуры газа и какая часть на работу его расширения; 2) теплоемкость газа при постоянном объеме.

Таблица 12.3. Варианты задания 12.2.

Вари-	Газ	Количество	Р кН/м ²	<i>t</i> ₁ °C	t₂°C
ант	1 43	газа, п кмоль	F KHI/M	i_1 C	ι_2 C
1	Ar	6	60	20	150
2	H_2	4	20	30	200
3	N_2	3	10	40	250
4	Не	2	13	50	300
5	O_2	8	10	60	350
6	CO	7	70	20	200
7	NO	9	80	30	250
8	SO_2	5	100	40	200
9	CO_2	6	110	50	550

Продолжение табл. 12.3

Dogger		I/ o wyyy o omn o			
Вари-	Газ	Количество	$\mathbf{P} \kappa H/M^2$	t_1 $^{\rm o}$ C	t_2 $^{\rm o}{ m C}$
ант		газа, п кмоль			
10	H_2S	4	26	60	200
11	H ₂ O	3	20	100	250
12	CO	2	20	30	100
13	NH_3	8	240	10	150
14	$\mathrm{CH_4}$	7	260	20	200
15	Ar	9	60	20	150
16	H_2	5	20	30	200
17	N_2	4	10	40	250
18	Не	8	13	50	300
19	O_2	7	10	60	350
20	CO	9	70	20	200
21	NO	5	80	30	250
22	SO_2	6	100	40	200
23	CO_2	4	110	50	550
24	H_2S	3	26	60	200
25	H ₂ O	2	20	100	250
26	Ar	8	100	20	150
27	H_2	7	110	30	200
28	N_2	9	120	40	250
29	Не	5	130	60	300
30	O_2	4	140	20	150
31	СО	8	150	30	200
32	NO	7	160	40	250
33	SO_2	9	170	50	300
34	CO_2	2	180	60	350
35	Ar	3	100	40	200
36	H_2	2	110	50	250
37	N_2	8	120	60	200
38	Не	7	130	20	350
39	O_2	9	160	30	200
40	CO	5	170	40	250

Средняя мольная теплоемкость газа при температурах от 0 до t $^{\rm o}$ С при нормальном давлении представлена в табл. 12.4

 $\it Tаблица \ 12.4$ Температурная зависимость средней мольной теплоемкости газов от 0 до $\it t$ $^{\rm o}{\rm C}$ при нормальном давлении

Газ		Температура, °С						
1 a3	0	100	200	300	400	500	600	700
H_2	28,8	29,0	29,1	29,15	29,2	29,3	29,4	29,5
O_2	29,3	29,6	30,1	30,5	30,9	31,3	31,8	32,0
N_2	28,4	28,7	29,0	29,4	29,6	30,0	30,3	30,6
CO	28,42	28,9	29,2	29,6	29,9	30,2	30,5	30,8
CO_2	37,7	39,2	40,6	41,9	43,2	44,4	45,5	46,5
CH ₄	33,4	36,6	39,8	42,0	45,5	48,3	50,9	53,3
H_2O, H_2S	32,5	33,2	33,8	34,5	35,1	35,6	36,0	36,6

						Продолж	сение таб	лицы 12.4
Газ				Темпер	атура, °С	7		
1 43	0	100	200	300	400	500	600	700
NH_3	34,7	36,2	37,8	39,4	40,8	42,3	43,7	45,1
NO	28,5	29,0	29,5	29,9	30,3	30,6	31,0	31,3
C_2H_4	39,4	42,1	48,6	53,3	57,9	62,5	67,0	71,7
SO_2	41,2	42,4	43,5	44,7	45,8	46,6	47,5	48,8
C_2H_2	46,2	47,8	49,6	51,3	53,0	54,4	56,0	57,4
воздух	28,6	29,0	29,3	29,7	30,0	30,3	30,6	30,9
СНОН	35,2	37,4	39,6	41,21	43,8	45,9	47,8	49,5
CH ₃ OH	49,0	53,7	57,0	62,8	65,8	70,0	74,2	-
C ₂ H ₅ OH	74,6	80,5	86,6	92,2	97,2	101,4	105,2	108,2
НСООН	54,0	57,8	61,6	64,7	66,2	68,3	70,7	-

Контрольные вопросы:

- 1. Понятие изобарического процесса.
- 2. Определение работы изобарического процесса при изменении температуры.
- 3. Определение работы изобарического процесса при изменении объема
- 4. Количество тепла отданное или полученное газом при изменении температуры.
- 5. Количество тепла отданное или полученное газом при изменении объема.
- 6. На что расходуется все тепло, сообщенное газу при изобарическом процессе
- 7. Какая величина теплоты расходуется на повышения температуры газа
- 8. Какая величина теплоты расходуется на работу расширения

Практическое занятие 13 Работа изохорного процесса

Теоретическая часть

Изохорным процессом называется процесс, протекающий при постоянном давлении (V = const). Все тепло , сообщаемое газу, идет исключительно на увеличение его внутренней энергии; работа L равна 0. Процесс выражается следующими уравнениями:

$$Q=n\overline{C}_{v}(T_{2}-T_{1})$$
 [13.20]; $Q=n\overline{C}_{v}T_{1}(P_{2}-P_{1})/P_{1}$ [13.21]

n – число молей газа, \overline{C}_{v} - средняя мольная теплоемкость газа при постоянном объеме а пределах температур T_{2} и T_{1} ; P_{1} и T_{1} – начальное состояние газа; P_{2} и T_{2} – конечное состояние газа;

Изохорные процессы протекают главным образом в автоклавах и в промышленной практике занимают незначительное место.

Средняя мольная теплоемкость газа при температурах от 0 до t $^{\circ}$ С при постоянном объеме представлена в табл. 13.1

Таблица 13.1

Температурная зависимость средней мольной теплоемкости

 \overline{C}_{ν} газов от 0 до t° С при постоянном объеме

Наименование газа	Средняя мольная теплоемкость, \overline{C}_{v} , кДж/кмоль град
Одноатомные газы (He, Ar, пары металлов)	20,82
Двухатомные (H ₂ , N ₂ , O ₂ , CO, NO и т.д)	20,6+0,00193t
CO ₂ , SO ₂	38,6+0,00248t
H_2O, H_2S	17,2+0,0090t
Все четырехатомные газы (NH ₃ и др.	41,9+0,00193t
Все пятиатомные газы (СН ₄ и др)	50,3+0,00193t

Пример 13.1 В автоклаве находится $0,040\,$ м³ азота под давлением $0,2\,$ МПа и $20\,$ °C. При нагревании давление в автоклаве поднялось до $0,4\,$ МПа. Определить:

- 1) Сколько тепла сообщено азоту в автоклаве, если
- $\overline{C}_{v} = 20,935 \text{ кДж/моль · град}$
 - 2) До какой температуры нагреется азот

Решение. Нагревание азота протекает при постоянном объеме - протекает изохорический процесс. Определим количество молей азота в автоклаве

$$n = P_1 V_1 / RT_1 = (200 \cdot 0.040) / (8.1344 \cdot 293) = 3.357 \cdot 10^{-3}$$
 кмоль

1) По уравнению [13.21] определяем количество тепла

$$Q=n\overline{C}_{v}T_{I}(P_{2}-P_{I})/P_{I} =$$

= $[3,357 \cdot 10^{-3} \text{ кмоль} \cdot 20,935 \text{ кДж/моль} \cdot \text{град} \cdot 293 \text{ град} \cdot (400 - 200) \text{ кH/m}^2] / 200 \text{ кH/m}^2 = 20,592 \text{ кДж};$

2) По уравнению [13.20] определяем температуру T_2 азота

$$\emph{\textit{Q}}=\emph{\textit{n}}\ \overline{\emph{\textit{C}}}_{\,^{V}}(\emph{\textit{T}}_{2} ext{-}\emph{\textit{T}}_{\textit{I}})$$
 20592 Дж = 3,357 моль \cdot 20,935 кДж/моль \cdot град ($\emph{\textit{T}}_{2}$ -293)

$$T_2 = 586 \text{ K} (313 \, ^{\circ}\text{C})$$

Задание 13.1. В автоклаве с объемом V_I находится газ под давлением P_I МПа и t_I °С. При нагревании давление в автоклаве поднялось до P_2 МПа. Определить: 1) Сколько тепла сообщено газу в автоклаве; 2) До какой температуры нагреется газ Варианты заданий представлены в табл. 13.1

