Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Кафедра химических технологий

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕПЛОТЕХНИКА, ч.1

для студентов ВлГУ, обучающихся по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

Данные методические указания включают рекомендации по содержанию и выполнению практических занятий по дисциплине «Техническая термодинамика и теплотехника» для студентов направления 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» ВлГУ.

Методические указания составлены на основе требований ФГОС ВО и ОПОП направления 18.03.02. «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», рабочей программы дисциплины «Техническая термодинамика и теплотехника»

Рассмотрены и одобрены на заседании УМК направления 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» Протокол № 1 от 5.09.2016 г.

Рукописный фонд кафедры ХТ ВлГУ

ВВЕДЕНИЕ

Курс технической термодинамики и теплотехники изучается студентами разнообразных специальностей. Выпуск настоящего учебного пособия обусловлен спецификой подготовки бакалавров по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

При подготовке первой части пособия была поставлена цель краткого изложения теоретического курса основ термодинамики, которые позволят студентам подготовиться к решению конкретных производственных задач, связанных со специализацией их последующего обучения и работы.

Практическое пособие представлено шестью главам, в которых изложены: краткий теоретический курс без выводов фундаментальных уравнений термодинамики, примеры решения задач, задачи для самостоятельного решения и самоподготовки, контрольные вопросы самоподготовки и многовариантные контрольные задачи. Фундаментальные знания по курсу студенты имеют возможность получить из книг и учебников, представленных в библиографическом списке. В пособии приведены в полной мере материалы и справочные данные, необходимые студентам для решения задач и выполнения контрольных мероприятий, что особенно важно для дистанционной формы обучения.

Приведенные примеры и задачи позволят дать знания студентам при решении вопросов проектирования тепловых агрегатов в химической технологии тугоплавких неметаллических, силикатных и полимерных материалов. Учебное пособие ориентировано на студентов старших курсов, изучающих курс "Техническая термодинамика и теплотехника", выполняющих курсовые работы по курсам «Оборудования и основы проектирования », «Основы проектирования тепловых агрегатов», выпускные квалификационные работы бакалавров и дипломное проектирование специалистов.

Глава 1. ТЕРМОДИНАМИКА

1.1. Общие понятия о термодинамике

Термодинамика есть феноменологическая теория макроскопических процессов, сопровождающихся превращением энергии. Основным содержанием технической термодинамики является изучение закономерностей взаимного превращения теплоты и работы, а также изучение свойств тел, принимающих участие в этом превращении, и процессов, протекающих в различных аппаратах и машинах. Теплота и работа представляют две формы передачи энергии от одного тела или системы к другому телу или системе. Мерой энергии, передаваемой этими двумя формами передачи энергии от одного тела другому является количество теплоты или работы, которые являются эквивалентными. Механический эквивалент теплоты равен 1 ккал = 426,94 кгс·м = 4186,8 Дж.

Термодинамика подразделяется на физическую, химическую, техническую. <u>Физическая</u> изучает закономерности превращения энергии в явления: электрические, магнитные, поверхностные, капиллярные, оптические и т.д. <u>Химическая</u> изучает тепловые эффекты химических реакций, химические равновесия и т.д. <u>Техническая</u> — изучает применение законов термодинамики к процессам взаимного превращения теплоты и работы.

Обмен энергией в форме теплоты или работы осуществляется между макроскопическими телами, которые принято называть рабочими телами. Совокупность рабочих тел, обменивающихся между собой энергией или веществом, называется термодинамической системой. В качестве рабочих тел в технической термодинамике рассматриваю газы и пары.

В зависимости от условий взаимодействия термодинамической системы с другими рассматривают открытую и закрытую, изолированную и адиабатную системы. В открытой системе происходит обмен веществом с другой системой, в закрытой – нет обмена веществом; в изолированной – нет обмена ни веществом, ни энергией; в адиабатных – нет обмена теплотой с другими системами, но они могут быть как открытыми, так и закрытыми.

Состояние рабочего тела характеризуется величинами, которые называются термодинамическими параметрами состояния. К ним относятся основные параметры:

температура Т (1 кельвин , K); давление р (1 паскаль, $\Pi a = H/M^2 = 0,102 \text{ кг/м}^2$) при температуре 273 K; удельный объём v (объем 1 кг массы вещества, M^3/K г), и расчетные параметры: внутренняя энергия, энтальпия, энтропия.

Состояние однородного рабочего тела однозначно определено, если известны два других основных параметра, т.к. любой третий параметр легко определяется из первых двух. Термическим уравнением состояния рабочего тела называется уравнение вида f(p, v, T)=0. [1.1] Когда в рабочем теле или в системе изменяется хотя бы один из основных параметров состояния, говорят, что в этом теле совершается термодинамический процесс. Процесс, при котором рабочее тело или система проходят ряд равновесных состояний, называется равновесным термодинамическим процессом.

Они бывают обратимыми и необратимыми. Обратимым процессом называется процесс, допускающий возвращение рабочего тела в первоначальное состояние без того, чтобы в окружающей среде прошли какие либо изменения. Невыполнение этого условия делает процесс необратимым. Любой процесс сопровождается термическими превращениями.

При теоретических расчетах оперируют понятием "идеальный газ". "Идеальный газ" это газ между молекулами которого отсутствуют силы взаимодействия, а молекулы принимают за материальные точки не имеющие объема. В практике идеальными считаются газы: азот, кислород, водород и т.д.

Практическое занятие 1 Параметры состояния идеального газа

Состояние газа отражают средние величины, основные параметры : температура, удельный объем, давление

<u>Температура</u> - это среднекинетическая энергия движения газа. Для ее определения применяют 2 шкалы: термодинамическую и международную практическую. Для каждой шкалы она выражается либо по абсолютной шкале (0 C). <u>Термодинамическая</u> шкала имеет одну точно воспроизводимую экспериментальную тройную точку воды (в этой точке твердая, жидкая и газообразная фазы находятся в равновесии) что соответствует 273.16 К или $0.01~^{0}$ C. Второй точкой служит абсолютный нуль. <u>Термодинамическая абсолютная температура</u> обозначается T, а термодинамическая температура в 0 C -t. T -t = 273,16 - 0 0,01 = 273,15; 0 1 T = t + 273,15

Международная практическая температура основана на шести постоянных и экспериментально воспроизводимых температурах фазового равновесия. Она экспериментально наиболее точно воспроизводит термодинамическую шкалу, но на практике разницу между ними из-за предельно малых погрешностей определения не учитывают и обозначения по обеим шкалам принимают одинаковое.

<u>Удельный объем</u> v - объем занимаемый 1 кг газа (для каждой температуры свой!) ${\rm M}^3/{\rm K}\Gamma$. Плотность ${\rm p}=m/v$

<u>Давление</u> - средний результат ударов молекул газа о стенки сосуда, в котором он находится. Обозначается p ($H/m^2 = \Pi a$), $M\Pi a = 10^6\Pi a$ ($\cong 10 \text{ кг/ см}^2$), $\kappa\Pi a = 10^3\Pi a$. Атмосферное давление называется барометрическим и при t = 0 °C и $g = 9,81 \text{ м/c}^2$ оно равно 0,1 М $\Pi a = 750 \text{ мм}$ рт. ст. и называется бар. Если в сосуде давление больше барометрического то он находится под давлением, если меньше - под вакуумом. Манометрами измеряют избыточное (сосуд под давлением) или недостаточное (сосуд под вакуумом) давление. Физическая атмосфера = 760 мм рт. ст.,(t = 0 °C и $g = 9,81 \text{ м/c}^2$). Нормальными условиями называют состояние газа при t = 0 °C, p = 1 физ. атм. = 760 мм рт. ст. = 0,1013 М Πa , и $g = 9,81 \text{ м/c}^2$

1.3. Уравнения состояния идеального газа

По молекулярно- кинетической теории газов $p = \frac{2}{3} n \frac{m \overline{w}^2}{2}$ [1.2] где n - число

молекул, заключенных в единице объема, m- масса молекулы, w - среднеквадратичная скорость молекулы. Умножая обе части уравнения на заданный объем газа V, M, полу-

чим
$$pV = \frac{2}{3}N\frac{mw^{-2}}{2}$$
 [1.3] где $N = nV$ число молекул в заданном объеме газа V . По-

скольку величина
$$\frac{mw^{-2}}{2}$$
 связана с температурой по зависимости $\frac{mw^{-2}}{2} = aT$ (а - ко-

эффициент пропорциональности), то уравнение [1.3] примет вид $pV = \frac{2}{3} NaT$ [1.4].

Если величины N,V и T постоянны , a=const , то pV=const . При постоянном давлении V/T=const

Для одного кг газа $v/T=1/\rho T=const$, $\rho T=const$, если газ имеет постоянный объем , то $\rho/T=const$. Все эти уравнения представляют собой математическое описание

законов Бойля - Мариотта, Гей-Люссака, Шарля. Из уравнения [1.4] выходит, что для всех газов при одинаковых p,V,T число молекул N одинаково. Это положение соответствует закону Авагадро. Из него следует, что плотности газов при одинаковых p,T пропорциональны их молекулярным массам μ , т.е. $\mu_1/\rho_1 = \mu_2/\rho_2$, $\mu_1/v_I = \mu_2/v_2$. Произведение μv - объем одного моля газа. При нормальных физических условиях объем 1 кмоля газа равен 22,4 м³. Плотность любого газа при нормальных условиях $\rho = \mu/22,4$ кг/м³

Уравнение состояния газа умножая уравнение [1.4] на μ имеем $p\mu V=(2/3)N\alpha\mu T$ [1.5] , т.к $\mu v=idem$, то при одинаковых физических условиях в объеме 1 моля газа содержится одинаковое количество молекул N_{μ} , которое носит название числа Авагадро.

Обозначим $(2/3)N\alpha = R$, эта величина не зависит от состояния газа и носит название газовой постоянной. Поскольку N - число молекул в 1кг, то R относится к 1 кг газа. Подставив R в уравнение [1.4] получим $p\mu v =$

 $=R\mu T$ или $p\mu\nu/T=R\mu$ [1.6] (уравнение Менделеева- Клапейрона). $R\mu$ относится к 1 молю любого газа и определяется 0,1013· 10^6 (Па) · 1 · 22,4 (м³)/ 273,15(K) = 8314 Дж /(кмоль· K) , где p=0,1013· 10^6 Па - это физическая атм. $R\mu$ носит название универсальной газовой постоянной и равно 8314 Дж /(кмоль· K)/ Для одного 1 газа $p\nu=RT$ [1.7] - уравнение Клапейрона. Величина $R=8314/\mu$ - газовая постоянная для конкретного газа.

Если уравнение [1.7] умножить на массу M то получим уравнение состояния для M кг газа pvM=MRT или pV=MRT [1.8]

Все эти уравнения носят названия характеристических (термических) уравнений состояния газа, отражают равновесное состояние газа при конкретных $p_1 V_1 T_1$.

Термическим уравнением состояния идеального газа является уравнение Менделеева-Клапейрона для 1 кг рабочего тела pv=RT [1.7], или $p=\rho RT$ [1.9], для m кг рабочего тела pV=mRT [1.10], для 1 кмоля

 $pV_{\mu} = R_{\mu} T$ [1.11], в этих уравнениях R = Дж/(кг·K) и $R_{\mu} = 8314 \text{ Дж/(кмоль·K)}$ удельная и универсальная газовые постоянные.

 $R=R_{\mu}/M$ [1.12], где M - молярная масса идеального газа , V_{μ} =22,4 м 3 /кмоль –молярный объем идеального газа при нормальных условиях.

Если количество газа выражать в килограммах m и использовать универсальную газовую постоянную R_{μ} , то уравнение Менделеева- Клапейрона примет вид $PV = mR_{\mu}$ T/M, откуда $m = M \, PV / R_{\mu} \, T = 22,4 \rho_0 \, PV / R_{\mu} \, T \, [1.13]$

Для смеси реальных газов на основании кинетической теории установлено сле-

дующее уравнение:
$$pv = RT \left[1 - \sum_{v=1}^{v=n} \frac{v}{v+1} \frac{B_v}{v^v} \right]$$
 [1.14], где B_v и $v^v -$

вириальные коэффициенты для газов, зависящие от их температуры; v- удельный объем газа, входящего в смесь.

Практическое занятие 2 Примеры задач и варианты для их решения

Пример 1.1. В баллоне находится 10 кг азота при давлении 10 МПа. Когда часть азота была использована для работы, давление понизилось до 8 МПа. Какое количество азота осталось в баллоне, если температура азота во время отбора не изменилась?

Решение. Объем азота до и после отбора остался прежним. Согласно уравнению [1.13] $V=m_1\,R_\mu\,T_1\,/\,MP_1=m_2\,R_\mu\,T_2\,/\,MP_2\,$ или $m_1\,/P_1=m_2\,/P_2$

Подставляя в последнее выражение величины, получим

$$m_2 = m_1 P_2 / P_1 = 10.8 / 10 = 8$$
 кг. В баллоне осталось 8 кг азота

Пример1.2 . В баллоне емкостью $40 \cdot 10^{-3} \, \text{м}^3$ находится азот при давлении 13 МПа. При проведении экспериментальных исследований на один замер используется в среднем $0.25 \cdot 10^{-3} \, \text{м}^3$ азота при усредненном давлении $0.2 \, \text{МПа}$. На сколько замеров хватит азота при условии: остаточное давление в баллоне $0.5 \, \text{МПа}$, испытания проводятся при постоянной температуре .

Решение. Если x – количество замеров, V_1 – объем одного замера, то количество азота, необходимые на все замеры равно

$$xn_1=xP_1V_1/RT_1=(x\ 0.2\ 0.25\ 10^{-3})/RT_1$$
 моль N_2

по окончании последнего замера в баллоне останется $40 \cdot 10^{-3} \text{м}^3$ азота при давлении 0,5 МПа, что составит

$$n_2 = P_1 V_2 / RT_1$$
 моль N_2

Количество азота, использованного на проведение испытаний, составило

$$n_3 = P_2 V_2 / RT_1$$
 моль N_2

По условию задачи мы имеем

$$xn_1+n_2=n_3$$
 или $n_3=xP_1V_1/RT_1+P_1V_2/RT_1=P_2V_2/RT_1$

Из этого уравнения мы получим

$$x = (P_2 - P_1) \ V_2 / \ P_1 V_1$$
; подставив цифровые значения получим
$$\mathbf{x} = (13 - 0.5) \ 40^{\cdot} \ 10^{\cdot 3} \ / (0.2^{\cdot} \ 0.25 \cdot 10^{\cdot 3}) = 10000$$

Азота хватит на 10000 замеров.