Варианты задания 13.1

Вари- ант	Газ	Объем газа в ав- токлаве, м ³	P_1 кH/м ²	t₁ °C	Р 2 кН/м ²
1	O_2	0,06	60	20	150
2	CO	0,04	20	30	200
3	NO	0,03	10	40	250
4	SO_2	0,02	13	50	300
5	CO_2	0,08	10	60	350
6	H ₂ S	0,07	70	20	200
7	H ₂ O	0,09	14	30	250
8	CO	0,05	10	40	200
9	Ar	0,06	18	50	550
10	H_2	0,04	26	60	200
11	N_2	0,03	20	100	250
12	Не	0,02	20	30	100
13	Не	0,08	24	10	150
14	O_2	0,07	30	20	200
15	СО	0,09	60	20	150
16	NO	0,05	20	30	200
17	SO_2	0,04	10	40	250
18	CO_2	0,08	13	50	300
19	H_2S	0,07	10	60	350
20	H ₂ O	0,09	70	20	200
21	Ar	0,05	40	30	250
22	H_2	0,06	18	40	200
23	N_2	0,04	26	50	550
24	Не	0,03	20	60	200
25	O_2	0,02	20	100	250
26	CO	0,08	24	20	150
27	NO	0,07	30	30	200
28	SO_2	0,09	60	40	250
29	CO_2	0,05	20	60	300
30	Ar	0,04	10	20	150
31	H_2	0,08	13	30	200
32	N_2	0,07	10	40	250
33	Не	0,09	70	50	300
34	O_2	0,02	40	60	350
35	CO	0,03	60	40	200
36	NH ₃	0,02	20	50	250
37	CH ₄	0,08	10	60	200
38	Ar	0,07	13	20	350
39	H_2	0,09	10	30	200
40	N_2	0,05	70	40	250

Контрольные вопросы:

- 1. Понятие изохорного процесса.
- 2. На что направлено подведенное тепло в изохорном процессе.

- 3. Величина работы в изохорном процессе.
- 4. Определение количества тепла, подведенного к изохорному процессу при изменении температуры
- 5. Определение количества тепла, подведенного к изохорному процессу при изменении давления
- 6. Определение количества молей газа в автоклаве.
- 7. Определение температуры газа в автоклаве при подведении тепла

Практическое занятие 14 Второй закон термодинамики.

Вычисление изменения термодинамических функций

Теоретическая часть

Пример 14.1. Вычислить изменение энтропии при переходе 1 κ 2 воды, взятой при 25°C, в состояние перегретого пара с температурой 200°C при нормальном давлении. Принять: а) теплоемкость воды равной 4,2 кДж/кг и независимой от температуры; б) среднюю мольную теплоемкость C_{ν} водяных паров при перегреве их от 100 до 200°C равной 33,8 кДж/кмоль и теплоту испарения воды равной 2260 кДж/кг.

Peшение. В данном примере ΔS определится как сумма трех величин:

- 1) ΔS_I изменение энтропии воды при нагревании ееот25°C (298°K) до температуры кипения (373°K);
- 2) ΔS_2 то же при переходе воды из жидкого в парообразное состояние;
- 3) ΔS_3 то же при перегреве водяных паров до 200°С (473°К). Подсчитаем каждую из этих величин в отдельности:

$$\Delta S_I = \int_{200}^{373} \frac{C_p dT}{T} = \overline{C}_p \cdot 2.3 \cdot \lg(373 / 298) = \overline{C}_p \cdot 2.3 \cdot \lg(373 / 298) = 0,94 \text{ кДж/кг}$$

 $\Delta S_{2} = r_{ucn}/T = 2260/373 = 6,06 \text{ кДж/кг}$

$$\Delta S_3 = \int_{272}^{473} \frac{C_p dT}{T} = \overline{C}_p \cdot 2.3 \cdot \lg(473/373) = \overline{C}_p \cdot 2.3 \cdot \lg(473/373) = 8.0$$
 кДж/кмоль

 ΔS_3 (кДж/кг) = (8,0 кДж/кмоль)/18 = 0,44 кДж/кг

Отсюда:

$$\Delta S = 0.94 + 6.06 + 0.44 = 7.44 \text{ кДж/кг}.$$

Пример 14.2. Вычислить изменение термодинамических функций

1 кмоль углекислого газа при нагревании его от 0 до 1000°C при нормальном давлении.

Решение. Подсчитаем количество тепла, необходимое для нагревания 1 моль CO_2 от $0^{\circ}C$ (273°K) до $1000^{\circ}C$ (1273°K), пользуясь выражением температурной зависимости его теплоемкости при нормальном давлении (см. табл. 6.2).

$$C_p^{CO_2} = 32.2 + 0.0222T - 3.48 \cdot 10^{-6}T^2; Q = \int_{273}^{1273} (32.2 + 0.0222T - 3.48T^2)$$

Интегрируя это уравнение и вынося $(T_2 - T_1)$ за скобку, получим

$$Q = \Delta I = (1273 - 273) \cdot [32,2 + 0,0111 (1273 + 273) - 1,16 \cdot 10^{-6} (1273^2 + 1273 \cdot \cdot \cdot 273 + 273^2)] = 40$$
 930 кДж/ кмоль. Изменение энтропии подсчитываем по

уравнению
$$\Delta S = \int_{273}^{1273} \frac{C_p dT}{T} = \int_{273}^{1273} \left[(32.2/T) + 0.0222 - 3.48 \cdot 10^{-6} T \right] dT$$

Отсюда: ΔS =32,2 ln (1273/273) + 0.0222 (1273-273) – 1,74·10⁻⁶ (1273² - 273²) = 66 кДж/кмоль·град

Подсчитаем $L = \Delta(PV)$ в пределах $0-1000^{\circ}$ С

$$L = \Delta(PV) = PV_2 - PV_1 = RT_2 - RT_1 = 8,3144 (1273 - 273) = 8310$$
 кДж/кмоль

Отсюда изменения внутренней (ΔU) и свободной (ΔF) энергии CO_2 будут равны:

$$\Delta U = Q$$
 — $\Delta(PV) = 40$ 930 —8310 = 32620 кДж/кмоль,

$$(\Delta F)_p = \Delta I$$
 — $T\Delta S = 40 \ 930$ — $1273 \bullet 66 =$ — $43 \ 090 \ кДж/кмоль.$

Задание 14.1. Вычислить изменение энтропии при переходе m κ 2 воды, взятой при t_1 °С, в состояние перегретого пара с температурой t_2 °С при нормальном давлении. Принять: а) теплоемкость воды равной 4,2 кДж/кг и независимой от температуры; б) среднюю мольную теплоемкость C_{ν} водяных паров при перегреве их от 100 до 200°С равной 33,8 кДж/кмоль и теплоту испарения воды равной 2260 кДж/кг. Варианты задания представлены в табл. 14.1

Таблица 14.1 Варианты задания 14.1

Вариант	Масса воды, т кг	t₁°C	t₂°C
1	20	12	180
2	28	10	185
3	16	8	190
4	24	6	200
5	22	12	170
6	20	14	160
7	18	16	155
8	14	18	180

Продолжение табл.14.1

Вариант	Масса воды, т кг	t ₁ °C	t₂°C
9	26	24	185
10	12	20	190
11	10	22	200
12	8	12	170
13	4	10	160
14	5	8	155
15	2	6	180
16	20	14	185
17	18	16	190
18	14	18	200
19	26	24	170
20	12	20	160
21	10	20	155
22	8	22	160
23	4	14	155
24	5	16	180
25	2	18	185
26	28	24	190
27	16	20	200
28	24	22	170
29	22	14	160
30	20	16	155
31	18	18	180
32	14	24	185
33	10	8	170
34	8	6	160
35	18	14	155
36	14	16	180
37	26	18	185
38	12	24	190
39	10	20	200
40	8	20	170

Задание 14.2. Вычислить изменение термодинамических функций

n кмоль газа при нагревании его от 0 до t_2 °C при нормальном давлении . Температурная зависимость мольной теплоемкости газов при нормальном давлении представлены табл. 14.2. Варианты задания 14.2 в табл. 14.3.

Таблица 14.2 Температурная зависимость истинной мольной теплоемкости газов и паров при нормальном давлении

Наименование газа	Истинная мольная теплоемкость,	Температура гра-
	кДж/моль град	ницы, °С
Не, Ne, Ar, Kr, Хе и пары	20,82	-
металлов		
Cl_2 , Br_2 , I_2	31 + 0,0042 T	0-2000
H_2	$28,8 + 0,000276T + 1,17 \cdot 10^{-6} T^2$	0-1700
H_2O, H_2S	$28,8 + 0,01375T - 1,435 \cdot 10^{-6} T^2$	0-2000
O ₂ , N ₂ , CO, HCl,воздух	$28,3 + 0,00254T + 0,545 \cdot 10^{-6} T^2$	0-2000
CO_2 , SO_2	$32,2+0,0222T-3,48\cdot10^{-6}T^{2}$	0-2200
NH ₃	$24,8 + 0,0376T - 7,40 \cdot 10^{-6} T^2$	0-1700
NO_2	$29,3 + 0,0298T - 3,61 \cdot 10^{-6} T^2$	-
CH ₄	$14,15 + 0,075T - 17,54 \cdot 10^{-6} T^2$	0-1000
C_2H_6	$5,76 + 0,1755T - 0,058 \cdot 10^{-3} T^2$	0-1200
C_3H_8	$0,504 + 0,270T - 0,0952 \cdot 10^{-3} T^2$	0-1200
C_2H_2	$24,4+0,0222T-0,0231\cdot10^{-3}\ T^2$	0-1200
C_6H_6	$-21,1+0,401T-0,170\cdot10^{-3}T^{2}$	-
S_2	35,9 + 0,00125T	0-1200
SO_3	18,85 + 0,067T	-
СН ₄ ОН (газ)	$20,45 + 0,1037T - 0,0247 \cdot 10^{-3} T^2$	0-400
С ₂ Н ₅ ОН (газ)	$9,05 + 0,208T - 0,0651 \cdot 10^{-3} T^2$	0-400
СН ₃ СНО (газ)	$19,0+0,1395T-0,0389\cdot10^{-3}\ T^2$	0-400
НСНО (газ)	$20,94 + 0,0586T - 0,0156 \cdot 10^{-3} T^2$	0-1250
НСООН (газ)	$30,70 + 0,0895T - 0,0346 \cdot 10^{-3} T^2$	0-1250

Таблица 14.3 Варианты задания 14.2

Вариант	Газ	Количество молей	Температура,
Вариант	1 as		1 11
		газа, п	t₂ °C
1	NH_3	20	1500
2	NO_2	40	800
3	CH ₄	18	600
4	C_2H_6	16	1000
5	C ₃ H ₈	26	200
6	C_2H_2	14	800
7	C ₆ H ₆	34	400
8	S_2	12	1000
9	SO ₃	8	200
10	СН ₄ ОН (газ)	6	300
11	С ₂ Н ₅ ОН (газ)	32	350
12	СН ₃ СНО (газ)	36	400
13	НСНО (газ)	26	800
14	НСООН (газ)	38	1000

Продолжение таблицы 14.3

Вариант Газ		Количество молей	Температура,
		газа, п	t₂°C
15	Cl ₂	16	1200
16	O_2	26	1400
17	N_2	14	1600
18	Br ₂	34	1800
19	H_2	12	1500
20	I_2	8	1500
21	CO_2	6	1700
22	SO_2	36	1800
23	CO	26	800
24	воздух	38	700
25	H ₂ O	12	400
26	H_2S	8	1200
27	HCl	6	600
28	НСНО (газ)	32	1000
29	НСООН (газ)	36	1200
30	Cl ₂	26	1000
31	O_2	38	1200
32	C ₃ H ₈	16	1200
33	C_2H_2	26	1200
34	C ₆ H ₆	14	1000
35	S_2	34	600
36	SO ₃	12	200
37	NH ₃	8	400
38	NO_2	6	500
39	CH ₄	32	600
40	С ₂ Н ₅ ОН (газ)	36	300

Контрольные вопросы:

- 1. ΔS_I изменение энтропии воды при нагревании
- $2. \Delta S_2$ изменение энтропии воды при переходе воды из жидкого в парообразное состояние
- $3.\,\Delta S_3\,$ изменение энтропии воды при перегреве водяных паров
- 4. Общее изменение энтропии
- 5. Определение теплоемкости газа у учетом температурной зависимости.
- 6. Определение количества тепла, подведенного к газу.
- 7. Определение изменения энтропии газа.
- 8. Определение работы газа
- 9. Определение внутренней энергии ΔU
- 10. Определение свободной энергии (ΔF)

Практическое занятие 15 Третий закон термодинамики Работа адиабатического и политропического процесса

Теоретическая часть

Третий закон термодинамики был установлен Нернстом (1864—1941, на основе обобщения экспериментальных исследований различных веществ при сверхнизких температурах. Он известен как тепловая теорема или принцип Нернста: в любом изотермическом процессе, проведенном при абсолютном нуле температуры, изменение энтропии системы равно нулю, т.е. $\Delta S_{T\to 0} = 0$, $S = S_o = \text{const.}$ Иначе говоря при абсолютном нуле температуры изотермический процесс одновременно является изоэнтропийным. Принцип Нернста был развит Планком, который предположил, что при абсолютном нуле температуры энтропия равна нулю.

В соответствии с третьим законом изотерма-изоэнтропа T=0, S=0. в sT-координатах вырождается в точку (начало координат).. Следствием третьего закона термодинамики является положение о недостижимости абсолютного нуля температуры.

Работа адиабатического и политропического процесса

Адиабатическим называется такой процесс, при котором между системой и окружающей средой не происходит теплообмена, т. е. dQ=0, а работа, затраченная на систему или совершенная системой, идет исключительно на изменение её внутренней энергии L=- ΔU .

Уравнения адиабатического процесса:

$$PV^{\chi} = \text{const} \ [6.14] \ 39 \ ; TV^{\chi-1} = \text{const} \ [6.15] \ 39-a \ ; TP^{(1-\chi)/\chi} = \text{const} \ [6.16] \ 39-6$$

где показатель адиабаты χ –величина постоянная и равна $\chi = \bar{C}_p / \bar{C}_v$

На основании вышеизложенного получаем уравнения состояния системы при адиабатическом процессе,

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\chi-1} = \left(\frac{P_2}{P_1}\right)^{\frac{\chi-1}{\chi}} \qquad \qquad [6.17] \ 40 \ \ \text{где} \ P_1 \ , \ V_1 \ , \ T_1 - \text{начальное состояние газа; } P_2 \ , \ V_2 \ , \ T_2$$

– конечное состояние газа. Решая уравнение Менделеева-Клапейрона относительно работы в адиабатическом процессе имеем:

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right] = \frac{nRT_1}{\chi - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right]$$
 [6.18]

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right] = \frac{nRT_1}{\chi - 1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right]$$
 [6.19]

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \frac{T_2}{T_1} \right] = \frac{nRT_1}{\chi - 1} \quad \left[\frac{T_1 - T_2}{T_1} \right] = \frac{nR}{\chi - 1} [T_1 - T_2] \quad [6.20]$$

$$L = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1} \quad [6.21]$$

Уравнения [6.18] - [6.21] дают выражения работы абсолютно адиабатического процесса. В этом процессе рабочее тело (газ) при адиабатическом сжатии или расширении не совершает замкнутого (кругового) цикла. Однако сжатие или расширение газа или пара в

двигателях протекает таким образом, что газ или пар, совершая в цилиндре двигателя работу, периодически возвращается в начальное состояние. Работа такого замкнутого (кругового) процесса в χ раз больше работы абсолютного адиабатического процесса. Следовательно при подсчете работы двигателей и компрессоров уравнения [6.18] - [6.21] примут вид