Закон Бойля

При постоянной температуре объем (V) данного количества газа обратно пропорционален давлению (P) PV = const, или, что то же

$$P_1 V_1 = P_2 V_2$$
; $P_1/P_2 = V_2/V_1$ [1.15]

Например, если газ при давлении 300 $\kappa H/M^2$ (Pi), занимает объем 50 м³ (V_I), то при 1000 к H/M^2 (P_2) и той же температуре он займет объем (V_2)

$$V_2 = (P_1 V_1)/P_2 = (300 \text{ kH/m}^2 \cdot 50 \text{ m}^2) / 1000 \text{ kH/m}^2 = 15 \text{ m}^3$$

Задание 1.1: а) Определить V_2 при известных P_2 , P_1 , V_1 ; б) Определить P_2 при известных V_2 , P_1 , V_1

Таблица 1.1 Варианты задания 1.1

Вариант	a)			б)		
	P_1 , к Πa	V_1 , M^3	<i>P</i> ₂ , кПа	V_2 , M^3	P_1 , к Πa	V_{1} , M^{3}
1	300	20	800	70	900	20
2	200	30	900	80	400	30
3	400	40	400	90	500	40
4	600	50	500	100	300	50
5	700	60	300	120	200	60
6	800	70	200	140	300	70
7	900	80	300	150	200	80
8	400	90	200	20	400	90
9	500	70	400	30	600	70
10	300	80	600	40	700	80

11	200	90	700	50	800	90
12	400	100	800	60	300	120
13	600	120	300	70	200	140
14	700	140	200	80	400	150
15	800	150	400	90	600	70
16	900	70	600	100	700	80
17	400	80	700	120	800	90
18	500	90	800	140	300	100

Продолжение табл.1.1

D	1	\		<u> </u>	- <u>-</u>	
Вариант		<i>a</i>)			б)	
	P_1 , к Πa	V_1 , M^3	<i>P</i> ₂ , кПа	V_2 , M^3	P_1 , к Πa	V_1 , M^3
19	400	100	300	150	200	120
20	500	120	200	20	600	30
21	900	90	300	120	400	80
22	400	100	200	30	500	90
23	500	120	300	40	300	120
24	300	140	200	100	200	140
25	200	150	400	120	300	150
26	400	70	600	140	200	70
27	600	80	700	150	400	80
28	700	90	800	20	600	90
29	800	100	300	30	700	100
30	900	120	200	40	800	120
32	400	60	700	50	300	150
33	400	70	600	60	200	20
34	500	80	200	80	400	180
35	400	120	400	150	300	30
36	600	140	600	20	200	80
37	700	150	700	30	400	90
38	800	70	800	40	600	120
39	900	80	300	50	700	140
40	200	90	200	60	800	160

Практическое занятие 3 Закон Гей-Люссака

Этот закон выражает зависимость между объемом и температурой идеального газа при постоянном давлении, а также между температурой и давлением этого газа при постоянном объеме.

Если давление газа остается постоянным, то при повышении температуры на 1 град объем его увеличивается приблизительно на 1/273 (0,00367)* часть того объема (V_0), который то же количество газа занимает при 0° С.

Отсюда следует, что если V_0 м³ (или дм³, см³) газа нагреть от 0° до t $^{\circ}$ С, то объем его (V) при этой температуре определится

$$V = V_0 + (V_0 \cdot t)/273 = V_0 (1 + t/273) = V_0 (1 + 0.00367t)$$
 [1.16]

откуда:

$$V = V_0 \cdot (273 + t)/273 = (V_0 \cdot T)/273$$
 [1.17]

Из уравнения [1.17] следует заключение, что объемы, занимаемые данной массой газа, при постоянном давлении относятся как их абсолютные температуры

$$(V_1/V_2) = (T_1/T_2)^{*}$$
 [1.18]

* Реальные газы при больших давлениях отклоняются от этого закона. Но для технических расчетов коэффициент расширение 0,00367 без заметной ошибки можно принимать постоянным для любого газа.

В случае постоянства объема газа закон Гей-Люссака принимает следующую формулировку: давления данной массы газа при постоянном объеме пропорциональны абсолютной температуре этого газа.

$$P_1 / P_2 = (T_1 / T_2)$$
 [1.19]

Решая совместно уравнения [1.15] и [1.16], получим

$$(P_1 V_1)/T_1 = (P_2 V_2)/T_2$$
 [1.20]

При совместном решении уравнений [1.17] и [1.20] получаем очень часто применяемую в технических расчетах формулу для приведении объема газов к нормальным условиям (0°C и $101,3\cdot10^3$ H/м²; точнее, $101,325\cdot10^3$ H/м².

$$V_0 = (VP) / [101,3(1+0,00367t) \cdot 10^3] = (VP) / [101,3+0,372t) \cdot 10^3]$$
 [1.21]

$$V_0 = 2.7 \cdot 10^{-3} (VP) / T$$
 [1.22]

где P должно быть выражено в H/M, а $2,7 \cdot 10^{-3}$ имеет размерность $(H/M^2 \text{ град})^{-1}$, точнее $2.67 \cdot 10^{-3}$.

 Π р и м е ч а н и е . В лабораторной практике давление иногда измеряется в атмосферах ($P_{\rm aбc}$, к $\Gamma/{\rm M}^2$) и мм рт.ст ($P_{\rm MMHg}$) В этом случае уравнение [1.2219] (8) примет вид

$$V_0 = 273VP_{a\delta c} / T = 0.36VP_{MM Hg} / T$$
 [1.23]

Пример 1.3. Имеется 10 м³ газа при давлении 200,0 кH/м² (200,0·10³ H/м²) и температуре 27°C (T = 300 K). Вычислить объем газа: а) при нормальных условиях; б) при P = 500 кH/м² и t = 127°C

Решение, а) Пользуясь уравнением [1.22], получим объем газа при нормальных условиях.

$$V_0=2,7\cdot10^{-3}\cdot10\cdot200,0\cdot10^3/300=18\ \mathrm{M}^3$$
 б) При $P=500\ \mathrm{\kappa H/M}^2$ и $t=120\,^\circ\mathrm{C}$ из [1.22] получим $V=V_0T/(2,7\cdot10^{-3}P)=18\cdot400/2,7\cdot10^{-3}\cdot500,0\cdot10^3=5,33\mathrm{M}^3$

Практическое занятие 4 *Задание 1.2* Вычислить объем газа, имеющего параметры P_1 , V_1 , t_1 , в сухом состоянии: а) при нормальных условиях б) при давлении P_2 и температуре t_2 .

Таблица 1.2 Варианты задания 1.2

Вариант	<i>P</i> ₁ , кПа	V_1 , M^3	<i>t</i> ₁ , кПа	t_2 , 0 C	Р₂, кПа
1	400	40	8	48	300
2	600	50	9	56	200
3	700	60	10	58	400
4	800	70	12	60	600
5	900	80	14	62	700
6	400	90	16	64	800
7	500	70	18	68	900

8	300	80	20	72	400
9	200	90	22	74	500
10	400	100	24	76	300
11	600	120	26	78	200
12	700	140	28	92	400
13	800	150	30	8	600
14	900	70	32	9	700
15	400	80	34	10	800
16	500	90	36	12	900
17	400	100	38	14	400
18	500	120	40	16	500
19	300	70	42	18	400
20	200	80	44	20	500
21	400	90	46	22	900
22	600	100	48	24	400
23	700	120	56	26	500
24	800	140	58	28	300
25	900	150	60	30	200
26	400	70	62	9	600
27	500	80	64	10	600
28	300	90	68	12	700
29	200	100	72	14	800
30	400	70	74	16	900
32	600	80	76	18	400
33	700	90	78	20	500
34	800	70	92	22	400
35	500	90	48	16	500
36	300	100	56	18	900
37	200	70	58	20	400
38	800	40	8	48	300
39	900	50	9	56	200
40	400	80	60	22	500

Практическое занятие 5 Уравнение Менделеева-Клапейрона

Математическое обобщение законов Бойля и Гей-Люссака приводит к уравнению, связывающему объем газа с его температурой и давлением (и характеризующего полное состояние газа. Для 1 моль газа PV=RT [1.24]; для n моль газа PV=nRT [1.25]; для m гр. или кг газа уравнение примет вид PV=(mRT)/M [1.26]. откуда m=MPV/(RT) [1.27] или $m=(22,4\cdot\rho_0\ PV)\ /\ (RT)$ [1.28]. Молекулярная масса определяется из уравнения $M=(mRT)/\ (PV)$ [1.29]

m- количество газа (кг); R- универсальная газовая постоянная (величина для всех газов постоянная 8314,4 Дж/кмоль·град = 8,3144 Дж/кмоль·град = 8,3144 кДж/кмоль·град = $8,32\cdot10^7$ эрг/моль·град = 1,985 кал/моль·град = 0,848 кГм/кмоль·град = 0,848 кГм/кмоль·град = 0,0821 дм 3 ·ат/моль·град = 0,0821м 3 ·ат/моль·град); T- температура газа, К; M- молекулярная масса (кг/кмоль); ρ_0 – плотность газа при нормальных условиях.

$$\rho_{\rm o} = (M\,P_0\,V_0)/\,RT_0 = (M\cdot101, 3\cdot10^3\,V_0)R\cdot273 \qquad [1.30]$$
 плотность при других температурах, объемах и давлении
$$\rho = (M\,P\,V)/\,RT = (273\,M\,P)/\,22, 4\,{\rm m}^3\cdot101, 3\cdot10^3\cdot T = (0,12\cdot10^{-3}MP)/T \,\,({\rm Kr/m}^3)\,[1.31]$$

Если газ находится в состоянии термической диссоциации, то в уравнение Менделеева – Клапейрона вводится поправка- изотонический коэффициент $i = n'/n = [1 + \alpha (m-1)]$ [1.32]

n'- число молей газа после диссоциации; n- число молей газа до диссоциации; α - степень диссоциации газа; m- число частиц, на которое распадается 1 молекула исходного газа.

С учетом поправки уравнение Менделеева -Клапейрона примет вид $PV = inRT = [1 + \alpha \ (m-1)] \ nRT \quad [1.33]$

Пользуясь этим уравнением можно подсчитать степень диссоциации газа

Пример 1.4. Сколько содержится азота (по массе) в 50 м³ его при давлении 500 кн/м^2 и температуре 127°C (T=400K).

Решение. Пользуясь уравнением [1.26], имеем

$$m = (28.500.10^{3}.50)/(8314.4.400) = 212 \text{ K}$$

Пример 1.5. Какой объем займут 560 г азота при давлении 104 кH/m^2 и температуре минус 43° C?

Решение. Подставляя в уравнение [1.29] заданные величины ($P=104~{\rm kH/m^2},$ $m=0,560~{\rm kr},~T=273+43=230{\rm K},$ $M=28~{\rm kr/kmoль},$

 $R = 8314,4 \, \text{Дж/кмоль · град}), получим$

$$V = (0.56.8314.4.230) / (28.104.10^3) = 368 \text{ m}^3$$

Пример 1.6. 0,756 г H_2O при 2500°C и нормальном давлении, частично диссоциируя, занимают объем 9,76 дм³. Вычислить степень диссоциаций H_2O при указанной температуре.

Решение. 1 моль водяных паров образует 1,5 моль продуктов диссоциации ($H_2O = H_2 + 0,5O_2$). Следовательно, величина m в уравнении [1.33] равна 1,5. Исходя из условий задачи, определяем n

$$n = 0.576 / 18 = 0.042$$
 моль H_2O

Подставляем в уравнение [1.33] величины m =1,5, n = 0,042 моль, P =101,3 • 10 3 н/м 2 , V = 0,00976 м 3 , R = 8,3144 дж/моль·град, T = 2773 К и решая его в отношении α , получим

$$101,3 \cdot 10^3 \cdot 0,00976 = [1 + \alpha (1,5 - 1)] 0,042 \cdot 8,3144 \cdot 2773$$

Отсюда $\alpha = 0.0424$.

Пример 1.7. Найти плотность воздуха при 315° C (T=588K) и 0,45 МН/м², если плотность его при 0° C и нормальном давлении равна 1,2928 кг/м³.

Решение. Подставляя цифровые величины в уравнение [1.30], получим

$$\rho = (\ 2.7 \cdot 10^{-3} \cdot\ 1.2928 \cdot\ 0.45 \cdot 10^6)/\ 588 = 2.67\ \text{kg/m}^3$$

Практическое занятие 6 В газгольдере при давлении P кН/м² и температуре T°С (T= град.К) газ занимает объем V м³. Вычислить по плотности, удельному объему и по уравнению Менделеева-Клапейрона массу газа при нормальных условиях (101,3 кн/м³; 0°С).

Таблица 1.3.

Варианты задания 1.3

Вариант	Газ	Р кН/м ²	T °C	V м ³
1	водород	100	20	150
2	кислород	110	30	200
3	азот	120	40	250
4	аммиак	130	50	300
5	двуокись углерода	160	60	350
6	метан	170	20	400
7	этан	180	30	450
8	пропан	200	40	500
9	гелий	210	50	550
10	бутан	200	60	600
11	водород	210	20	650
12	кислород	220	30	700
13	азот	240	40	750
14	аммиак	260	50	800
15	окись углерода	180	60	550
16	метан	200	20	600
17	этан	210	30	650
18	пропан	220	40	700
19	водород	240	50	750
20	кислород	260	60	800
21	азот	280	20	900
22	аммиак	300	30	1000
23	двуокись углерода	320	40	1200
24	метан	340	50	1400
25	этан	360	60	100
26	пропан	100	20	150
27	водород	110	30	200
28	кислород	120	40	250
29	азот	130	60	300

30	аммиак	140	20	350
31	метан	150	30	400
32	этан	160	40	450
33	пропан	170	50	500
34	гелий	180	60	550
35	азот	160	30	200
36	аммиак	170	20	250
37	двуокись углерода	180	30	300
38	метан	200	40	350
39	этан	210	50	400
40	пропан	140	60	450

<u>Задание 1.4.</u> Сколько содержится газа (по массе) в V м³ его при давлении P кн/м² и температуре T °C .

Таблица 1.4. Варианты задания 1.4

Вариант	Газ	Р кН/м ²	T °C	V M^3
1	азот	100	20	150
2	аммиак	110	30	200
3	двуокись углерода	120	40	250
4	метан	130	50	300
5	этан	160	60	350
6	пропан	170	20	400
7	гелий	180	30	450
8	бутан	200	40	500
9	водород	210	50	550
10	кислород	200	60	600
11	азот	210	20	650
12	аммиак	220	30	700
13	окись углерода	240	40	750

14	метан	260	50	800
15	этан	180	60	550
16	пропан	200	20	600
17	водород	210	30	650
18	кислород	220	40	700

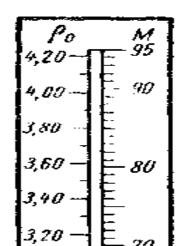
Продолжение табл.1.4

Вариант	Газ	Р кН/м ²	T °C	V M^3
19	азот	240	50	750
20	аммиак	260	60	800
21	двуокись углерода	280	20	900
22	метан	300	30	1000
23	этан	320	40	1200
24	пропан	340	50	1400
25	водород	360	60	100
26	кислород	100	20	150
27	азот	110	30	200
28	аммиак	120	40	250
29	метан	130	60	300
30	этан	140	20	350
31	пропан	150	30	400
32	гелий	160	40	450
33	окись углерода	170	50	500
34	двуокись углерода	180	60	550
35	пропан	100	40	200
36	гелий	110	50	250
37	бутан	120	60	300
38	водород	130	20	350
39	кислород	160	30	400
40	азот	170	40	450

Задание 1.5. Какой объем займут m г газа при давлении P кН/м 2 и температуре T $^{\rm o}$ С? T аблица 1.5.