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right] = \frac{\chi}{\chi - 1} nRT_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right]$$
 [6.22]

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right] = \frac{\chi}{\chi - 1} nRT_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right]$$
 [6.23]

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left[1 - \frac{T_2}{T_1} \right] = \frac{\chi}{\chi - 1} nR \left[T_1 - T_2 \right]$$
 [6.24]

$$L = \frac{\chi(P_1 V_1 - P_2 V_2)}{\chi - 1}$$
 [6.25]

В действительности сжатие и расширение в этих процессах протекает не адиабатически и не изотермически, и лишь в определенных случаях только приближается к одному из них. Такие реальные процессы, в которых отводится тепло наружу или поступает в систему извне называются *политропными процессами*. Во се уравнения адиабаты вместо показателя адиабаты χ входит показатель политропы m. Политропические уравнения будут выражены:

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{m-1} = \left(\frac{P_2}{P_1}\right)^{\frac{m-1}{m}}$$
 [6.26]

$$L = \frac{m}{m-1} P_1 V_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{m-1} \right] = \frac{m}{m-1} nR T_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{m-1} \right]$$
 [6.27]

$$L = \frac{m}{m-1} P_1 V_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{m-1}{m}} \right] = \frac{m}{m-1} nRT_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{m-1}{m}} \right]$$
 [6.28]

Уравнения [6.26] и [6.28] применимы как к адиабатическим, так и к политропическим процессам.

В случае расширения газа либо по закону адиабаты, либо по закону политропы имеют место два случая: 1) расширение идет с совершением внешней работы (сжатый газ при расширении воздействует на поршень цилиндра и через него производится работа);

2) расширение идет без совершения внешней работы, например, когда газ через вентиль переходит из сосуда с высоким давлением в сосуд с низким давлением (дросселирование газа). В этом случае все уравнения [6.14] - [6.28] ко второму процессу не применимы. Для второго случая используются эмпирические уравнения для подсчета перепада температур:

$$\Delta T = \alpha \left(\frac{273}{T_1}\right)^2 \Delta P$$
 [6.29]; $\Delta T = (a + b\Delta P) \left(\frac{273}{T_1}\right)^2 \Delta P$ [6.30];

$$\Delta P = 5,75 \cdot 10^{-2} \left[\Delta T - 2043,55 \lg \left(1 - \frac{\Delta T}{888,5 - T_2} \right) \right]$$
 [6.31]

В уравнениях [6.29] - [6.30] ΔT – перепад температур, ΔP - перепад давлений в кН/м². T_1 и P_1 –температура и давление газа до расширения; T_2 и P_2 –температура и давление газа после расширения; α , α и b – коэффициенты, найденные эмпирическим путем представлены в табл. 15.1

Уравнения [6.29] - [6.30] дают точные результаты для сравнительно высоких температур и низких давлений. В расчетной практике при других условиях пользуются тепловыми (T - S) и (I - T) диаграммами.[2]

Значения эмпирических коэффициентов

Примеры задач и варианты для их решения

 $0.31 \cdot 10^{-3}$

Пример 15.1. 150 м 3 водорода подвергаются адиабатическому сжатию от 100 кН/м 2 до 500 кН/м 2 ; температура газа до сжатия 17 $^{\circ}$ С. Подсчитать температуру и объем водорода после сжатия , если $\chi_{\rm H2} = 1,41$

Решение. По уравнению [6.26] определяем T_2 и V_2

Газ

2. Углекислый газ

1.Кислород

3. Воздух

5. Водород

4. Азот

$$T_2$$
= 290 · (500/100)^{0.29}=462 K (189 °C)
 V_2 = 150^{0.41} · (290/462)= 48.4 m³

Пример 15.2. Компрессор засасывает 100 м^3 водорода в 1 мин (60 сек) и сжимает его от 100 кH/m^2 до 800 кH/m^2 . Определить потребную мощность двигателя компрессора, если сжатие водорода идет адиабатически, коэффициент полезного действия (к.п.д.) от двигателя к компрессору равен 0.8.

Решение. По уравнению [6.23] получаем

$$L = [(1,\!41 \cdot 100 \cdot 100)/(1,\!41 \cdot 1)] \cdot [\ 1 \cdot \ (800/100)^{0,29}] = -28600$$
к
Дж $*)$

Мощность компрессора составит W= 28600 кДж/60 сек= 476 кВт, мощность двигателя $W_{\partial s}$ = $W/\dot{\eta}$ = 476/0,8=595 кВт

Варианты решения задач представлены в табл. 15.2 и 15.3

Задание 15.1. Заданный объем газа V_I подвергается адиабатическому сжатию от P_I до P_2 . температура газа до сжатия $20^{\rm o}$ С. Подсчитать температуру и объем газа после сжатия, $\chi_{\rm rasa}$ определить по табл. 15.2

Таблица 15.1

^{*)} знак минус свидетельствует о том, что работа затрачивается на систему

Варианты задания 15.1

Вариант	Газ	V_I , M^3	P_1 , $\kappa H/m^2$	P_2 , $\kappa H/M^2$
1	кислород	100	70	600
2	окись углерода	120	80	260
3	сероводород	140	90	800
4	этан	180	100	340
5	Аргон	200	40	420
6	воздух	260	50	560
7	азот	220	60	380
8	метан	240	70	490
9	пропилен	120	80	500
10	углекислый газ	140	20	480
11	этилен	180	30	600
12	Аммиак	200	90	260
13	Ацетилен	260	100	800
14	водород	220	60	340
15	гелий	240	70	420
16	воздух	100	80	560
17	азот	120	20	380
18	метан	140	30	490
19	пропилен	180	90	500
20	углекислый газ	200	100	480
21	этилен	260	90	320
22	Аммиак	220	100	260
23	Ацетилен	240	40	800
24	водород	120	50	340
25	гелий	140	60	420
26	метан	180	20	560
27	пропилен	200	30	380
28	углекислый газ	260	90	490
29	этилен	220	100	500
30	Аммиак	240	90	480
31	Ацетилен	140	100	600
32	водород	180	40	260
33	гелий	200	50	800
34	воздух	260	60	340
35	азот	220	100	420
36	метан	240	90	560
37	пропилен	120	100	380
38	углекислый газ	140	40	490
39	этилен	180	50	500
40	Аммиак	200	60	480

Задание 15.2. Компрессор засасывает V_1 м³ газа в 2 мин и сжимает его от P_1 кН/м² до P_2 кН/м². Определить потребную мощность двигателя компрессора, если сжатие газа идёт адиабатически, коэффициент полезного действия (к.п.д.) от двигателя к компрессору равен 0,85.

Таблица 15.3 Варианты задания 15.2

Вариант	Газ	V_I , M^3	P_1 , к H/M^2	P_2 , $\kappa H/M^2$
1	кислород	100	90	800
2	окись углерода	120	100	340
3	сероводород	140	40	420
4	этан	180	50	560
5	Аргон	200	60	380
6	воздух	260	70	490
7	азот	220	80	500
8	метан	240	20	480
9	пропилен	120	30	600
10	углекислый газ	140	90	260
11	этилен	180	100	800
12	Аммиак	200	90	340
13	Ацетилен	260	100	420
14	водород	220	40	560
15	гелий	240	50	380
16	воздух	100	60	490
17	азот	120	70	500
18	метан	140	80	480
19	пропилен	180	90	500
20	углекислый газ	200	100	480
21	этилен	260	40	400
22	Аммиак	220	50	260
23	Ацетилен	240	60	800
24	водород	120	70	340
25	гелий	140	80	420
26	метан	180	20	560
27	пропилен	200	30	380
28	углекислый газ	260	90	490
29	этилен	220	100	500
30	Аммиак	240	90	480
31	Ацетилен	140	100	600
32	водород	180	40	260
33	гелий	200	70	800
34	воздух	260	80	340
35	азот	220	90	420
36	метан	240	100	560

Продолжение табл. 15.3

Вариант	Газ	V_I , M^3	P_1 , к H/M^2	P_2 , κH/m ²
37	пропилен	120	40	380
38	углекислый газ	140	50	490
39	этилен	180	60	500
40	Аммиак	200	70	480

Контрольные вопросы:

- 1. Третий закон термодинамики, принцип Нернста
- 2. Принцип адиабатического процесса
- 3. Уравнения адиабатического процесса взаимосвязи давления, объема, температуры.
- 4. Показатель адиабаты
- 5. Уравнения состояния системы при адиабатическом процессе
- 6. Уравнение Менделеева-Клапейрона относительно работы в адиабатическом процессе при изменении объема.
- 7. Уравнение Менделеева-Клапейрона относительно работы в адиабатическом процессе при изменении давления.
- 8. Уравнение Менделеева-Клапейрона относительно работы в адиабатическом процессе при изменении температуры.
- 9. Политропные процессы, показатель политропы m.
- 10. Выражения для политропических уравнений

Практическое занятие 16

Значение третьего закона термодинамики для расчетов равновесий.