Варианты задания 1.5

Вариант	Газ	Р кН/м ²	T °C	т, г
1	двуокись углерода	100	20	250
2	метан	110	30	300
3	этан	120	40	350
4	пропан	130	50	400
5	гелий	160	60	450
6	бутан	170	20	500


Продолжение табл.1.5

Вариант	Газ	Р кН/м ²	T °C	т, г
7	водород	180	30	550
8	кислород	200	40	600
9	окись углерода	210	50	650
10	метан	200	60	700
11	этан	210	20	750
12	пропан	220	30	800
13	водород	240	40	550
14	кислород	260	50	600
15	азот	180	60	650
16	аммиак	200	20	700
17	двуокись углерода	210	30	750
18	метан	220	40	800
19	этан	240	50	900
20	пропан	260	60	1000
21	водород	280	20	1200
22	кислород	300	30	1400
23	азот	320	40	100
24	аммиак	340	50	150
25	метан	360	60	200
26	этан	100	20	250
27	пропан	110	30	300

28	гелий	120	40	350
29	окись углерода	130	60	400
30	двуокись углерода	140	20	450
31	метан	150	30	500
32	этан	160	40	550
33	пропан	170	50	120
34	гелий	180	60	250
35	пропан	320	20	100
36	гелий	340	30	150
37	бутан	360	40	200
38	водород	100	60	250
39	кислород	110	20	300
40	азот	120	30	350

Практическое занятие 7 Закон Авогадро

В одинаковых объемах любого идеального газа при одинаковых температуре и давлении содержится одно и то же количество молекул. Установлено, что при нормальных условиях $1 \, \kappa$ моль любого вещества в газообразном состоянии занимает объем $22,4 \, \mathrm{m}^3$ или, что то же, $1 \, \mathrm{моль} - 22,4 \, \mathrm{дm}^3$ (округленно) и содержит $6,023 \cdot 10^{23} \, \mathrm{молекул}$.

Эти величины носят название: 22,4 — мольный объем, $6,023\cdot 10^{23}$ — число Авогадро. Отсюда вытекает, что, зная молекулярную массу (M) газа, можно вычислить плотность его (P_0) , выраженную в кг/м³ при нормальных условиях $(0^{\circ}\text{C и }101,325 \text{ к}H/\text{m}^2)$) $\rho_0 = M/22,4 \text{ кг/m}^3$. Так, плотность оксида углерода -2 CO (мол. масса 28,0) по уравнению (23) определится $\rho_0^{\text{CO}} = 28/22,4 = 1,250 \text{ кг/m}^3$

<u>Задание 1.6</u> m г H_2O при T °C и давлении P к H/M^2 , частично диссоциируя, занимают объем ${\it V}$ дм 3 . Вычислить степень диссоциаций ${\rm H_2O}$ при заданных параметpax. Таблица 1.6. Варианты задания 1.6

21

Вариант	V , дм ³	Р , кН/м ²	<i>T</i> ,°C	т, г
1	338	100	2500	26
2	300	110	2600	27
3	300	120	2700	29
4	320	130	2800	31
5	270	160	2500	33
6	280	170	2600	34
7	210	180	2700	28
8	166	200	2800	26
9	170	210	2650	27
10	190	200	2520	29
11	170	210	2500	26
12	180	220	2600	27
13	190	240	2700	29
14	190	260	2800	31
15	240	180	2500	33
16	260	200	2600	34
17	180	210	2700	28
18	170	220	2800	26
19	160	240	2650	27
20	150	260	2520	29
21	160	280	2800	26
22	120	300	2500	27
23	120	320	2600	29
24	120	340	2700	31
25	140	360	2800	33
26	450	100	2650	34
27	360	110	2520	28
28	340	120	2600	26

Продолжение табл.1.6

Вариант	V , дм ³	Р, кН/м ²	T, °C	т, г
29	270	130	2700	27

30	280	140	2800	29
31	280	150	2500	31
32	280	160	2600	33
33	280	170	2700	34
34	220	180	2800	28
35	120	130	2800	27
36	140	140	2500	29
37	450	150	2600	26
38	360	160	2700	27
39	340	170	2400	29
40	180	180	2600	31

<u>Задание 1.7.</u> Найти плотность газа при T °C и P кН/м²

Таблица 1.7 Варианты задания 1.7

Вариант	Газ	Р, кН/м ²	<i>T</i> ,°C
1	этан 100		20
2	пропан	110	30
3	гелий	120	40
4	бутан	130	50
5	водород	160	60
6	кислород	170	20
7	окись углерода 180		30
8	метан	200	40
9	этан	210	50
10	пропан	200	60
11	водород	210	20
12	кислород	220	30
13	азот	240	40
14	аммиак	260	50
15	двуокись углерода	180	60

16	метан	200	20		
Продолжение табл.1.7					

Вариант	Газ	Р кН/м ²	T °C
17	этан	210	30
18	пропан	220	40
19	водород	240	50
20	кислород	260	60
21	азот	280	20
22	аммиак	300	30
23	метан	320	40
24	этан	340	50
25	пропан	360	60
26	гелий	100	20
27	окись углерода	110	30
28	двуокись углерода	120	40
29	метан	130	60
30	этан	140	20
31	пропан	150	30
32	гелий	160	40
33	двуокись углерода	170	50
34	метан	180	60
35	пропан	260	30
36	водород	280	40
37	кислород	300	50
38	азот	320	60
39	аммиак	340	20
40	метан	360	30

1.5 Вопросы самопроверки и рейтинг – контроля

1. Термодинамика, основное содержание, формы передачи энергии, механический эквивалент теплоты.

- 2. Подразделение термодинамики, какие закономерности превращения энергии в явления изучаются в каждом разделе.
- 3. Понятие рабочего тела и термодинамической системы.
- 4. Классификация термодинамических систем в зависимости от условий их взаимодействия с другими системами.
- 5. Понятие о термодинамических параметрах состоянии рабочего тела.
- 6. Термическое уравнение состояния рабочего тела, понятие о равновесном термодинамическом процессе.
- 7. Понятие обратимых и необратимых процессов.
- 8. Понятие идеального газа.
- 9. Определение температуры. Шкала термодинамической температуры, шкала международной практической температуры.
- 10. Понятие удельного объёма газа. Понятие давления газа. Нормальные условия состояния идеального газа
- 11. Определение давления по молекулярно- кинетической теории газов, его взаимосвязи с объёмом и температурой.
- 12. Математические выражения взаимосвязи давления, объёма и температуры для одного кг газа.
- 13. Закон Бойля-Мариотта
- 14. Определение числа Авагадро
- 15. Закон Гей-Люссака
- 16. Уравнение Менделеева- Клапейрона для 1 кг газа.
- 17. Уравнение Менделеева- Клапейрона для M кг газа. Что отражают термические (характеристические) уравнения состояния газа.
- 18. Математическое выражение уравнений Менделеева-Клапейрона для состояния идеального газа (для 1 кг, m кг, 1 кмоля)
- 19. Математическое выражение уравнений Менделеева-Клапейрона для смеси реальных газов.

Глава 2. СМЕСИ ИДЕАЛЬНЫХ ГАЗОВ

2.1. Основные законы для смеси идеальных газов

При горении топлива в теплотехнических агрегатах образуется смесь газов. В термодинамике смесь идеальных газов, не вступающих в реакцию, рассматривается как идеальный газ. При этом каждый газ, ведет себя так, как будто бы он один занимает весь объем, а давление, которое он оказывает на стенки сосуда, называется парциальным. Давление смеси газов складывается из парциальных давлений отдельных газов.

Дальтон вывел закон:
$$p_{CM} = \sum_{i=1}^{i=n} p_i$$
 [2.1]

При расчете смеси определяют относительную молекулярную массу, газовую постоянную, плотность, парциальные давления компонентов. Состав может быть задан в массовых, объемных или мольных долях. Для сравнения объемов газов, входящих в смесь, их приводят к одинаковому давлению, которое равно давлению смеси. Объемная доля і-того компоненента \mathbf{r}_i определяется отношением парциального объема V_i і-того газа к объему смеси газов V_{cm} $r_i = V_i / V_{cm}$.

При одинаковой температуре газ занимает объем смеси и находится под своим парциальным давлением и когда находится под давлением смеси он занимает парциальный объем.

В соответствии с законом Бойля-Мариотта $p_i V_{c_{\mathcal{M}}} = p_{c_{\mathcal{M}}} V_i$, тогда $V_{\mathcal{CM}} = \sum_{i=1}^{i=n} V_i$;

i=n $\sum\limits_{i=1}^{\infty}r_i=1$. Молярная доля i-того компонента χ_i определяется отношением числа молей компонента k_i к числу молей смеси $k_{\scriptscriptstyle CM}$. Молярные доли, исходя из закона Авогадро равны объемным долям:

$$r_{i} = \frac{Vi}{V_{CM}} = \frac{r_{i}(\mu \nu)_{i}}{k_{CM}(\mu \nu)_{CM}} = \chi_{i}, k_{CM} = \sum_{i=1}^{i=n} k_{i}$$
 [2.2]

Плотность газовой смеси $\rho_{\text{см}} = \sum \rho_i r_i$ или при определении через массовые и ітые доли плотности $\rho_{\text{см}} = \sum (m_i/\rho_i)$. Молекулярная масса смеси газов $\mu_{\text{см}}$ определяется через массовые и объемные доли компонентов $\mu_{\text{см}} = \sum \mu_i r_i$; газовая постоянная смеси определяется $R_{\text{см}} = \sum m_i R_i$. Под удельной теплоемкостью вещества понимают количество теплоты, которое необходимо сообщить или отнять от единицы вещества (1 кг, 1 м³, 1 моль), чтобы изменить его температуру на 1 градус.

Различают, соответственно: массовую [c, Дж/(кг⁻K)], объемную [c', Дж/(м³ ⁻K)]и молярную теплоемкости [μ c, Дж/(моль⁻K)]. Между собой они связаны: $c=\mu c/\mu$; $c'=\mu c/22,4$; $c'=c/\rho$ [2.3]

Истинной теплоемкостью называется теплоемкость, когда подвод бесконечно малой величины тепла dq к 1 кг газа приводит к изменению его температуры на бесконечно малую величину dt; c = dq/dt.

В технике различают тепловые процессы, протекающие при постоянном объеме газа (изохорный процесс), соответственно, теплоемкости: массовая [c_v , Дж/(кг[·]K)], объемная [c_v , Дж/(м³ [·]K)], молярная изохорная теплоемкость [μc_v , Дж/(моль [·]K)]; процессы, протекающие при постоянном давлении (изобарные процессы) имеют соответствующие теплоемкости и обозначаются с подстрочным индексом p: c_p , c_p , μc_p .

По уравнению Майера: c_p - $c_v = R$; μc_p - $\mu c_v = R\mu = 8314$ Дж/(кмоль К) = 2 ккал/(кмоль К). [2.4]

<u>Для одноатомных газов</u>: $\mu c_v = 12,48$ кДж/(кмоль К) = 3 ккал/ (кмоль К); $\mu c_p = 20,8$ кДж/(кмоль К) = 5 ккал/ (кмоль К).

<u>Для двухатомных газов</u>: $\mu c_v = 20.8 \text{ кДж/(кмоль K)} = 5 \text{ ккал/ (кмоль K)};$ $\mu c_p = 29.12 \text{ кДж/(кмоль K)} = 7 \text{ ккал/ (кмоль K)}.$

Теплоемкость газовой смеси: массовая
$$c_{c_M} = \sum_{i=1}^{i=n} c_i m_i$$
; [2.4]

объемная
$$c'_{cM} = \sum_{i=1}^{i=n} c'_{i} r_{i}$$
. [2.5]

2.2. Определения и математические формулы для влажного воздуха и пара

Водяной пар встречается в различных состояниях:

- водяной пар является частью газовых смесей, которые получаются при сгорании топлива в различных агрегатах. В этом случае парциальное давление мало, температура пара высокая и он далек от состояния жидкости. Здесь его считают идеальным газом. Водяной пар считают идеальным газом и в составе атмосферного воздуха. Механическая смесь воздуха с во-

дяным паром называется влажным воздухом, или воздушно-паровой смесью. К влажному воздуху с достаточной точностью расчетов может быть отнесено все, касающееся смеси идеальных газов. В то же время влажный воздух следует особо рассматривать как разновидность газовой смеси, т.к. вода в сухом воздухе встречает ся в виде пара, жидкости или твердой фазы и в зависимости от температуры может выпадать из смеси. Однако эти смеси вполне точно описываются известными уравнениями. По закону Дальтона общее барометрическое давление влажного воздуха В составляет : $B=p_B+p_B$ где p_B - парциальное давление сухого воздуха; p_B - парциальное давление водяного пара.

Максимальное давление p_{π} при данной температуре представляет собой давление насыщенного водяного пара. Если этот пар является сухим, то и влажный воздух, содержащий его, называется насыщенным. При охлаждении его будет происходить конденсация водяного пара. Если при данной температуре в воздухе пар находится в перегретом состоянии, то влажный воздух называется ненасыщенным - он способен к дальнейшему увлажнению. Количество паров воды, содержащихся в 1 м³ влажного воздуха, называется абсолютной влажностью. Она равна плотности пара при его парциальном давлении и температуре воздуха и обозначается ρ_{π} .

Отношение абсолютной влажности ненасыщенного воздуха к абсолютной влажности насыщенного воздуха $\rho_{\rm H}$ называется относительной влажностью $\phi = \rho_{\rm H}/\ \rho_{\rm H}$. Для насыщенного воздуха $\phi = 1$, для ненасыщенного $\phi < 1$. Парциальные давления пара в ненасыщенном воздухе зависят от температуры. И поскольку при атмосферном давлении парциальное давление пара очень мало, его можно отнести к идеальным газам, который подчиняется закону Бойля -Мариотта. Это позволяет для одной и той же температуры заменить $\phi = \rho_{\rm H}/\ \rho_{\rm H}$ на $\phi = p_{\rm H}/\ p_{\rm H}$ где $p_{\rm H}$ и $p_{\rm H}$ парциальные давления пара и воздуха. Для нахождение парциального давления пара пользуются гигрометрами, по которым определяют точку росы.

Точка росы- это температура, до которой необходимо охладить ненасыщенный воздух при постоянном давлении, чтобы он стал насыщенным. Зная точку росы t_p , можно по таблицам водяного пара определить парциальное давление пара в воздухе как давление насыщения, соответствующее t_p . Плотность влажного воздуха определяют по сумме масс

1 м
3
 сухого воздуха и водяных паров, в нем содержащихся. $\rho = \rho_{\rm II} + \rho_{\rm B} = \frac{p_{_{\it B}}}{R_{_{\it B}}T} + \frac{\varphi}{v''}$.

Молекулярную массу влажного воздуха определяют по фор-

муле $\mu = 28,95 - 10,934 \varphi (p_H/B);$ p_H и v" при температуре t берут из таблиц для водяного пара, φ - по данным психрометра, а B - по барометру

Влагосодержание это отношение массы водяного пара к массе сухого воздуха в единице объема $d=m_n/m_e=0,622~(\phi\cdot p_{\scriptscriptstyle H})/(B-\phi\cdot p_{\scriptscriptstyle H})$ Максимальное влагосодержание при $\phi=1~d=0,622p_{\scriptscriptstyle H}/(B-p_{\scriptscriptstyle H})$. Так как давление насыщения растет при росте температуры, то максимальное содержание влаги в воздухе растет с ростом температуры.

Отношение $d/d_{H} = \psi$ - степень насыщения влажного воздуха.

Газовая постоянная влажного воздуха равна

$$R = 8314/\mu = 8314/(28,95 - 10,9340 p_H/B)$$
 [2.6]

Объем влажного воздуха $V_{\textit{вл.6}} = RT/B$, удельный объем $v = V_{\textit{вл.6}}/(1+d)$, удельная массовая теплоемкость $c_{\textit{см}} = \sum c_i m_i = c_e + d \ c_n$

(для сухого воздуха до $100~^{0}$ C она равна 1,0048~ кДж/(кг⁻K); для перегретого пара средняя изобарная теплоемкость при атмосферном давлении и не высоких степенях перегрева равна 1,96~ кДж/(кг⁻K).

При работе водяного пара в тепловых двигателях или в теплообменных аппаратах пренебрегать межмолекулярным взаимодействием нельзя, т.к. за счет сжатия он приближается к состоянию жидкости; этот газ называется реальным и законам идеального газа не подчиняется.

2.3 Закон Гей-Люссака для смеси идеальных газов. Примеры задач и варианты для их решения

Закон Гей-Люссака

С учетом давления водяных паров (в H/M^2) в составе газа объем его в сухом состоянии следует подсчитывать по формуле

$$V_0 = 2.7 \cdot 10^{-3} (P-e) \ V / T$$
 [2.7]

Значения (в) для различных температур приводятся в табл. 2.1

 Таблица 2.1

 Давление (\boldsymbol{s}) насыщенного водяного пара (\mathbf{h}/\mathbf{m}^2) при различных температурах

Температура, °С	Давление, <i>P</i> , Н/м ²	Темпе- ратура, °С	Давление, P , $H/\text{м}^2$	Темпе- ратура, °С	Давление, P , H/M^2
-60	1,333	10	1225	30	4250

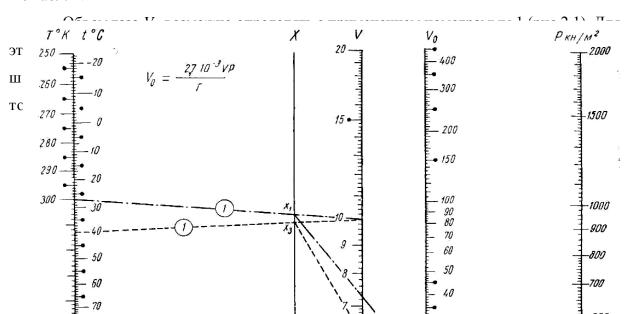
Продолжение табл.2.1

Температура, °С	Давление, <i>P</i> , Н/м ²	Темпе- ратура, °С	Давление, P , H/M^2	Темпе- ратура, °С	Давление, P , $H/\text{м}^2$
-50	5,332	11	1306	31	4460
-40	16,00	12	1400	32	4720
-30	40,00	13	1470	33	5000
-20	120	14	1600	34	5270
-10	254	15	1710	36	5900
-9	274	16	1816	38	6670

-8	307	17	1940	40	7330
-7	334	18	2070	42	8150
-6	360	19	2100	44	9060
-5	400	20	2340	46	10000
-4	440	21	2430	48	11100
-3	480	22	2640	50	12300
-2	520	23	2830	60	19900
-1	560	24	2990	70	31400
0	615	25	3180	80	47200
2	706	26	3380	90	70100
4	814	27	3580	100	101300
6	935	28	3800		
8	1065	29	4020		

Пример 2.1. При давлении 105 кH/m^2 и температуре 40°C (T=313K) влажный газ занимает объем 10 м^3 . Вычислить объем влажного и сухого газа при нормальных условиях ($101,3 \text{ кH/m}^3$; 0°C).

Решение. Объем влажного газа по уравнению


$$V_0 = 10 \cdot 2,7 \cdot 10^{-3} \cdot 105 \cdot 10^3 / 313 = 9,05 \text{ m}^3$$

Объем того же количества газа в сухом состоянии по уравнению

$$V_0 = 10 \cdot 2,7 \cdot 10^{-3} \cdot (105 - 7,3) \cdot 10^3 / 313 = 8,43 \text{ m}^3$$

где $7,3\cdot10^3$ — давление (в H/M^2) водяных паров в газе при 40° С, найденное

по табл. 2.1

со шкалой x (точка x_1) и через точку на шкале давлений P (например P= 200) проводим прямую. На шкале V_0 отложилось деление 18. Таким образом, объем газа при нормальных условиях равен 18 м³.

На шкале V нанесены деления от 1 до 20. Если в задании V будет больше 20 (например, 45 м³), то на этой шкале надо брать деление в 10 раз меньше заданного (т. е. вместо 45 брать 4,5) и находить значение Vo, как указано выше. Затем найденное значение Vo надо увеличить в 10 раз, что и будет соответствовать заданному V. При значениях же V < 1 необходимо поступать наоборот, т. е. увеличить в 10 раз, а найденное Vo уменьшить в 10 раз

 $\underline{\it 3adahue~2.1}$ Вычислить объем газа с учетом давления водяных паров в составе газов : а) при нормальных условиях; б) при давлении P_2 и температуре t_2 . если имеется V_1, P_1, t_1 газа

Таблица 2.2 Варианты задания 2.1

Вариант	P ₁ , кПа	V_1, M^3	$t_1, {}^0$ C	t_2 , 0 C	P ₂ , кПа
1	400	40	8	48	300
2	600	50	9	56	200
3	700	60	10	58	400
4	800	70	12	60	600
5	900	80	14	62	700
6	400	90	16	64	800
7	500	70	18	68	900
8	300	80	20	72	400
9	200	90	22	74	500
10	400	100	24	76	300
11	600	120	26	78	200
12	700	140	28	92	400
13	800	150	30	8	600
14	900	70	32	9	700
15	400	80	34	10	800
16	500	90	36	12	900
17	400	100	38	14	400
18	500	120	40	16	500
19	300	70	42	18	400
20	200	80	44	20	500

Продолжение табл.2.2.

Вариант	P ₁ , кПа	V_1 , M^3	t_1 , 0 C	t_2 , 0 C	P ₂ , кПа
21	400	90	46	22	900
22	600	100	48	24	400

23	700	120	56	26	500
24	800	140	58	28	300
25	900	150	60	30	200
26	400	70	62	9	600
27	500	80	64	10	600
28	300	90	68	12	700
29	200	100	72	14	800
30	400	70	74	16	900
32	600	80	76	18	400
33	700	90	78	20	500
34	800	70	92	22	400
35	400	120	14	56	900
36	600	140	16	58	400
37	700	150	18	60	500
38	800	70	20	62	300
38	900	80	22	64	200
40	400	90	24	68	600

<u>Задание 2.2</u> В газгольдере при давлении P кН/м² и температуре T°С (T=град.К) влажный газ занимает объем V м³. Вычислить аналитически и по номограмме объем влажного и сухого воздуха при нормальных условиях (101,3 кн/м³; 0°С).

Таблица 2.3. Варианты задания 2.2

Вариант	Р, кН/м ²	<i>T</i> ,°C	V , M^3
1	90	20	100
2	100	30	150
3	110	40	200
4	120	50	250
5	130	60	300
6	140	20	350

Продолжение табл.2.3

Вариант	Р кН/м ²	T °C	V м ³
7	150	30	400
8	160	40	450
9	170	50	500
10	180	60	550
11	200	20	600
12	210	30	650
13	220	40	700
14	240	50	750
15	260	60	800
16	280	20	900
17	300	30	1000
18	320	40	1200
19	340	50	1400
20	360	60	100
21	100	20	150
22	110	30	200
23	120	40	250
24	130	50	300
25	160	60	350
26	170	20	400
27	180	30	450
28	200	40	500
29	210	50	550
30	200	60	600
31	210	20	650
32	220	30	700
33	240	40	750
34	260	50	800
35	170	30	300
36	180	40	350
37	200	50	400

38	210	60	450
39	200	20	500
40	210	30	550

2.4 Закон Дальтона. Газовые смеси. Примеры задач и варианты для их решения

Если имеется смесь газов, составные части которой друг с другом химически не взаимодействуют, то, по закону Дальтона, общее давление ее (P) равно сумме парциальных давлений (P_1 , P_2 , P_3) отдельных составных частей

$$P = P_1 + P_2 + P_3 + \dots$$
 [2.8]

На основании этой зависимости, а также из закона Бойля получаем следующее равенство: $p_i = v_i P$ [2.9]

где p_i — парциальное давление отдельного газа, входящего в состав газовой смеси; v_i — парциальный объем этого газа в единице объема газовой смеси; P — общее давление газовой смеси. Из закона Дальтона вытекает очень важное следствие, к которому часто прибегают в расчетной практике: если известен объемный (или мольный) состав смеси газов, то все физические константы ее (молекулярная плотность, удельный объем, теплоемкость и т. д.) подчиняются правилу аддитивности, т. е. их можно вычислить по правилу смешения*.(* Этому правилу газовые смеси не подчиняются в том случае, если смешение их сопровождается изменением объема.). Допустим, что k_1 k_2 k_3 ...— константы составных частей газовой смеси, а v_1 , v_2 , v_3 ...— мольные (или объемные) доли этих частей в смес v_1 , v_2 , v_3 ... и. Тогда общая константа (K) смеси определится

$$K = k_1 v_1 + k_2 v_2 + k_3 v$$
 [2.10]

Пользуясь законом Дальтона и уравнением Менделеева-Клапейрона, можно подсчитать концентрации отдельных компонентов газовой смеси в κ моль/ κ , зная их процентное содержание. Если общее давление газовой смеси равно P, а количество какого-либо компонента A в ней равно a_o % (объемных, или, что то же, мольных), то парциальное давление этого компонента составит

$$p_A = Pa_0/100$$
 [2.11]

Отсюда получим

$$p_AV=nRT$$

[2.12]

где p_A — парциальное давление компонента A в смеси $Pa_0/100$ [2.13]

V — общий объем газовой смеси, который в данном случае принимаем равным единице, так как мы выводим расчетную формулу для 1 M^3 газа; n — число молей компонен-

та A в общем объеме смеси (в данном случае в 1м^3); R — газовая постоянная, равная $8314,4 \ \partial \mathcal{H}/\kappa \text{моль-град}$;

T—абсолютная температура газа.

Подставляя указанные величины в уравнение [2.12], найдем значение n, т. е. количество компонента A в κ моль на 1 M^3 смеси в зависимости от процентного содержания его, температуры и общего давления P (в $H1M^2$) смеси: n=V Pa_0

/100RT [2.14]

Подставляя в это выражение величины V = 1 и R = 8314,4, получим

$$n = Pa_0/831,44T$$
 моль/м³ [2.15]

или $m = Pa_0M / 831,44 \cdot 10^3 T \,\mathrm{Kr/M}^3$ [2.16]

Пример 2.2. Газовая смесь состава 30% CO, 60% N_2 и 10% H_2 находится под давлением 5,0 M_1/M^2 . Найти парциальные давления каждой составной части смеси.

Решение. Пользуясь уравнением [2.9], получим

$$p_{CO} = 5.0 \cdot 0.30 = 1.5 \text{ MH/m}^2$$
,

$$p_{N2} = 5.0 \cdot 0.60 = 3.0 \text{ MH/m}^2$$
,

$$p_{H2} = 5.0 \cdot 0.10 = 0.5 \text{ MH/m}^2$$

Пример 2.3. Подсчитать плотность ρ и приведенную молекулярную массу (*M*) воздуха, если состав его (по объему): 21% O_2 , 78% N_2 и 1% Aг, а плотность кислорода 1,429, азота 1,251, аргона 1,781 $\kappa z/m^3$.

Решение. По уравнению [2.10] имеем

$$P = 0.21 \cdot 1.429 + 0.78 \cdot 1.251 + 0.01 \cdot 1.785 = 1.293 \text{ K} \Gamma / \text{M}^3$$

Определяем $M_{\text{возд}}$

$$M_{\text{BO3}7} = 0.21 \cdot 32.0 + 0.78 \cdot 28.0 + 0.01 \cdot 39.9 = 28.96$$

Пример 2.4. Газ содержит (по массе) 82 % N_2 , 8 % SO_2 и 10 % O_2 ; удельная теплоемкость $c_{N2}=1{,}045,\ c_{SO2}=0{,}628,\ c_{O2}=0{,}920$ Дж/кг

Так как удельная теплоемкость относится к весовым единицам, то состав смеси при подсчетах необходимо выражать в весовых процентах.)

Решение. Теплоемкость газа указанного состава равна

$$C = 0.82 \cdot 1.045 + 0.08 \cdot 0.628 + 0.10 \cdot 0.920 = 1.00$$
 Дж/кг

Пример 2.5. Водород при 127°С (T = 400°К) находится под давлением $82,4\cdot10^3$ Н/м². Определить содержание его в кмоль/м³.

Решение. По уравнению [2.14] имеем ($a_a = 100\%$) $n = 100 \cdot 82, 4 \cdot 10^3 / 831, 44 \cdot 10^3 \cdot 400 = 0,024$ кмоль или (килограмм-молекулярная масса водорода 2 кг/кмоль) n' = 0,0248 (кмоль) • 2 (кг/ кмоль) = 0,0496 кг.

<u>Задание 2.3</u> Газовая смесь состава g CO $_2$ мас. ч.; g CH $_4$ мас. ч. и g N $_2$ мас. ч. находится под давлением P кН/м 2 . Найти парциальные давления каждой составной части смеси.

Таблица 2.4 Варианты задания 2.3

Вариант	Р, кН/м ²	g, CO ₂ мас. ч	<i>g</i> , СН ₄ мас. ч.	g, N ₂ мас. ч
1	100	1000	20	150
2	110	1200	30	200
3	120	1400	40	250
4	130	100	50	300
5	160	150	60	350
6	170	200	20	400
7	180	250	30	450
8	200	300	40	500
9	210	350	50	550
10	200	400	60	600
11	210	450	20	650
12	220	500	30	700
13	240	150	40	750
14	260	200	50	800
15	180	250	60	550
16	200	300	20	600
17	210	350	30	650
18	220	400	40	700
19	240	450	50	750
20	260	500	60	800

21	280	550	20	900
22	300	600	30	1000
23	320	650	40	1200
24	340	700	50	1400
25	360	750	60	100
26	100	800	20	150
27	110	550	30	200
28	120	600	40	250

Продолжение табл. 2.4

Вариант	Р кН/м ²	g CO ₂ мас. ч	g CH ₄ мас. ч.	g N ₂ мас. ч
29	130	650	60	300
30	140	700	20	350
31	150	750	30	400
32	160	800	40	450
33	170	900	50	500
34	180	1000	60	550
35	320	600	50	150
36	340	650	60	200
37	360	700	20	250
38	100	750	30	300
39	110	800	40	350
40	120	550	60	400

 $\underline{\it 3adahue~2.4}$ Подсчитать плотность ρ и приведенную молекулярную массу (М) газовой смеси, представленной в табл. 2.4 при температуре $30~^{0}{\rm C}$

<u>Задание 2.5</u> Подсчитать удельную теплоемкость газовой смеси, представленной в табл. 2.4 (Так как удельная теплоемкость относится к массовым единицам, то состав смеси при подсчетах необходимо выражать в массовых процентах.)

<u>Задание 2.6</u> Газ при температуре T °C находится под давлением P к $H/м^2$. Определить содержание его в *кмоль/м*³.