Теоретическая часть

Принятый в настоящее время метод расчета равновесий с помощью третьего закона термодинамики основывается на определении абсолютных энтропии всех участвующих в реакции веществ. Он полностью вытеснил метод «химических постоянных», существовавший ранее. В методе абсолютных энтропии константа равновесия химической реакции и, следовательно, ее выход вычисляются из уравнений:

$$\Delta G^0 = -RT \ln K_p \text{ if } \Delta G^0 = \Delta H^0 - T\Delta S^0.$$

Таким образом, задача сводится к нахождению теплового эффекта реакции (ΔH°) и изменения энтропии реакции (ΔS^{0}).

Для решения первой части этой задачи требуется знание температурной зависимости изменение ΔC_P реакции и величины (ΔH°) при одной температуре, это позволя-

ет при помощи уравнения Кирхгофа вычислить постоянную (ΔH°_{0}) и тем самым (ΔH°_{T}) при любой температуре.

Решение второй части задачи требует знания абсолютных величин энтропии. Так, например, в общем виде для реакции $A + B = 2D \Delta So = 2S^{\circ}_{D} - S^{0}_{A} - S^{0}_{B}$.

Значение третьего закона термодинамики для расчетов равновесий состоит в том, что он дает возможность найти величины энтропии участвующих в реакции веществ $(2S^{\circ}_{D}, S^{\circ}_{A}, S^{0}_{B})$. Поскольку энтропия чистого кристаллического вещества при абсолютном нуле равна нулю, то при любой другой температуре ее значение может быть найдено из уравнения

(IV.3), T.e
$$S_T^0 = \int_0^T \Delta C_p \, \mathrm{d} \ln T,$$

если имеются точные данные о теплоемкостях при низких температурах. Методы таких измерений основаны на применении калориметров, помещаемых в вакуумные оболочки, уменьшающие потери тепла вследствие теплопроводности. В калориметр вводится точно измеряемое весьма малое количество тепла путем пропускания электрического тока. При помощи большого числа последовательно соединенных термопар или чувствительного термометра сопротивления измеряется соответствующее малое повышение температуры. Теплоемкости измеряются до температур, близких к абсолютному нулю.

Интегрирование уравнения (IV.3) обычно проводится графическим методом путем построения кривой в координатах Cp—In T, как это показано на рис. IV.2. Отрезок кривой BC представляет экспериментальные величины теплоемкостей вещества в твердом состоя нии.

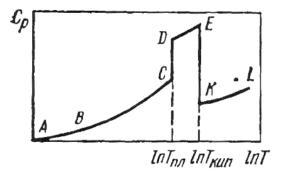


Рис. IV.2. Графическое определение энтропин

Точка B соответствует наиболее низкой температуре, при которой для данного вещества возможны надежные измерения теплоемкости (обычно 10—15 K). Теплоемкость при более низких температурах, приближающихся к абсолютному нулю (отрезок кривой AB), может быть удовлетворительно вычислена по уравнению

Дебая, согласно которому она в этой области пропорциональна третьей степени абсолютной температуры. Так как теплоемкость твердых тел ниже 10 К очень быстро уменьшается с изменением температуры, эта часть кривой оказывает небольшое влияние на точность окончательного результата.

Площадь, ограниченная кривой ABC, осью In T и ординатой, соответствующей значению Тпл, дает величину энтропии твердого тела при этой температуре. Точка C соответствует температуре плавления твердого тела, при которой происходит резкое увеличение теплоемкости, и отрезок DE представляет теплоемкость жидкости. При плавлении происходит поглощение тепла ΔH пл, приводящее к увеличению энтропии на величину

$$\Delta Sn\pi = \Delta Hn\pi/Tn\pi$$

Точка E соответствует температуре кипения жидкости при атмосферном давлении. Площадь, ограниченная кривой DE и ординатами температур плавления и кипения, дает увеличение энтропии при нагревании жидкости меж; этими температурами. При температуре кипения происходит резкое уменьшение теплоемкости до величины, соответствующей теплоемкости газа (точка K). При испарении энтропия возрастает на величину

 $\Delta Sucn = \Delta \ Hucn \ / \ Tucn$. Дальнейшее увеличение энтропии газа определяется величиной площади, лежащей под кривой KL . В случае, если в твердом состоянии тело претерпевает полиморфное превращение, то также необходимо учесть соответствующее увеличение энтропии ΔS превр $=\Delta H$ превр $/\ T$ превр

Третий закон термодинамики позволяет найти постоянную интегрирования в уравнении (IV.1). Рассмотрим для этого сначала реакции между конденсированными фазами. В этом случае вблизи абсолютного нуля экспериментально достигается состояние вырождения в котором свойства тел не зависят от температуры, в частности в этой области $\Delta H^{\circ} = \Delta H^{\circ}_{0}$ Учитывая это, из уравнения (IV.1) получим:

$$\Delta G^0 = -T\Delta H_0^0 \int \frac{\mathrm{d}T}{T^2} + IT = \Delta H_0^0 + IT.$$

Продифференцируем это уравнение по температур в области вырожденного состояния. Согласно уравнениям (IV.4) и (IV.5) вблизи абсолютного нуля обе производные последнего уравнения обращаются в нуль и, следовательно, I=0.

$$(\partial \Delta G^0/\partial T)_{\scriptscriptstyle B} = (\partial \Delta H_0^0/\partial T)_{\scriptscriptstyle B} + I.$$

Этот вывод очень важен, так как он устраняет неопределенность в уравнении для энергии Гиббса при реакции между конденсированными телами и дает возможности расчета соответствующих равновесий. При этом уравнении (IV.1) упрощается:

$$\Delta G^0 = -T \int \frac{\Delta H^0}{T^2} dT. \tag{IV.6}$$

Поскольку это уравнение справедливо для любой температуры, то величина ΔH^0 , стоящая под знаком интеграла, должна рассматриваться как функция температуры.

Очевидно также, что практическое использование уравнения (IV.6) для расчетов возможно лишь при условии, что известны теплоемкости участвующих в реакции веществ вплоть до температур, близких к абсолютному нулю.

Для газов температурная зависимость теплоемкостей в области вырождения не поддается экспериментальному измерению, что приводит к неприменимости уравнения (IV.6) к реакциям с участием, газов.

В ряде случаев при расчетах равновесий при помощи третьего закона термодинамики полезно использовать различные закономерности, позволяющие приближенно оценивать величины, которые экспериментально не определены и отсутствуют в справочниках.