Таблица 2.5

Варианты задания 2.6

Вариант	Газ	Р кН/м ²	T °C
1	аммиак	100	30
2	метан	110	40
3	этан	120	50
4	пропан	130	60
5	гелий	160	20
6	окись углерода	170	30
7	двуокись углерода	180	40
8	метан	200	50

Продолжение табл. 2.5

Вариант	Газ	Р кН/м ²	T °C
9	этан	210	60
10	пропан	200	20
11	гелий	210	30
12	двуокись углерода	220	40
13	метан	240	60
14	этан	260	20
15	пропан	180	30
16	гелий	200	40
17	бутан	210	50
18	водород	220	60
19	кислород	240	20
20	окись углерода	260	30
21	метан	280	40
22	этан	300	50
23	пропан	320	60
24	водород	340	20
25	кислород	360	30
26	азот	100	40
27	аммиак	110	50

28	двуокись углерода	120	60
29	метан	130	20
30	этан	140	30
31	пропан	150	40
32	водород	160	50
33	кислород	170	60
34	азот	180	20
35	гелий	260	60
36	бутан	280	20
37	водород	300	30
38	кислород	320	40
39	окись углерода	340	50
40	метан	360	60

2.4. Вопросы самопроверки и рейтинг – контроля

- 1. Закон Дальтона.
- 2. Смесь идеальных газов, определение объёмной доли.
- 3. Закон Бойля Мариотта для смеси газов. Определение молярных долей.
- 4. Определение плотности, молекулярной массы, газовой постоянной смеси идеальных газов.
- 5. Понятие удельной теплоемкости.
- 6. Массовая, объемная, мольная теплоемкости, связь между ними.
- 7. Истинная теплоемкость.
- 8. Понятие изобарного и изохорного тепловых процессов, теплоемкость газов при этих процессах, их обозначение.
- 9. Уравнение Мейера для определения взаимосвязи и численных значе ний теплоёмкости изобарного и изохорного тепловых процессов, для одно- и двухатомных газов, смеси газов.
- 10. Влажный воздух. Закон Дальтона для влажного воздуха.

- 11. Понятие насыщенного, ненасыщенного водяного пара; насыщенного, ненасыщенного воздуха, абсолютная влажность.
- 12. Относительная влажность воздуха. Закон Бойля Мариотта для влажного воздуха.
- 13. Точка росы, определение.
- 14. Плотность и молекулярная масса влажного воздуха.
- 15. Влагосодержание влажного воздуха и его определение.
- 16. Определение степени насыщения влажного воздуха, газовой постоянной, объема, удельного объема и удельной массовой теплоемкости, ее значение для сухого воздуха и перегретого пара.
- 17. В каких случаях водяной пар называется реальным газом.

Глава 3. СМЕСИ РЕАЛЬНЫХ ГАЗОВ

3.1. Уравнение состояния реальных газов

Чем больше плотность газа, т. е. чем меньше расстояние между его частицами, тем больше такой газ отклоняется от идеального состояния. Действительно, с увеличением плотности газа начинают увеличиваться не только силы взаимодействия между его частицами, но также и относительный объем их по сравнению с общим объемом газа. Это обстоятельство вызывает необходимость внести соответствующие поправки в уравнение для идеальных газов: внешнее измеряемое давление P газа должно быть увеличено за счет сил взаимного притяжения его частиц, а объем V — уменьшен на величину объема, занимаемого массой частиц.

Силы взаимного притяжения частиц, называемые Ван-дер-Ваальсовыми силами, могут рассматриваться как внутреннее давление газа, и величина их в первом приближении обратно пропорциональна квадрату объема, занимаемого газом. Таким образом, реальное состояние газа можно выразить следующими уравнениями (Ван-дер-Ваальса) для 1 моля

$$(P+a/V^2)\cdot(V-b)=RT$$
, откуда $P=[RT/(V-b)]-a/V^2$ [3.1]

для
$$n$$
 молей $P_n = n \{ [RT/(V-nb)] - na/V^2 \}$ [3.2]

где a и b — константы, зависящие от природы газа.

Значения констант а и в для некоторых газов приведены в табл. 3.1

Таблица 3.1 Значения констант для некоторых газов

Газ	Константы уравнен	ия Ван-дер-Ваальса
	<i>а</i> , Дж·м³/кмоль	<i>b</i> , м ³ /кмоль0,щ366
Азот	0,1363	0,0335
Аммиак	0,423	0,0373
Аргон	0,137	0,0375
Ацетилен	0,437	0,0512
Воздух	0,135	0,0366
Водород	0,0248	0,0219
Водяные пары	0,555	0,0326
Гелий	0,00345	0,0237

Продолжение табл. 3.1.

Газ	Константы уравнения Ван-дер-Ваальса				
	a , Дж·м 3 /кмоль 2	<i>b</i> , м ³ /кмоль			
Кислород	0,138	0,0318			
Метан	0,228	0,0428			
Оксид углерода, СО	0,148	0,0394			
Диоксид углерода, СО2	0,365	0,0427			
Этилен	0,455	0,0572			

Применяя уравнение [3.2] к состояниям газа при T_1 и T_2 , получим

$$\{V_2^2(P_1V_1^2 + n^2a)\cdot(V_1 - nb)\}/\{V_1^2(P_2V_2^2 + n^2a)\cdot(V_2 - nb)\} = T_1/T_2 \quad [3.3]$$

где P_1 , V_1 и T_1 — начальное состояние газа; P_2 , V_2 и T_2 — конечное состояние его.

В связи с тем, что уравнения [3.1; 3.2;3.3] сравнительно громоздки, в расчетной практике для реальных газов обычно пользуются уравнением Клапейрона—Менделеева, вводя в него коэффициент сжимаемости β, который определяется уравнением

$$\beta = -(1/V) \cdot (dV/dT)$$
, $H \cdot M = Дж$ [3.4]

или в упрощенном виде

$$\beta' = PV/RT$$
 [3.5]

Коэффициент сжимаемости определяется опытным путем и для расчетов берется из таблиц. В табл. [3.2] даны значения коэффициента сжимаемости газов в зависимости от величины приведенного давления π и приведенной температуры τ , которые определяются уравнениями

$$\pi = P/P_{\kappa p}$$
; $\tau = T/T_{\kappa p}$ [3.6]

 $\label{eq:Tadinuqua} \emph{Tadinuqua} \ \emph{3.2}$ Зависимость коэффициента сжимаемости $\beta' = PV/RT$ газов от приведенного давления π и приведенной температуры $\ \tau$

Приведенная тем-		Приведенное давление π					
пература, т	10	15	20	25	30	35	40
1,0	1,22	1,78	2,24	2,80	-	-	-
1,1	1,21	1,70	2,04	2,67	-	-	-
1,2	1,20	1,65	2,04	2,52	-	-	-
1,3	1,20	1,59	1,98	2,38	-	-	-
1,4	1,20	1,56	1,92	2,30	-	-	-

Продолжение табл. 3.2

Приведенная тем-		Приведенное давление π					
пература, т	10	15	20	25	30	35	40
1,6	1,20	1,51	1,81	2,13	2,44	2,76	3,01
1,8	1,20	1,48	1,74	2,61	2,29	2,56	2,80
2,0	1,20	1,44	1,68	1,94	2,17	2,40	2,64
2,5	1,20	1,40	1,58	1,78	1,97	2,16	2,32

3,0	1,20	1,36	1,52	1,68	1,84	2,00	2,14
3,5	1,20	1,34	1,48	1,60	1,74	1,88	2,00
4,0	1,20	1,32	1,43	1,54	1,66	1,78	1,88
5,0	1,20	1,30	1,39	1,47	1,57	1,66	1,74
6,0	1,16	1,24	1,34	1,40	1,50	1,58	1,66
7,0	1,14	1,20	1,29	1,36	1,43	1,50	1,57
8,0	1,13	1,18	1,26	1,32	1,37	1,44	1,50
9,0	1,12	1,16	1,22	1,28	1,34	1,39	1,44
10,0	1,10	1,15	1,20	1,25	1,30	1,35	1,40
15,0	1,07	1,10	1,15	1,19	1,22	1,26	1,30
20,0	1,06	1,08	1,11	1,14	1,17	1,20	1,22

3.2 Примеры задач и варианты для их решения

Пример 3.1. Подсчитать давление при 100° С одного моля оксида серы, заключенной в сосуд на $10 \, n$.

Решение. Подсчитаем давление SO_2 в баллоне, пользуясь уравнением для идеальных газов

$$P=nRT/V$$
 [3.7]

Подставляя сюда n=1,0; R=8,3144 Дж/моль·град; T=(273+100)=373 К и V=0,01 м³, получим

$$P = (1.8,3144.373) / 0,01 = 310,1 \text{ kH/m}^2$$

Подставляя в уравнение [3.1] для реальных газов числовые значения, получим $P' = (8,3144\cdot373)/(0,01-0,0565\cdot10^{-3}) = 311,9 \text{ кH/m}^2$

Пример 3.2. В сосуде емкостью 5л находится 208,2 г ацетилена при 727°С. Подсчитать давление ацетилена в сосуде.

Решение. Из условий следует n = m/M = 208,2 / 26,0 = 8,0 моль

$$T = (273 \text{ H- } 727) = 1000$$
°K; $a = 0.437 \cdot 10^{-3} \text{ Дж} \cdot \text{м}^3 / \text{моль}^2 *$

$$R=8$$
 ,3144 Дж/моль·град; $b=0.0512\cdot10^{-3}$ м³/моль.*

* Значение a и b в табл. 3.1 даны на 1 кмоль газа. Мы в данном примере подсчет ведем на массу газа, выраженную в молях (1 *моль*). Следовательно, табличные значения a и b выражены также на 1 *моль*;

Подставляя эти данные в уравнение [3.2], получим $P_n = n \{ [RT/(V-nb)] - na/V^2 \} = 8.0 \{ (8.3144 \cdot 1000) / [5 - (8.0 \cdot 0.0512) \cdot 10^{-3}] \} - (8.0 \cdot 0.437 \cdot 10^{-3}) \} - (8.0 \cdot 0.437 \cdot 10^{-3})$

Вычисляем давление P' по уравнению для идеальных газов:

$$P' = nRT/V = 8.0 \cdot 8.3144 \cdot 1000 / 0.005 = 13.303 \text{ M}\Pi a$$

Это отличается от вычисленного выше значения P на

$$(14,489 - 13,303) \cdot 100 / 14,489 = 8,2 \%$$

Подсчитаем то же самое, пользуясь коэффициентом сжимаемости. Критическая температура ацетилена 36°C (309°K), критическое давление 6,2 МПа. Отсюда приведенные температура и давление будут

$$\tau = 1000/309 = 3,236;$$
 $\pi = 13,303/6,2 = 2,146$

По табл. 3.2 интерполяцией (для T) и экстраполяцией (для n) находим коэффициент сжимаемости, β равный примерно 1,09 \div 1,08. Отсюда имеем

$$P = 1,085 \cdot 13,303 = 14,434 \text{ M}\Pi a$$

Это практически совпадает с вычисленным значением давления по уравнению Ван-дер-Ваальса.

Уравнение Ван-дер-Ваальса дает достаточно точные результаты для всех газов даже в области их критических температур и давлений. Однако при высоких давлениях, когда плотность газа велика или когда газ находится вблизи точки сжижения, это уравнение дает значительные отклонения от действительного поведения газа. Отклонения объясняются тем, что при большой плотности газа на его давление оказывают влияние не только силы взаимного притяжения, но также и силы взаимного отталкивания частиц, обусловленные внешними электронными оболочками этих частиц. Кроме того, здесь на реальное поведение газа в значительной мере также оказывают влияние неупругие столкновения его частиц и другие факторы. В связи с этим, кроме уравнения Ван-дер-Ваальса, был предложен ряд других, более сложных уравнений для реального состояния газов, на которых останавливаться не будем, так как они для практики технологических расчетов интереса не представляют. Уравнением Ван-дер-Ваальса в производственных расчетах также пользуются довольно редко, наиболее удобными и более точными для этого являются энтропийные диаграммы.

Пример3.3. Газгольдер емкостью 2000 м^3 наполнен азотом; давление в газгольдере 125 кH/m^2 , температура 22° С. Привести объем азота к нормальным условиям и вычислить массу азота.

Решение. Так как запорной жидкостью в газгольдере служит вода, то азот здесь насыщен водяными парами. Поэтому подсчет значения Vo производим по уравнению [2.7]. Давление водяных паров при 22°C равно 2,64 $\kappa h' m^2$ (табл. 2.1). Таким образом,

$$V_0 = 2.7 \cdot 10^{-3} (P-6) \ V / T = 2.7 \cdot 10^{-3} \cdot 2000 \cdot (125-2.64) \cdot 10^3 / 295 = 2240 \ \text{m}^3$$

Подсчитаем массу азота в газгольдере.

<u>Первый метод</u>. Так как плотность азота $1,252 \text{ кг/м}^3$, то масса азота в газгольдере

$$m=2240\cdot1,252=2800$$
 кг

<u>Второй метод</u>. Мольный объем азота 22,4 м 3 . Следовательно, 2240 м 3 его составят n=2240/22,4=100,0 кмоль, или

$$m = 100,0.28 = 2800 \text{ kg}$$

<u>Третий метоо</u>. Расчет ведем по уравнению Клапейрона—Менделеева. Выражая в уравнении [2.7] давление в к H/M^2 , R в кДж/кг-град и вводя в уравнение поправку на давление паров воды, получим

$$m = [28 \cdot (125 - 2,64) \cdot 2000] / 8,3144 \cdot 295 = 2800 кг$$

<u>Задание 3.1</u> Газгольдер емкостью V м³ наполнен газом; давление в газгольдере P кH/м², температура t°С. Привести объем газа к нормальным условиям и вычислить массу газа тремя методами.

Таблица 3.3. Варианты задания 3.1

Вариант	Газ	Р кН/м ²	t°C	V M^3
1	Азот	100	20	150
2	Аммиак	110	30	200
3	Аргон	120	40	250
4	Ацетилен	130	50	300
5	Воздух	160	60	350
6	Водород	170	20	400

Продолжение табл.3.3

Вариант	Газ	Р кН/м ²	T °C	V M^3
7	Водяные пары	180	30	450

8	Гелий	200	40	500
9		210	50	550
	Кислород			
10	Метан	200	60	600
11	Оксид углерода, СО	210	20	650
12	Диоксид углерода, СО2	220	30	700
13	Этилен	240	40	750
14	Аргон	260	50	800
15	Ацетилен	180	60	550
16	Воздух	200	20	600
17	Водород	210	30	650
18	Водяные пары	220	40	700
19	Гелий	240	50	750
20	Кислород	260	60	800
21	Метан	280	20	900
22	Оксид углерода, СО	300	30	1000
23	Диоксид углерода, СО2	320	40	1200
24	Этилен	340	50	1400
25	Водяные пары	360	60	100
26	Гелий	100	20	150
27	Кислород	110	30	200
28	Метан	120	40	250
29	Оксид углерода, СО	130	60	300
30	Диоксид углерода, СО2	140	20	350
31	Этилен	150	30	400
32	Аргон	160	40	450
33	Водород	170	50	500
34	Водяные пары	180	60	550
35	Гелий	160	30	200
36	Кислород	170	20	250
37	Метан	180	30	300
38	Гелий	200	40	350
39	Кислород	210	50	400

40	Метан	140	60	450

Пример3.4. Определить плотность водяного газа при $0,25~\mathrm{M\Pi a~(MH/m^2)}$ и $427^\circ\mathrm{C}$, если состав его: $50\%~\mathrm{H_2}$, $38\%~\mathrm{CO}$, $6\%~\mathrm{N_2}$. $0,2\%~\mathrm{O_2}$, $5\%~\mathrm{CO_2}$ и $0,8\%~\mathrm{CH_4}$

Решение. В соответствии с законом Дальтона находим приведенную молекулярную массу (M) водяного газа (мол. масса H_2 2,0; CO 28,0; N_2 28,0; CO₂ 44,0; O_2 32,0; CH₄ 16,0):

$$M=2,0\cdot0,5+28\cdot0,38+28\cdot0,06+32\cdot0,002+44\cdot0,005+16\cdot0,008=15,71$$
 Плотность газа указанного состава определится по уравнению
$$\rho=0,12\cdot10^{-3}MP/T=0,12\cdot10^{-3}\cdot15,71\cdot0,25\cdot10^{6}/700=0,675 \text{ кг/м}^{3}$$

<u>Задание 3.2</u> Определить плотность смеси газов при P МПа (МН/м²) и температуре t°C, если состав его представлен в табл. 3.4

Таблица 3.4. Варианты задания 3.2.