В. А. Киреев показал, что энтропия образования соединений из атомов ΔS°_{a} зависит главным образом от числа атомов в молекуле и для однотипных соединений приблизительно, одинакова. Определение величины ΔS°_{a} для соединения, например, вольфрамата какого - либо) двухвалентного металла, может быть осуществлено путем комбинирования следующих реакций

$$Me_{\Gamma} + 1/2O_{2\Gamma} = MeO_{T}; \tag{1}$$

$$W_{\Gamma} = W_{\mathrm{T}}; \tag{2}$$

$$W_{T} + 3O_{\Gamma} = WO_{3T};$$
(3)

$$4O_{\Gamma} = 2O_{2\Gamma} \tag{4}$$

$$MeO_{T} + WO_{3T} = MeWO_{4T}; (5)$$

$$Me_{\Gamma} + 4O_{\Gamma} + W_{\rm r} = MeWO_{4\Gamma} \tag{6}$$

Таким образом, $\Delta S^{\circ}_{a} = \Delta S^{\circ}_{6} = \Delta S^{\circ}_{1} + \Delta S^{\circ}_{2} + \Delta S^{\circ}_{3} + \Delta S^{\circ}_{4} + \Delta S^{\circ}_{5}$

Близость величин $\Delta S^{\circ}{}_{a}$ для ряда вольфраматов и молибдатов была показана Я.И. Герасимовым с сотрудниками. Найденные ими значения $\Delta S^{\circ}{}_{a}$ Дж/(моль-К) при 1273 К представлены ниже:

Таким образом, величина ΔS°_{a} для указанных соединений колеблется в пределах $800 \div 900$ Дж/(моль·К), т.е. в пределах, указываемых В. А. Киреевым для веществ, молекулы которых состоят из шести атомов.

Контрольные вопросы:

- 1. Метод расчета равновесий с помощью третьего закона термодинамики
- 2. Определение абсолютных энтропий всех участвующих в реакции веществ
- 3. Этапы расчета выхода абсолютной энтропии: а) температурной зависимости изменение ΔC_P реакции и величины (ΔH°); б) решение второй части задачи через знание абсолютных энтропий веществ участников реакции

- 4. Значение третьего закона термодинамики для расчетов равновесий
- 5. Графический метод определения энтропий
- 6. Уравнении расчета нергии Гиббса при реакции между конденсированными телами.
- 7. Выводы В. А. Киреев по зависимости энтропии образования соединений из атомов ΔS°_{a} .
- 8. Метод комбинирования реакций при расчете энтропии.

Практическое занятие 17

Термодинамика растворов металлов

Теоретическая часть

Применяемые в новых отраслях техники сверхчистые металлы и полупроводники содержат по несколько атомов примесных элементов на миллион атомов основного материала. Реальные химические и металлургические реакции совершаются с участием растворов. Расплавленные чугун, сталь, медь, другие цветные металлы представляют собой жидкие растворы различных элементов, преимущественно неметаллов (углерод, кислород, сера и др.) в основном металле. Расплавленные шлаки доменных и сталеплавильных печей являются растворами оксидов. Промежуточный продукт при выплавке меди (штейн) есть раствор сульфида меди и железа. Подавляющее большинство промышленных сплавов содержит в своем составе твердые растворы. Сталь — твердый раствор углерода в железе. Предшественница железа в истории техники — бронза есть раствор олова и меди. Водные растворы солей, кислот и оснований широко используются в гидрометаллургии при извлечении цветных металлов из руд. Значение водных растворов выходит за рамки техники вследствие их исключительной роли во всех биологических процессах.

Образование раствора из двух или нескольких веществ есть термодинамический процесс, который всегда сопровождается уменьшением энергии Гиббса и, следовательно, является самопроизвольным. Поэтому образование растворов существенно изменяет условия протекания химических реакций. Если, например, в результате реакции ее продукт переходит в растворенное состояние, то убыль энергии Гиббса увеличивается и равновесие смещается в сторону образования конечных веществ сильнее, чем если бы эти вещества получались в чистом состоянии. Некоторые реакции практически вообще невозможны, если ставится задача получения продукта в чистом состоянии. С другой стороны из-за большой убыли энергии Гиббса при образовании некоторых растворов извлечение полезных веществ из них сильно затруд-

нено. Известно, что стоимость таких процессов возрастает обратно пропорцио-нально логарифму концентрации извлекаемого вещества.

Раствором называется однородная смесь состоящая из двух или большего числа веществ, состав которой в известных пределах может непрерывно изменяться.

Однородными являются и химические соединения, однако их состав не может изменяться непрерывно, так как они подчиняются законам постоянства состава и кратных отношений. Растворы весьма разнообразны по своей природе и по характеру взаимодействия между частицами их компонентов. Так, например, раствор серной кислоты в воде, образующийся с выделением большого количества тепла, характеризуется отчетливо выраженным химическим взаимодействием, а в растворе сжиженных благородных газов - аргона и неона — действуют физические силы. Во многих реальных растворах природа межчастичного взаимодействия настолько сложна, что невозможно отделить ее химическую и физическую стороны. При разработке теории растворов Д. Л. Менделеев него ученики уделяли большее внимание изучению химической природы растворов, а Вант-Гофф и его Школа — физической. Вещество, перейдя в раствор и став компонентом раствора, теряет свою индивидуальность. Свойства раствора характеризуются термодинамическими величинами V, H, U, F, G и т. д. Вследствие взаимодействия между молекулами компонентов раствора термодинамические характеристики имеет смысл относить к раствору как к целому, а не к составляющим его веществам.

Важнейшей характеристикой раствора является его со став или концентрация компонентов. Наиболее удобно выражать концентрацию раствора в молярных долях. *Молярной долей компонента і (хі) называется отношение числа его молей пі к сумме всех компонентов раствора*, т.е $xi = ni / \Sigma ni$ Очевидно, сумма молярных долей компонента растворов равна 1.

В случае водных растворов концентрацию обычно выра- жают числом молей ci растворенного вещества в одном литре раствора. Это, однако, не всегда удобно, так как концентрация одного и того же раствора вследствие термического расширения зависит от температуры. В связи с этим пользуются моляльнос-тью mi, т. е. числом молей растворенного вещества в 1000 г растворителя (воды), величина которой не зависит от температуры. Между молярной долей и молярностью в водных растворах существует просто соотношение Xi=mi $\{mi+1000/18\}$, где 18- молекулярная масса воды.

В металлургии и металловедении концентрации часто выражают в процентах по массе, при этом соответствующие величины для веществ, растворенных в металле, заключают в квадратные скобки, а в шлаке — в круглые. Например: [С] или [О] означает концентрации углерода и кислорода в металле, а (FeO) или (SiO₂) — оксиды железа или кремнезема в шлаке.

В ряде случаев, особенно при рассмотрении газовых реакций, используют молярные проценты. Для разбавленных растворов концентрации, выраженные любым способом, пропорциональны друг другу.

Парциальные молярные величины

Большинство свойств, поддающихся количественному выражению, может быть разделено на две группы: экстенсивные и интенсивные.

Экстенсивные свойства пропорциональны количеству вещества. К ним относятся, например, объем, масса, внутренняя энергия, энтропия- Так, внутренняя энергия двух одинаковых кусков металла в два раза больше, чем энергия одного куска. Экстенсивные свойства системы аддитивна складываются из экстенсивных свойств составляющих ее частей. Такие свойства, как температура и давление, не зависящие от количества вещества, называются интенсивными. Для растворов интенсивные свойства определяются составом. Например, давление пара какого-либо компонента над раствором зависит от его концентрации. Величины интенсивных свойств в различных частях системы стремятся к выравниванию. Измерение интенсивной величины основано на том, что ее изменение всегда сопровождается изменением какой-либо экстенсивной величины. Так, для измерения температуры используют изменение объема вещества, например, ртути, т. е. экстенсивного свойства.

 Γ . Льюис назвал парциальной молярной величиной компонента gi частную производную от какой-либо экстенсивной величины gi по числу молей ni этого компонента раствора при постоянных давлении, температуре и числах молей остальных компонентов

$$\bar{g}_i = (\partial g/\partial n_i)_{p,T,n_j(j \neq i)}.$$

Соблюдение условий, требуемых этим определением, может быть достигнуто, если, например, представить, что к очень большому объему раствора данной концентрации при постоянных *р* и *Т* добавляется 1 моль какого-либо компонента. В этом случае концентрация раствора практически не изменится и соответствующее изменение свойства раствора будет парциальной молярной величиной добавленного компонента. Например, парциальный молярный объем У,- определяется уравнением

$$\bar{V}_i = (\partial V/\partial n_i)_{p.T.n_j(j \neq i)}.$$

Если раствор образуется из компонентов без изменения объема, то очевидно, что парциальный молярный объем компонента равен его молярному объему, т.е. Vi=V0i, где индекс «нуль» означает, что вещество находится в чистом состоянии. В отличие от молярного объем парциальный молярный объем может быть отрицательной величиной.