Ромионт			Смесь газ	вов, мас. ч			P	t°C
Вариант	Ar	Не	N ₂	CO	CH ₄	O_2	кH/м ²	i C
1	20	40	12	14	16	0,4	100	20
2	18	42	10	16	18	0,2	110	30
3	22	44	8	18	20	0,3	120	40
4	24	48	6	20	24	0.5	130	50
5	26	12	4	24	12	0,6	160	60
6	16	16	12	12	14	0,4	170	20
7	20	18	10	14	16	0,2	180	30
8	18	20	8	16	18	0,3	200	40
9	22	26	6	18	16	0.5	210	50
10	24	28	4	20	18	0,6	200	60
11	26	24	12	24	20	0,2	210	20
12	16	40	10	12	24	0,3	220	30
13	20	42	8	14	12	0.5	240	40
14	18	44	6	16	14	0,6	260	50
15	22	48	4	18	16	0,4	180	60

16	24	12	12	20	18	0,2	200	20
17	26	16	10	24	20	0,3	210	30
18	16	18	8	12	24	0.5	220	40
19	20	20	6	14	16	0,6	240	50

Продолжение табл.3.4

Вариант			Смесь газ	вов, мас. ч			P	t°C
Бариант	Ar	Не	N_2	CO	CH ₄	O_2	кH/м ²	ıc
20	18	26	4	16	18	0,2	260	60
21	22	28	12	18	20	0,3	280	20
22	24	24	10	20	24	0.5	300	30
23	26	40	8	24	12	0,6	320	40
24	16	42	6	12	14	0,4	340	50
25	22	44	4	16	16	0,2	360	60
26	24	48	8	18	18	0,3	100	20
27	26	12	6	20	16	0.5	110	30
28	16	16	4	24	18	0,6	120	40
29	20	18	12	12	20	0,2	130	60
30	18	20	10	14	24	0,3	140	20
31	22	26	8	16	12	0.5	150	30
32	24	28	6	18	14	0,6	160	40
33	26	24	4	20	16	0,4	170	50
34	16	48	8	24	18	0,2	180	60
35	20	12	6	16	20	0,3	160	30
36	18	16	4	18	20	0.5	170	20
37	26	18	12	20	24	0,6	180	30
38	16	20	10	24	12	0,2	200	40
39	20	48	8	12	14	0,3	210	50
40	18	12	6	14	16	0.5	140	60

Пример 3.5. Какой объем сухого воздуха потребуется для испарения 900 ε воды при 5°C, если давление насыщенного водяного пара при этой температуре равно 870 H/M^2 .

Решение. Подставляя числовые данные в уравнение $V=mR_{\mu}$ T/MP , получим $V=\left(0.9\cdot8314.4\cdot278\right)/\left(18.0\cdot870\right)=133~\mathrm{m}^3$

Пример 3.6. При 27°C (300 K) относительная влажность воздуха 51,5%. Парциальное давление водяных паров (определяется при 100%-ной влажности) при этой температуре 3,58 кн/м 2 (3580 н/м 2). Определить массу водяных паров, содержащихся в 1 M^3 воздуха при этой температуре.

Решение. Парциальное давление водяных паров в воздухе при относительной их влажности 51,5% (0,515) составит p_{H2O} = 0,515·3580 = 1840 н/м²

Следовательно, масса их в 1 M^3 воздуха равна $m_{\rm H2O}$ = 18·1840·1 /8314,4·300= 0,0132 кг (13,2 г)

Пример 3.7. В сосуде емкостью $2,0 \ \partial M^3$ находится $5,23 \ \varepsilon$ азота и $7,10 \ \varepsilon$ водорода. Какое давление будет в сосуде при 25° C?

Решение. В сосуде находится

5,23/28,0=0.187 моль N_2 и 7,10/2,0=3,550 моль H_2

всего,187 + 3,550 = 3,737 *моль* газовой смеси, которая занимает объем 2,0 ∂M^3 (0,002 M^3). Давление смеси водорода и азота при 25°C (T= 298 K) определится по уравнению 3,737·8,3144·298/ 0,002 = 4,63·10⁶ H/ M^2 = 4,63 MH/ M^2 = 4,63 MПа

Задание 3.3. В сосуд емкостью 30,0 дм 3 под вакуумом ввели 8 кг смеси газов при температуре t°С представленных в табл. 3.5. Подсчитать, какое давление окажется в сосуде.

Таблица 3.5. Варианты задания 3.3.

Вариант	Смесь газов, мас. ч							
Вариант	Ar	Не	N_2	CO	CH ₄	O_2		
1	20	40	12	14	16	0,4	20	
2	18	42	10	16	18	0,2	30	

3	22	44	8	18	20	0,3	40
4	24	48	6	20	24	0.5	50
5	26	12	4	24	12	0,6	60
6	16	16	12	12	14	0,4	20
7	20	18	10	14	16	0,2	30
8	18	20	8	16	18	0,3	40
9	22	26	6	18	16	0.5	50
10	24	28	4	20	18	0,6	60
11	26	24	12	24	20	0,2	20
12	16	40	10	12	24	0,3	30
13	20	42	8	14	12	0.5	40
14	18	44	6	16	14	0,6	50

Продолжение табл. 3.5

Daggerary			Смесь газ	зов, мас. ч			t°C
Вариант	Ar	Не	N_2	CO	CH ₄	O_2	
15	22	48	4	18	16	0,4	60
16	24	12	12	20	18	0,2	20
17	26	16	10	24	20	0,3	30
18	16	18	8	12	24	0.5	40
19	20	20	6	14	16	0,6	50
20	18	26	4	16	18	0,2	60
21	22	28	12	18	20	0,3	20
22	24	24	10	20	24	0.5	30
23	26	40	8	24	12	0,6	40
24	16	42	6	12	14	0,4	50
25	22	44	4	16	16	0,2	60
26	24	48	8	18	18	0,3	20
27	26	12	6	20	16	0.5	30
28	16	16	4	24	18	0,6	40
29	20	18	12	12	20	0,2	60
30	18	20	10	14	24	0,3	20
31	22	26	8	16	12	0.5	30

32	24	28	6	18	14	0,6	40
33	26	24	4	20	16	0,4	50
34	16	48	8	24	18	0,2	60
35	20	12	6	16	20	0,3	30
36	18	16	4	18	20	0.5	20
37	26	18	12	20	24	0,6	30
38	16	20	10	24	12	0,2	40
39	20	48	8	12	14	0,3	50
40	18	12	6	14	16	0.5	60

Пример 3.8. В сосуд емкостью 6,0 дм³ под вакуумом ввели по 1 г. воды и гексана, которые нагреты до 250°C . Подсчитать, какое давление окажется в сосуде.

Решение. Общее давление *P* в сосуде составится из парциальных давлений воды $p_{\rm H2O}$ и гексана $p_{\rm C6H14}$ Парциальные давления паров воды (мол. масса=18,0) и гексана (мол. масса = 76,0) определятся по уравнению:

$$p_{\rm H2O} = n_{\rm H2O} RT/V; \quad p_{\rm C6H14} = n_{\rm C6H14} RT/V$$

Отсюда общее давление в сосуде

$$P=n_{
m H2O}RT/V+n_{
m C6H14}RT/V=(m_{
m H2O}/V_{
m H2O}+m_{
m C6H14}/V_{
m C6H14})\cdot RT/V$$
 После подстановки в это уравнение числовых данных получаем $P=50800~{
m H/m^2}=50800~{
m \Pia}.$

Задание 3.4. В сосуд емкостью 30,0 дм³ под вакуумом ввели 8 кг смеси газов и воду при температуре t°С представленных в табл. 3.5. Подсчитать, какое давление окажется в сосуде. (При решении задачи сначала массовые доли необходимо перевести в мас. %, затем определить массу каждого газа в сосуде и далее расчет вести по примеру).

Таблица 3.6.

Варианты задания 3.4.

Смесь газов, мас. ч	t°C
---------------------	-----

	Ar	Не	N_2	CO	CH ₄	H_2O	
1	20	40	12	14	16	1,4	20
2	18	42	10	16	18	2,2	30
3	22	44	8	18	20	1,3	40
4	24	48	6	20	24	1,5	50
5	26	12	4	24	12	0,6	60
6	16	16	12	12	14	1,4	20
7	20	18	10	14	16	1,2	30
8	18	20	8	16	18	1,3	40
9	22	26	6	18	16	1,5	50
10	24	28	4	20	18	1,6	60
11	26	24	12	24	20	1,2	20
12	16	40	10	12	24	1,3	30
13	20	42	8	14	12	0,5	40
14	18	44	6	16	14	0,6	50
15	22	48	4	18	16	1,4	60
16	24	12	12	20	18	1,2	20

Продолжение табл. 3.5

Вариант	Смесь газов, мас. ч			t°C			
Бариант	Ar	Не	N_2	CO	CH ₄	H ₂ O	
17	26	16	10	24	20	1,3	30
18	16	18	8	12	24	1,5	40
19	20	20	6	14	16	1,6	50
20	18	26	4	16	18	2,2	60
21	22	28	12	18	20	2,3	20
22	24	24	10	20	24	2,5	30
23	26	40	8	24	12	0,6	40
24	16	42	6	12	14	2,4	50
25	22	44	4	16	16	1,2	60
26	24	48	8	18	18	2,3	20
27	26	12	6	20	16	1,5	30
28	16	16	4	24	18	3,6	40

29	20	18	12	12	20	2,2	60
30	18	20	10	14	24	1,3	20
31	22	26	8	16	12	2,5	30
32	24	28	6	18	14	1,6	40
33	26	24	4	20	16	1,4	50
34	16	48	8	24	18	3,2	60
35	20	12	6	16	20	0,3	30
36	18	16	4	18	20	3,5	20
37	26	18	12	20	24	0,6	30
38	16	20	10	24	12	1,2	40
39	20	48	8	12	14	1,3	50
40	18	12	6	14	16	1,5	60

3.. 3. Вопросы самопроверки и рейтинг – контроля

- 1. Какое обстоятельство вызывает необходимость внесения поправок в уравнение для идеальных газов для случая расчета реальных газов.
- 2. Уравнение Ван-дер-Ваальса для 1 моля реального состояния газа.
- 3. Уравнение Ван-дер-Ваальса для n молей реального газа.
- 4. Взаимосвязь между начальным состоянием реального газа $(P_1, V_1 \bowtie T_1)$ и конечным состоянием реального газа $(P_2, V_2 \bowtie T_2)$
- 5. Уравнение Менделеева Клапейрона для реальных газов.
- 6. Понятие коэффициента сжимаемости газа, математическое выражение.
- 7. Определение величины приведенного давления π .
- 8. Определение величины приведенной температуры т.
- 9. Определение мас.% по массовым частям каждого ингредиента (газа) в смеси.
- 10. Определение количества молей газа в смеси.
- 11. Расчет парциального давления газа в смеси.

Глава 4. ПОНЯТИЕ О ТЕРМОДИНАМИЧЕСКОМ ПРОЦЕССЕ

4.1. Термодинамический процесс

Термодинамическим процессом или просто процессом называют переход системы из одного состояния в другое в результате ее взаимодействия с окружающей средой. Если процесс происходит со скоростью значительно меньшей скорости релаксации, то на любом его этапе значения всех интенсивных макропараметров системы будут успевать выравниваться.

Полученный процесс представит собой непрерывную последовательность бесконечно близких друг к другу равновесных состояний. Такие процессы называют квазистатическими (Каратеодори, 1955) или равновесными. Равновесные процессы допускают графическое изображение в пространстве и на плоскостях параметров состояния.

Равновесный процесс может идти как в направлении возрастания, так и убывания любого из параметров состояния, т.е. как в одном, так и в противоположном направлениях. При этом система каждый раз будет проходить через те же состояния, но в обратном порядке. Поэтому равновесные процессы являются обратимыми

В обратимом процессе с закрытой термомеханической системой взаимодействие с окружающей средой состоит в обмене теплотой и работой.

4.2. Произвольный обратимый термодинамический процесс

Для осуществления произвольного обратимого процесса расширения необходимо при каждом уменьшении груза, действующего на поршень, приводить систему в контакт с новым источником теплоты, причем температура каждого последующего источника теплоты должна, отличатся от температуры предыдущего на бесконечно малую величину.

Для возврата системы в исходное состояние все манипуляции проводятся в обратном порядке. Количество теплоты и совершенная работа зависят от пути процесса. Такие величины называют функциями линии или функциями процесса.

Для этих функций, введенных по уравнению (4.1), интеграл по замкнутому контуру не равен нулю

$$\oint dz_* \neq 0$$
[4.1]

В отличие от них существуют величины z, обладающие полным дифференциалом, для которых

$$\int dz = 0$$
[4.2]

К их числу относятся, например, уже известные нам параметры состояния. В термодинамическом смысле такие величины являются функциями состояния. Их изменение зависит только от начального и конечного состояний системы и совершенно не зависит от пути перехода из первого во второе. Это свойство вытекает из (уравнения 4.7).

Основными функциями состояния являются: внутренняя энергия U, Дж; энтальпия H, Дж; энтропия S, Дж/K.

Все перечисленные функции являются аддитивными величии нами, т.е. функция состояния системы равна сумме соответствующих функций составляющих ее подсистем.

$$U=\sum U_i$$
; $H=\sum H_i$; $S=\sum S_i$ [4.3]

Из аддитивности этих функций следует также

$$U = Mu$$
; $H = Mh$; $S = Ms$ [4.4]

где u, Дж/кг; h, Дж/кг; s, Дж/(кг К) - соответственно удельные внутренняя энергия, энтальпия и энтропия.

Таким образом, выражение (4.2) примет вид

$$\oint du = 0 \; ; \quad \Delta u = \int_{1}^{2} du = u_{2} - u_{1} \qquad [4.5]$$

$$\oint dh = 0 \; ; \quad \Delta h = \int_{1}^{2} dh = h_{2} - h_{1} \qquad [4.6]$$

$$\oint dz = 0 \; ; \quad \Delta s = \int_{1}^{2} ds = s_{2} - s_{1} \qquad [4.7]$$

$$\oint dh = 0$$
; $\Delta h = \int_{1}^{2} dh = h_2 - h_1$ [4.6]

$$\oint dz = 0 \; ; \qquad \Delta s = \int_{1}^{2} ds = s_{2} - s_{1}$$
 [4.7]

Внутренняя энергия системы включает в себя энергию теплового движения составляющих ее молекул и потенциальную энергию их взаимодействия.

В случае идеального газа энергия взаимодействия молекул равна нулю, а энергия их теплового движения изменяется только в зависимости от температуры, следовательно,

$$\Delta u = c_{v} dT \tag{4.8}$$

откуда при c_v =const (в дальнейшем это условие будет соблюдаться по умолчанию) получаем

$$\Delta u = c_{\nu}(T_I - T_2) \tag{4.9}$$

Для практических расчетов, требующих учета зависимости с_v от температуры, имеются эмпирические формулы и таблицы удельной (часто молярной) внутренней энергии, отсчитанной от состояния, которое указывается в заголовке таблицы. Это позволяет определять изменение внутренней энергии в любом процессе.

При расчетах с идеальными газами молярная внутренняя энергия смеси им определяется по выражению

$$u_{\mu} = \sum r_i u_{\mu} \tag{4.10}$$

где u_{μ} - молярная внутренняя энергия i-го компонента, Дж/кмоль, определяемая по формулам или таблицам при температуре смеси.

Если смесь задана массовыми долями, то соответственно

$$u_u = \sum q_i u_u \tag{4.11}$$

<u>Энтальпия</u> – тепловая функция, выведенная по выражению H = U + pV [5.12]; для удельной энтальпии можно записать

$$h = u + pv \tag{4.13}$$

В случае идеального газа это уравнение принимает вид h=u+RT откуда с учетом (4.8) следует $dh=(c_v+R)\ dT$ [4.14] Так как по уравнению Майера $Cv+R=c_p$ то $dh=c_pdT$ [4.15] и, следова-

тельно, $\Delta h = c_p (T_1 - T_2)$ [4.16]

Разделив (4.15) на (4.9), получаем $\Delta h/\Delta u = c_p/c_v = k$ [4.17] т.е. независимо от характера термодинамического процесса изменение энтальпии в нем в k раз больше изменения внутренней энергии. Если необходимо учесть зависимость теплоемкости от температуры, то изменение энтальпии определяют по эмпирическим формулам или с помощью таблиц удельной (молярной) энтальпии, отсчитанной от стандартного состояния.

Для расчетов смесей идеальных газов применяют соотношения, аналогичные (4.10) и (4.11), т.е. $h_{\mu} = \sum r_i h_{\mu}$ [4.18]; $h = \sum q_i h_{\mu}$ [4.19]

Энтропия. Эта функция возникла в ходе теоретического поиска наиболее благоприятных условий превращения теплоты в работу в тепловых двигателях, т.е. при решении сугубо прикладной задачи (Клаузиус, 1822-1888). Согласно (4.3) дифференциал этой функции для элементарного обратимого процесса с 1 кг газа определяется по выражению ds = dq/T [4.20]. Учитывая, что dq=cdT, это выражение можно переписать в виде $ds=c\ dT/T$ [4.21]. откуда при с=const $ds=c\ lnT_2/T_1$ [4.22].

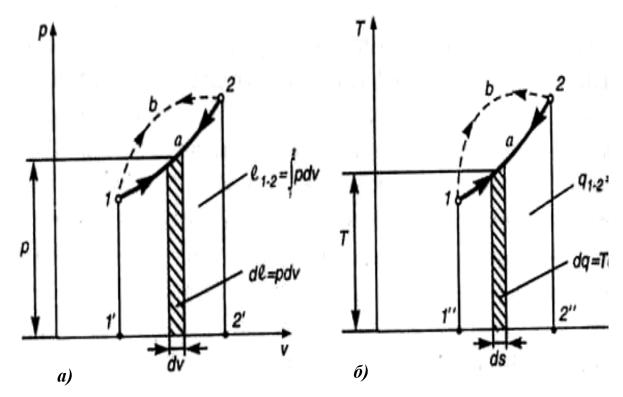
Как внутренняя энергия и энтальпия, энтропия определяется с точностью до аддитивной постоянной.

Элементарное количество энергетического воздействия dz^* , приходящееся на каждую степень свободы, в механике выражают в виде произведения соответствующей обобщенной силы y на элементарное приращение сопряженной с ней обобщенной координаты х $dz^* = ydx$ [4.23]

Под обобщенной силой понимают параметр, который по физическому смыслу является движущей силой рассматриваемого воздействия (например давление).

Обобщенная координата - параметр, который изменяется только при воздействии данного вида. Если оно отсутствует, то изменение обобщенной координаты равно нулю.

В случае деформационного воздействия (работа) роль обобщенной силы играет абсолютное давление, а сопряженной обобщенной координаты - объем. Для 1 кг газа уравнение [4.23] имеет вид dl=pdv [4.24] где l=L/M - удельная работа, Дж/кг.


При обмене энергией в форме теплоты (теплообмен) обобщенной силой является абсолютная температура, а обобщенной координатой - физическая величина, называемая энтропией S. Таким образом, для элементарной удельной теплоты имеем выражение dq = Tds [4. 25] Из [4.24] и [4.26] соответственно следует где s = S/M - удельная энтропия, Дж/кг K.

$$l = \int_{V_1}^{V_2} p dv$$
 [4.26]; $l = \int_{S_1}^{S_2} T ds$ [4.27];

4.3. Произвольный обратимый процесс в vp- и sT- координатах

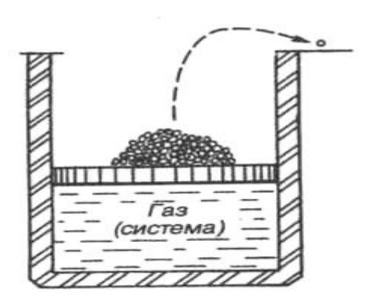
Согласно этим выражениям работа 1 и теплота q конечного обратимого процесса 1-2 пропорциональны площадям под его изображениями соответственно в vp- и sT- координатах (рис. 4.1.).

Положительная работа совершается при расширении системы (dv >0). При сжатии системы (dv <0) работа отрицательна. При ds>0 теплота к системе подводится, а при ds<0 отводится. Из рис. 3.1 понятно, что работа и теплота процесса зависят от его пути. Действительно, площадь '1b22' > площади 1'1a22', а значит $1_{1b2}>1_{1a2}$ Аналогично площадь 1"1b22" > площади 1"1a22", следовательно $q_{1b2}>q_{1a2}$. Возьмем для примера обратимый процесс 1a2. При его осуществлении система получает от окружающей среды теплоту q_{1a2} и совершает положительную работу 1_{1a2} , которая может накапливаться в аккумуляторе работы. Величина этой работы достаточна для возврата системы в исходное состояние по тому же пути (процесс 2a1).

Рис. 4.1. Произвольный обратимый процесс *а) vp*- координатах; *б) sT*- координатах

Так как работы процессов 1а2 и 2а1 численно равны друг другу, но противоположны по знаку, то $l_{1a2} + l_{2a1} = 0$. При возвращении системы в исходное состояние окружающей среды полностью возвращается и ранее полученная от нее теплота, то $q_{1a2} + q_{2a1} = 0$. Отсутствие каких-либо остаточных изменений в системе и в окружающей среде при возвращении системы в исходное состояние является отличительным свойством обратимого процесса (это идеальный процесс).

Процесс, не обладающий этим свойством, называется необратимым. Если система совершила необратимый процесс, то ее возвращение в исходное состояние требует дополнительных энергозатрат со стороны окружающей среды. Так, работа, совершенная системой в необратимом процессе, недостаточна для обратного ее перехода в начальное состояние. Все реальные процессы вследствие трения, теплообмена при конечной разности температур и ограниченности времени их протекания необратимы.


4.4. Фундаментальные процессы

Фундаментальными процессами, изучаемыми классической равновесной термодинамикой, являются: изотермный (T=const), когда систе-

ма находится в контакте с источником теплоты постоянной температурой; изоэнтропный (S=const) или адиабатный, при котором система абсолютно не имеет теплового контакта с окружающей средой.

Представим себе газ, находящийся в цилиндре с идеальной тепловой изоляцией (рис. 4.2). На поршне размещен груз, состоящий из большого числа грузиков (песчинок).

В начальном состоянии давление, создаваемое грузом, в точности равно давлению газа и поршень неподвижен. Снимем один i грузик и положим его на полку. Внешнее давление уменьшится на незначительную величину и поршень начнет очень медленно перемешаться вверх. Его движение прекратится при достижении нового равенства внутреннего и внешнего давлений.

Puc. 4.2. Схема осуществления обратимого адиабатического процесса

Последовательно снимая с поршня по одному грузику - песчинке можно осуществить квазистатическое расширение газа без теплообмена с окружающей средой, т.е. обратимый адиабатный (изоэнтропный) процесс. Этот процесс является равновесным, так как в силу медленности на каждом его микроэтапе параметры состояния будут иметь вполне определённые значения. При осуществлении этого процесса грузики будут постепенно накапливаться на полке. Поочередно возвращая их на поршень можно вернуть газ в исходное состояние. Когда последняя "песчинка" окажется на поршне, никаких следов проведения первоначального процесса расширения ни в системе (газ под поршнем), ни в окружающей среде не останется.

Если снять со стенок цилиндра и поршня тепловую изоляцию, то, повторив опыт, можно получить обратимый изотермный процесс при температуре окружающей природной среды или любой другой температуре термостата или источника теплоты, находящегося в тепловом контакте с системой.

4.5. Вопросы самопроверки и рейтинг – контроля

- 1. Термодинамический процесс, понятие.
- 2. Понятие квазистатического процесса.
- 3. Понятие обратимого процесса.
- 4. В чем заключается взаимодействие обратимого процесса закрытой термодинамической системы с окружающей средой
- 5. Уравнение элементарного энергетического воздействия в общем виде.
- 6. Понятие обобщенной силы и обобщенной координаты.
- 7. Уравнение элементарного деформационного воздействия.
- 8. Уравнение элементарного теплового воздействия.
- 9 Интегральное уравнение удельной работы.
- 10. Интегральное уравнение удельной теплоты.
- 11. vp- и sT- диаграммы.
- 12. Условия выполнения положительной работы и подвода теплоты к термодинамической системе
- 13. График произвольного термодинамического процесса в vp- координатах.
- 14. График произвольного термодинамического процесса в sT координатах.
- 15. Формулировка идеального термодинамического процесса, математические выражения суммы работы, теплоты для прямого и обратного пути.
- 16. Понятие необратимого процесса.
- 17. Фундаментальные процессы термодинамики.
- 18. Объяснение физической сущности фундаментальных процессов

Глава 5. ПЕВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

5.1. Сущность первого закона термодинамики

Первый закон термодинамики является частным случаем закона сохранения и превращения энергии и гласит: количество энергии подведен-

ное к телу в данной термической системе в форме теплоты, идет на изменение его энергии и на совершение этим телом внешней работы. *Тепловая* энергия не может ни исчезнуть бесследно, ни возникнуть вновь из ничего. В общем случае энергия ΔE передается системе в виде теплоты Q и работы L. $\Delta E = Q + L$ [5.1]

Работу окружающей среды над рабочим телом можно заменить работой преодоления рабочим телом сил окружающей среды, которая численно равна L но противоположна по направлению, т.е со знаком минус, обозначим L^* . Тогда уравнение примет вид: $Q = \Delta E + L^*$ [5.2]- математическое выражение первого закона термодинамики.

Первый закон термодинамики для рабочего тела, находящегося в относительном покое (закрытая система) из-за того, что кинетическая энергия равна нулю, математически можно записать $Q = \Delta U + L$, L –работа расширения или сжатия для ти кг рабочего тела, Дж. Для 1 кг рабочего тела $q = \Delta u + l$. [5.3] Элементарная работа сжатия (расширения) 1 кг рабочего тела $\partial = p dv$ [5.4]. $\partial = dv$ [5.4] вего тело совершит работу

$$l = \int_{V_1}^{V_2} p dv. [5.5]$$

и первый закон термодинамики можно представить в виде

$$q = \Delta u + \int_{V_1}^{V_2} p dv. [5.6]$$

Энергию тела можно рассматривать состоящей из внешней $E_{\it e}$ и внутренней U $E=E_{\it e}+U$ [5.7]

Внешняя энергия тела $E_{\scriptscriptstyle B}$ представляет собой сумму кинетической и потенциальной энергий этого тела.

<u>Кинетическая энергия</u>, если пренебречь энергией вращения тела вокруг центра инерции равна $mc^2/2$, где с скорость центра инерции тела, м/с;

m — масса тела. Единица кинетической энергии равна кг·м²/с²= H·м = Дж.

<u>Потенциальная энергия</u> равна mgH, где g — ускорение свободного падения, M/c^2 ; H — высота ,M.

В общем случае изменение внешней энергии тела составит

$$\Delta E_{\theta} = [m(c^{2}_{2} - c^{2}_{1})]: 2 + mg(H_{2} - H_{1})$$
 [5.8]

Согласно первому закону внутренняя энергия системы изменяется только при ее взаимодействии с окружающей средой. Это означает, что величина внутренней энергии не зависит от того, установилось ли в системе внутреннее равновесие. Поэтому изменение внутренней энергии системы будет одинаковым независимо от того, оказано ли внешнее воздействие равномерно на всю систему в целом или только на ее часть. Это же относится к энтальпии. По свойству полного дифференциала,

$$\oint dU = 0 \quad \text{M} \quad \oint dH = 0 \qquad [5.9]$$

поэтому из первого закона термодинамики следует

$$\oint dQ = \oint dL = \oint dL_0 \qquad [5.10]$$

т.е. при осуществлении кругового процесса в тепловом двигателе нельзя получить работы "из ничего". Такой гипотетический двигатель называют вечным двигателем (perpetuum mobile) первого рода. В связи с этим первый закон термодинамики нередко называют принципом невозможности перпетуум мобиле первого рода. В соответствии с первым законом термодинамики нельзя построить тепловой двигатель, производящий работу против внешних сил (внешнюю работу) без затраты теплоты.

5.2 Работа изотермического процесса

Изотермическим процессом называется процесс, идущий при постоянной температуре. Если газу сообщается Q Дж (кДж) тепла, причем температура, а следовательно, и внутренняя энергия его остаются постоянными (dU= 0), то все тепло, которое получает газ, идет только на совершение внешней работы L (при этом работа - максимальна)

$$dQ = PdV$$
 [5.11] или

$$Q = L = \int_{V_1}^{v_2} PdV.[5.11]$$

Подставляя значение для P из уравнения Менделеева - Клапейрона и интегрируя [5.11] получаем

$$Q = L = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{P_1}{P_2}.[5.12]$$

или, выражая n (число молей вещества) через его массу m и молекулярную массу M получим

$$Q = L = \frac{m}{M}RT \ln \frac{V_2}{V_1} = \frac{m}{M}RT \ln \frac{P_1}{P_2}.[5.13]$$

где P_1 и V_1 — давление и объем газа до расширения (или сжатия); P_2 и V_2 — давление и объем газа до сжатия (или расширения); T- абсолютная температура газа в процессе; R- газовая постоянная кДж/кмоль град (Дж/моль град); n — число молей газа; m — масса газа в системе, кг; M- молекулярная масса газа. Заменив натуральные логарифмы на десятичные и подставив значение R получим:

$$Q = L = 19,1nT \lg \frac{V_2}{V_1} = 19,1nT \lg \frac{P_1}{P_2}$$
, кДжс.[5.14]

для R, выраженной в Дж/кг град, получим

$$Q = L = 19100 \frac{m}{M} T \lg \frac{V_2}{V_1} = 19100 \frac{m}{M} T \lg \frac{P_1}{P_2}, \text{Джc}[5.15]$$

Пример5.1. Изотермически сжимают 100 м^3 азота с 200 кПа до 1200 кПа (кH/м²). Температура азота $20 \, ^{\circ}$ С. Вычислить: 1) объем азота после сжатия; 2) работу , затраченную на сжатие; 3) количество тепла, выделенное при сжатии.