Контрольные вопросы:

- 1. Металлические растворы
- 2. Изменение энергии Гиббса в растворах
- 3. Понятие раствора
- 4. Термодинамические величины характеризующие свойства раствора
- 5. Концентрация раствора в молярных долях, моляльность
- 6. Концентрация раствора в процентах
- 7. Обозначение ингредиентов раствора в металле и шлаке.
- 8. Группы свойств величин, поддающихся количественному выражению
- 9. Уравнение Г. Льюиса
- 10. Уравнение для определения парциального молярного объема.

Практическое занятие 18

Методы определения термодинамической активности

Теоретическая часть

Методы заключаются в изучения равновесий между реальными растворами и другими фазами, в которых активность компонента известна. Такими фазами могут быть смеси идеальных газов, разбавленные или совершенные растворы, а также и другие фазы, в которых активность определена независимым путем или описывается простыми законами. Наконец, могут быть использованы и чистые вещества, активность которых равна единице. Представлены некоторые распространенные экспериментальные методы определения активности.

1.Измерение давления пара

Этот способ удобен для летучих компонентов. Основанные па его использовании расчеты непосредственно вытекают из уравнения (VI.2) для определения активности и достаточно просты. Однако измерение давления пара, особенно в системах, представляющих интерес для металлургии, в ряде случаев связаны со значительными трудностями (малые значения p, взаимодействие расплавов с материалами тиглей при высоких температурах).

В последние годы применение радиоактивных изотопов и масспектрометрии существенно облегчило получение данных о давлениях пара в различных металлических и шлаковых растворах.

Целесообразно рассматривать отдельно определение активности в растворах, близких к совершенным и близких к разбавленным. В первом случае активность компонента i определяется из измерений давления его пара над раствором и в чистом состоянии: $a_i = p_i/p_{i\,o}$. 2 Точка росы. В случае металлических сплавов, где один из компонентов отличается значительной летучестью, используют метод «точки росы». Исследуемый сплав помещают в кварцевую ампулу, имеющую длинный отросток. После откачки ампулы и создания в ней высокого вакуума, отросток запаивают. Опыт состоит в том, что температуру сплава в широкой части ампулы поддерживают постоянной (T_I) и достаточно высокой, а температуру кони, отростка постепенно изменяют (T_2) . При некотором значении $T_2 < T_1$ в отростке появляются капли летучего компонента. Это и есть «точка росы», т. е. температура, при которой давление пара компонента становится насыщенным и он начинает конденсироваться на стенках кварцевого отростка. Это давление для данного вещества в чистом состоянии известно из справочников.

Подобным методом было найдено, что парциальное давление пара свинца p_{Pb} при $1200\,^{\circ}$ С над сплавом Си—Pb, где X_{Pb} =0,04, составляет $0,702\cdot 10^{3}$ Па. Давление пара чистого жидкого свинца $p_{Pb}^{\ 0}$ в зависимости от температуры описывается уравнением:

$$lg p_{Pb}^{0} = -(9873/T) - 0.66T lg T + 12.066.$$

Отсюда следует, что при 1200°С (1473 K) $p_{Pb}^{\ 0}$ =2,0-10³ Па и, следовательно, a_{Pb} = p_{Pb} / $p_{Pb}^{\ 0}$ =0,70 ·10³/2,0·10³=0,356 и γ -Pb =0,356/0,04=8,9.

Так как величина γ_{Pb} намного больше, единицы, можно полагать, что в расплаве Си—РЬ имеется тенденция к расслаиванию.

В случае растворов, близких к разбавленным, активность растворенного вещества определяют с помощью уравнения p_2 = r_2a_2 . Для этого сначала находят r_2 . С этой целью устанавливают зависимость парциального давления p_2 от концентрации вплоть до высоких разбавлений, где a_2 = c_2 и p_2 = r_2c_2 . Практически для разбавленных растворов экспериментально определяют отношение p_2 / r_2 для нескольких растворов и экстраполируют его на нулевую концентрацию, где это отношение становится постоянным и равным r_2

<u>3. Изучение химического равновесия.</u> Активности малолетучих веществ, например углерода, практически невозможно определять из измерений давления пара. В таких случаях целесообразно изучать химическую реакцию, в которой участвует этот компонент и образуются газообразные продукты. Так, для раствора углерода в γ- Fe (аустенит) можно воспользоваться реакцией:

 $[C]+2H_{2C}=CH_{4C},$ (VI. 17)

константа равновесия которой

$$K = P_{\text{CH}_4} / P_{\text{H}_2}^2 a_c$$
 (VI. 18)

В металлургических расчетах концентрацию часто выражают в массовых сдержаниях, %, а в качестве стандартного состояния выбирают разбавленный раствор. В таком растворе активность обозначают a^{∞} и она равна концентрации. Например, для углерода a_{C}^{∞} =[C] при [C] \rightarrow 0. При таком выборе стандартного состояния константа равновесия Kразб для реакции (VI. 17) не равна величине, определяемой уравнением (VI.18). Для определения Kразб необходимо изучить равновесие реакции (VI. 17) с участием нескольких растворов с малыми концентрациями углерода, а затем экстраполировать отношение P_{CH4} / P_{H2}^2 P_{H2} [C] на нулевое значение [C]. Как отмечалось ранее, Kразб сохраняет свое значение и для более концентрированных растворов $K_{\text{разб}} = P_{\text{CH4}}$ / P_{H2}^2 $a_{C}^{\infty} = P_{CH4}$ / P_{H2}^2 [C] fc

Зная Kразб, по составу газовой фазы можно найти a_c , затем при известном значении [C] определяют fс или наоборот.

4. Активность оксида железа в расплавах с оксидом кремния

Я. И. Герасимовым было проведено вычисление a_{FeO} в расплавах системы FeO— SiO₂ при 1600 °C, результаты которого в графическом виде представлены на рис. 18.1

В расплавах, богатых FeO, имеются отрицательные отклонения от закона Рауля вследствие тенденции к образованию силиката Fe_2SiO_4

При больших X_{SiO4} , наблюдаются положительные отклонения., и кривая a_{FeO} проходит через максимум.

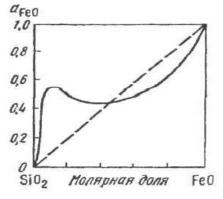


Рисунок 18.1 Активность FeO в расплавах FeO—SiO $_2$ При 1600 $^{\circ}$ C

Наличие максимума показывает, что a_{FeO} может быть одинаковой при разных составах, т.е. возможно равновесие двух жидких фаз—расслаивание. Расслаивание вызвано тем, что жидкий кремнезем является ассоциированной жидкостью, в которой плохо растворяется FeO, не проявляющая в жидком состоянии никакой склонности к ассоциации.

Для определения активности часто используется метод измерения электродвижущих сил гальванических элементов.

5. Обезуглероживание стали

Для выяснения условий протекания реакции обезуглероживания стали при ее взаимодействии с окислительным шлаком [C]+(FeO)=[Fe]+CO_r важно знать давление CO, которое определяется из уравнения: $K = P \cos /a_{\cos} a_{FeO}$

Величину K находят путем изучения равновесия при малых концентрациях C в металле и FeO в шлаке, когда справедливо выражение K = Pco /[C] (FeO). Затем Pco вычисляется из значений a_c и a_{FeO} , которые должны δ ыть найдены из независимых опытов (например a_c из данных о химическом равновесии с газовой смесью CH_4 — H_2 или CO— CO_2 , а a_{FeO} по растворимости кислорода в железе).

6. Летучесть

При азотировании стали или синтезе ряда тугоплавких соединений, используют газы при высоких давлениях. В этих условиях вследствие взаимодействия между молекулами поведение газов отклоняется от идеального. Поэтому химический потенциал газа i отличается от величины, определяемой его фактическим давлением В связи с этим для решения задач химического равновесия давление заменяют летучестью или фугитивностью f_i , при его высоких значениях подобно тому как в реальных растворах вместо концентрации используют активность. Величина f^* определяется уравнением $\mu_i = \mu_i^0 + RT \ln f_i$ (VI. I 9)

Очевидно, что при $p_i \to 0$ $f_i = p_i$ Как μ_i так и f_i зависят от общего давления и природы газа. Экспериментальное определение летучести основывается на уравнении

$$\left(\frac{\partial G_i}{\partial p}\right)_T = \left(\frac{\partial \mu_i}{\partial p}\right)_T = V_i,$$

где Vi — молярный объем чистого газа I.

- * Подробное описание методов определения летучести см. в кн. Физическая химия/Под ред. К. С. Краснова. М.: Высшая школа, 1982. 687 с.
- 7. В реальных металлургических процессах химические превращения, как правило, происходят в многокомпонентных растворах. Например, стальная ванна является раствором многих неметаллов (C, S, P, O, H, N), а также легирующих элементов (Si, Mn, Cr и т. д.) в жидком железе. Химический потенциал каждого компонента и, следовательно, его активность в таких растворах определяются не только его концентрацией, но и концентрациями и свойствами всех других растворенных веществ. Это необходимо учитывать при расчетах равновесий.

Например, активность серы, растворенной в жидком железе, зависит от содержания в нем углерода, кремния и т. д. Присутствие С и Si увеличивает коэффициент активности серы и, следовательно, способствует десульфурации стали, присутствие марганца уменьшает активность серы. Протекание процесса выделения (или растворения) карбидных или нитрид-

ных фаз при термической обработке стали определяется при данной температуре активностями металлов образующих эти фазы, которые, в свою очередь, зависят от концентрации остальных компонентов твердого раствора. Для упрощения описания равновесий в подобных системах К. Вагнером и Д. Чипманом были введены, так называемые, *параметры взаимодействия*

8.Влияние легирующих элементов на активность углерода в аустените

Легирующие элементы, имеющие большое сродство к азоту, уменьшают коэффициент его активности в железе (ε <0), элементы же, не образующие прочных нитридов, наоборот, повышают f_N (ε_N >0). Такие элементы, как Si, сильновзаимодействующие с железом, также увеличивают f_N . Легирующие элементы, присутствующие в стали изменяют активности всех компонентов металлического расплава, в частности, углерода.

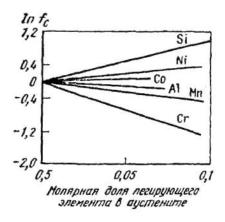


Рис 18.2 Влияние легирующих элементов на коэффициент активности углерода в аустените при1000°С

В последнем случае это влияние качественно имеет такой же характер, как и их влияние на активность азота. Очевидно, что взаимодействие легирующих элементов с примесями должно проявляться не только в жидком железе, но и в твердых растворах на его основе. Это иллюстрируется рис. 18.2 для растворов углерода в γ -Fe (аустените). Видно, что такие элементы как Сг и Мп, которые образуют прочные карбиды, уменьшают коэффициент активности углерода, в то время как Ni, не образующий в обычных условиях карбида, напротив, увеличивает a_c .

Контрольные вопросы:

- 1. Измерение давления пара.
- 2. Точка росы.
- 3. Изучение химического равновесия
- 4. График зависимости активности оксида железа в расплавах с оксидом кремния при $1600^{\circ}\mathrm{C}$
- 5. Обезуглероживание стали
- 6. Летучесть
- 7. Параметры взаимодействия
- 8. График влияния легирующих элементов на активность углерода в аустените при 1000°C

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра ТФ и КМ

Физико-химия металлов и неметаллических материалов

Практическое занятие №_____ (название практического занятия)

Выполнил ст. гр.	МЛТ
Подпись	Ф.И.О
Принял д.т.н.	, профессор
Христ	офоров А.И

Владимир 20____

Библиографический список

- а) основная литература: 1. Бондаренко, Геннадий Германович. Материаловедение: учебник для вузов по специальности "Управление качеством" / Г. Г. Бондаренко, Т. А. Кабанова, В. В. Рыбалко; под ред. Г. Г. Бондаренко. — Москва: Высшая школа, 2007. — 360 с.: ил., табл. — (Для высших учебных заведений, Общетехнические дисциплины). — Библиогр.: с. 340. — ISBN 978-5-06-005566-5. — 1. материаловедение, полимер, диэлектрик. 1 экз 2. Жуховицкий, Александр Абрамович. Физическая химия: учебник для вузов / А. А. Жуховицкий, Л. А. Шварцман .— Изд. 4-е, перераб. и доп. — Москва : Металлургия, 1987 .— 688 с.: ил. — 1. физическая химия, термодинамика, механика. **6** экз
- 3. Горшков, Владимир Сергеевич. Физическая химия силикатов и других тугоплавких соединений: учебник для вузов по специальности "Химическая технология тугоплавких неметаллических и силикатных материалов" / В. С. Горшков, В. Г. Савельев, Н. Ф. Федоров .— Москва: Высшая школа, 1988.— 400 с.: ил., табл. — Библиогр.: с. 391.— Предм. указ.: с. 392-397 .— ISBN 5-06-001389-8.
- 1. силикаты, спекание, гетерогенная система 3 экз
- 4. Физическая химия полимерных композиций / Академия наук Украинской ССР (АН УССР), Институт химии высокомолекулярных соединений; отв. ред. Ю. С. Липатов. — Киев : Наукова думка, 1974. — 176 с., [1] л. ил. : ил., табл. — Библиогр. в конце ст.
- 1. физическая химия, полимерная композиция, адсорбция полимеров, адгезия, дисперсная система. **1**экз
- 5. Христофоров, Александр Иванович. Техническая термодинамика и теплотехника: практическое пособие : в 2 ч. / А. И. Христофоров ; Владимирский государственный университет (ВлГУ). — Владимир: Владимирский государственный университет (ВлГУ), 2009-2011.
- Ч. 1: Термодинамика в примерах и задачах .— 2009 .— 95 с. : табл. Имеется электронная версия . — Библиогр.: с. 95.

Издание на др. носителе: Термодинамика в примерах и задачах [Электронный ресурс] .— Б.м., 2009 .— ISBN 978-5-89368-972-3.

— 1. термодинамика, реальный газ, теплотехника, газ. 97 экз

б) дополнительная литература:

- 6. Каргин, Валентин Алексеевич. Краткие очерки по физико-химии полимеров / В. А. Каргин, Г. Л. Слонимский .— Изд. 2-е .— Москва : Химия, 1967 .— 231 с. : ил., табл. Библиогр.: с. 223-227 .— Предм. указ.: с. 228-231.
- — 1. физическая химия, полимеры, пластификация полимеров. 3 экз
- 7. Елгаев, Николай Александрович. Методические указания к выполнению практических работ по дисциплине «Физическое материаловедение» для студентов очного обучения направления 22.03.01 «Материаловедение и технологии материалов» (бакалавриат) [Электронный ресурс] / сост. Н. А. Елгаев, А. В. Киреев ; Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых (ВлГУ), Кафедра «Технологии функциональных и конструкционных материалов» .— Электронные текстовые данные (1 файл: 1,33 Мб) .— Владимир : Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых (ВлГУ), 2018 .— 48 с. : ил., табл. Заглавие с титула экрана .— Свободный доступ в электронных читальных залах библиотеки .— Microsoft Office Word .—
- <URL:http://e.lib.vlsu.ru/bitstream/123456789/6785/1/00714.doc>.

003627-8.

- —— 1. материаловедение, физическое материаловедение.

 1 экз

 8.Стромберг, Армин Генрихович. Физическая химия : учебник для вузов / А. Г. Стромберг, Д. П. Семченко ; под ред. А. Г. Стромберга .— Изд. 5-е, испр. Москва : Высшая школа, 2003 .— 527 с. : ил. Библиогр.: с. 511-515 .— Предм. указ.: с. 516-522 .— ISBN 5-06-
- —— 1. физическая химия, термодинамика, электрохимия. 7 экз