Решение. Количество азота (кмоль)по уравнению Менделеева-Клапейрона: $n = PV/RT = (200 \cdot 100)/(8,3144 \cdot 293) = 8,2$ кмоль

- 1) объем азота после сжатия $V_2 = P_1 \cdot V_1 / P_2 = 200 \cdot 100 / 1200 = 16,7 \text{ м}^3$
- 2) работа сжатия $L=19,1\cdot 8,2\cdot 293\cdot \lg (200/1200)=45889,66\cdot (-0,7781)=$ -35705,11 кДж = -35,70511 МДж (знак "-" показывает, что работа затрачивается на систему)
- 3) количество тепла, выделенное системой равно $Q=35,70511~{\rm MДж}$

Пример5.2. Необходимо понизить давление 200 м³ гелия со 100 кH/м² до 20 кH/m^2 при температуре $10 \, ^{\circ}$ С. Подсчитать:1) объем гелия после разряжения; 2) работу расширения; 3) количество тепла, поглощенного системой

Решение. Количество гелия (кмоль)по уравнению Менделеева-Клапейрона: $n = PV/RT = (200 \cdot 100)/(8,3144 \cdot 283) = 8,5$ кмоль

- 1) объем гелия после разряжения $V_2 = P_1 \cdot V_1 / P_2 = 200 \cdot 100 / 20 = 1000,0 \text{ м}^3$
- 2) работа сжатия $L=19,1\cdot 8,5\cdot 283\cdot \lg (100/20)=45945,05\cdot (0,699)=32115,6$ кДж =32,1156 МДж (знак "+" показывает, что работа **совершена системой**)
- 3) количество тепла, поглощенное системой, равно Q = -32,1156 МДж (при расширении газа тепло поглощается)

Задание 5.1. Изотермически сжимают V м³ газа с 2,0 кПа до P кПа (кН/м²). Температура газа T °C. Вычислить: 1) объем газа после сжатия; 2) работу, затраченную на сжатие; 3) количество тепла, выделенное при сжатии.

Таблица5.1. Варианты задания 5.1.

Вариант	Газ	Р кН/м ²	T °C	V M^3
1	воздух	100	20	150
2	водяные пары	110	30	200
3	кислород	120	40	250
4	окись углерода	130	50	300
5	сероводород	160	60	350
6	этан	170	20	400
7	Азот	180	30	450
8	Аргон	200	40	500
9	Аммиак	210	50	550
10	Ацетилен	200	60	600
11	окись углерода	210	20	650
12	сероводород	220	30	700
13	воздух	240	40	750
14	водяные пары	260	50	800
15	кислород	180	60	550
16	окись углерода	200	20	600

Продолжение табл.5.1

Вариант	Газ	Р кН/м ²	T °C	V M^3
17	сероводород	210	30	650
18	этан	220	40	700

19	Азот	240	50	750
20	Аргон	260	60	800
21	Аммиак	280	20	900
22	Ацетилен	300	30	1000
23	окись углерода	320	40	1200
24	сероводород	340	50	1400
25	воздух	360	60	100
26	водяные пары	100	20	150
27	кислород	110	30	200
28	окись углерода	120	40	250
29	сероводород	130	60	300
30	этан	140	20	350
31	Азот	150	30	400
32	Аргон	160	40	450
33	Аммиак	170	50	500
34	Ацетилен	180	60	550
35	окись углерода	100	40	200
36	сероводород	110	50	250
37	этан	120	60	300
38	Азот	130	20	350
39	Аргон	160	30	400
40	Аммиак	170	40	450

Задание 5.2. Необходимо понизить давление V м³ газа с P кH/м² до 10 кH/м² при температуре 10 °C. Подсчитать:1) объем гелия после разряжения; 2) работу расширения; 3) количество тепла, поглощенного системой

Таблица5.2. Варианты задания 5.2.

Вариант	Газ	Р кН/м ²	T °C	V M ³
1	кислород	100	20	150
			Продолж	сение табл.5.2
Вариант	Газ	Р кН/м ²	T °C	V M ³
2	окись углерода	110	30	200
3	сероводород	120	40	250

4	этан	130	50	300
5	Азот	160	60	350
6	Аргон	170	20	400
7	Аммиак	180	30	450
8	Ацетилен	200	40	500
9	окись углерода	210	50	550
10	сероводород	200	60	600
11	воздух	210	20	650
12	водяные пары	220	30	700
13	кислород	240	40	750
14	окись углерода	260	50	800
15	сероводород	180	60	550
16	этан	200	20	600
17	Азот	210	30	650
18	Аргон	220	40	700
19	Аммиак	240	50	750
20	Ацетилен	260	60	800
21	окись углерода	280	20	900
22	сероводород	300	30	1000
23	этан	320	40	1200
24	Азот	340	50	1400
25	Аргон	360	60	100
26	Аммиак	100	20	150
27	воздух	110	30	200
28	водяные пары	120	40	250
29	кислород	130	60	300
30	окись углерода	140	20	350
31	Ацетилен	150	30	400
32	сероводород	160	40	450
33	этан	170	50	500
34	Азот	180	60	550
35	Аргон	100	40	200

Продолжение табл.5.2

Вариант	Газ	Р кН/м ²	T °C	V M ³
36	воздух	110	50	250
37	водяные пары	120	60	300

38	кислород	130	20	350
39	окись углерода	160	30	400
40	Ацетилен	170	40	450

5.3. Работа изобарического процесса

Процесс, идущий при постоянном давлении, называется изобарическим.. Подставляя в уравнение [5.11] P= const и интегрируя получаем:

$$L=nP(V_2-V_1)$$
 [5.16]; $L=nR(T_2-T_1)$ [5.17]

Количество тепла отданное или полученное газом равно

$$Q=n\overline{C}_{p}(T_{2}-T_{1})$$
 [5.18]; $Q=n\overline{C}_{p}T(V_{2}-V_{1})/V_{1}$ [5.19]

где $\bar{C}_{\it p}$ - средняя мольная теплоемкость газа в пределах температур $T_{\it 2}$ и $T_{\it I}$ при постоянном давлении, $\it n$ - число киломолей газа, участвующего в процессе.

Как следует из первого закона термодинамики, все тепло, сообщенное газу при изобарическом процессе идет на изменение его внутренней энергии, на повышение температуры. Подробный анализ уравнения [5.19] показывает, что на повышение температуры газа расходуется $Q(1/\chi)$, а на работу расширения $Q[1-(1/\chi)]$ единиц тепла. Здесь величина χ представляет отношение теплоемкости газа при постоянном давлении к теплоемкости его при постоянном объеме. Данные приведены в табл. 5.3

 $\begin{tabular}{ll} \it Taблицa 5.3. \\ \it S$ начение величины χ - отношения теплоемкости газа при постоянном давлении к теплоемкости его при постоянном объеме для некоторых газов.

Газ	$\chi = \bar{C}_p / \bar{C}_v$	газ	$\chi = \bar{C}_p / \bar{C}_v$
Азот	1,404	Аммиак	1,31
Аргон	1,67	Ацетилен	1,26
воздух	1,4	водород	1,41
водяные пары	1,324	гелий	1,67

Продолжение табл. 5.3.

Газ	$\chi = \bar{C}_p / \bar{C}_v$	газ	$\chi = \bar{C}_p / \bar{C}_v$
кислород	1,401	метан	1,31

окись углерода	1,404	пропилен	1,17
сероводород	1,32	углекислый газ	1,304
этан	1,41	этилен	1,255

Пример 5.3 Произвести расчет работы при расширении 5 кмоль газа при его расширении от объема 20 м^3 до 40 м^3 при постоянном давлении 400 кH/m^2 .

Решение Подставляя значение в уравнение [5.16] получим

$$L$$
= $nP(V_2 - V_I) = 5 \cdot 400 \cdot (40-20) = 40000 кдж = 40 МДж$

Пример 5.4 Какое количество тепла необходимо подвести к 8 кмоль газа, чтобы повысить его температуру с $10\,^{\circ}$ С до $90\,^{\circ}$ С, если давление газа остается постоянным $0,1\,$ МН/м²; средняя теплоемкость газа в пределах этих температур равна $32,5\,$ Дж/моль. Подсчитать: 1) какая часть тепла при этом расходуется на повышение температуры газа и какая часть на работу его расширения; 2) теплоемкость газа при постоянном объеме.

Решение Из уравнения [5.18] находим

$$Q = 8 \cdot 32,5 \cdot (363 - 283) = 20800$$
 қДж

Работа расширения газа определится из уравнения [5.17]

$$L=nR(T_2-T_1)=8.8,1344\cdot(363-283)=5206,016$$
 кДж (= Q_1)

На повышение температуры расходуется часть тепла

$$Q_I/Q = 5206,016$$
 кДж /20800 кДж= 0,2502, или 25,02 %

Теплоемкость газа при постоянное давлении определится из соотношения

а)
$$\chi = \bar{C}_p / \bar{C}_v$$
 u б) $Q_I = Q[1 - (1/\chi)]$, откуда $Q_I / Q = 1 - \bar{C}_v / \bar{C}_p$ или $\bar{C}_v = \bar{C}_p - \bar{C}_p \cdot Q_I / Q = 32,5 - 32,5 \cdot 0,2502 = 24,3685 Дж/моль$

В зависимости от условий проведения процесса для расчета средняя мольной теплоемкости газа при температурах от θ до $t^{o}C$ пользоваться данными, представленными в табл. 5.6 или в табл. 5.7

Задание 5.3. Произвести расчет работы при расширении n кмоль газа при его расширении от объема V_1 м³ до V_2 м³ при постоянном давлении P к H/M^2 .

Таблица5.4.

Варианты задания 5.3.

Вариант	Количество газа, <i>п</i> кмоль	\boldsymbol{P} кH/м ²	V_{I} M^{3}	V_2 3
1	6	100	20	150
2	4	110	30	200
3	3	120	40	250
4	2	130	50	300
5	8	160	60	350
6	7	170	20	400
7	9	180	30	450
8	5	200	40	500
9	6	210	50	550
10	4	200	60	600
11	3	210	20	650
12	2	220	30	700
13	8	240	40	750
14	7	260	50	800
15	9	180	60	550
16	5	200	20	600
17	4	210	30	650
18	8	220	40	700
19	7	240	50	750
20	9	260	60	800
21	5	280	20	900
22	6	300	30	1000
23	4	320	40	1200
24	3	340	50	1400
25	2	360	60	100
26	8	100	20	150
27	7	110	30	200
28	9	120	40	250
29	5	130	60	300
30	4	140	20	350
31	8	150	30	400
32	7	160	40	450

Продолжение табл. 5.4

Вариант	Количество газа, <i>п</i> кмоль	\mathbf{P} $\kappa H/M^2$	T °C	V M^3
33	9	170	50	500

34	2	180	60	550
35	3	100	40	200
36	2	110	50	250
37	8	120	60	300
38	7	130	20	350
39	9	160	30	400
40	5	170	40	450

<u>Задание 5.4.</u> Какое количество тепла необходимо подвести к n кмоль газа, чтобы повысить его температуру с t_1 °C до t_2 °C, если давление газа остается постоянным P кН/м²; средняя теплоемкость газа в пределах этих температур равна \overline{C}_p (табл. 5.6.) Дж/моль. Подсчитать: 1) какая часть тепла при этом расходуется на повышение температуры газа и какая часть на работу его расширения; 2) теплоемкость газа при постоянном объеме.

Таблица5.5. Варианты задания 5.4.

Вари-	Газ	Количество	Р кН/м ²	<i>t</i> ₁ °C	t₂°C
ант	1 43	газа, п кмоль	I KI I/M	i_1 C	$\iota_2 \subset$
1	Ar	6	60	20	150
2	H_2	4	20	30	200
3	N_2	3	10	40	250
4	Не	2	13	50	300
5	O_2	8	10	60	350
6	CO	7	70	20	200
7	NO	9	80	30	250
8	SO_2	5	100	40	200
9	CO_2	6	110	50	550
10	H_2S	4	26	60	200
11	H ₂ O	3	20	100	250
12	CO	2	20	30	100

Продолжение табл. 5.5

Вари-	Газ	Количество	Р кН/м ²	t. °C	t. °C
ант	1 as	газа, п кмоль	I KII/WI	$l_1 \subset$	

13	NH ₃	8	240	10	150
14	CH ₄	7	260	20	200
15	Ar	9	60	20	150
16	H_2	5	20	30	200
17	N_2	4	10	40	250
18	Не	8	13	50	300
19	O_2	7	10	60	350
20	CO	9	70	20	200
21	NO	5	80	30	250
22	SO_2	6	100	40	200
23	CO_2	4	110	50	550
24	H_2S	3	26	60	200
25	H ₂ O	2	20	100	250
26	Ar	8	100	20	150
27	H_2	7	110	30	200
28	N_2	9	120	40	250
29	Не	5	130	60	300
30	O_2	4	140	20	150
31	CO	8	150	30	200
32	NO	7	160	40	250
33	SO_2	9	170	50	300
34	CO_2	2	180	60	350
35	Ar	3	100	40	200
36	H_2	2	110	50	250
37	N_2	8	120	60	200
38	Не	7	130	20	350
39	O_2	9	160	30	200
40	CO	5	170	40	250

Средняя мольная теплоемкость газа при температурах от 0 до t $^{\rm o}$ С при нормальном давлении представлена в табл. 5.6.

Таблица 5.6

Температурная зависимость средней мольной теплоемкости газов от 0 до $\boldsymbol{t}^{\, \mathrm{o}}$ С при нормальном давлении

Газ	Температура, °С							
1 83	0	100	200	300	400	500	600	700
H_2	28,8	29,0	29,1	29,15	29,2	29,3	29,4	29,5
O_2	29,3	29,6	30,1	30,5	30,9	31,3	31,8	32,0
N_2	28,4	28,7	29,0	29,4	29,6	30,0	30,3	30,6
СО	28,42	28,9	29,2	29,6	29,9	30,2	30,5	30,8
CO_2	37,7	39,2	40,6	41,9	43,2	44,4	45,5	46,5
CH ₄	33,4	36,6	39,8	42,0	45,5	48,3	50,9	53,3
H_2O , H_2S	32,5	33,2	33,8	34,5	35,1	35,6	36,0	36,6
NH_3	34,7	36,2	37,8	39,4	40,8	42,3	43,7	45,1
NO	28,5	29,0	29,5	29,9	30,3	30,6	31,0	31,3
C_2H_4	39,4	42,1	48,6	53,3	57,9	62,5	67,0	71,7
SO_2	41,2	42,4	43,5	44,7	45,8	46,6	47,5	48,8
C_2H_2	46,2	47,8	49,6	51,3	53,0	54,4	56,0	57,4
воздух	28,6	29,0	29,3	29,7	30,0	30,3	30,6	30,9
СНОН	35,2	37,4	39,6	41,21	43,8	45,9	47,8	49,5
CH ₃ OH	49,0	53,7	57,0	62,8	65,8	70,0	74,2	-
C ₂ H ₅ OH	74,6	80,5	86,6	92,2	97,2	101,4	105,2	108,2
НСООН	54,0	57,8	61,6	64,7	66,2	68,3	70,7	-

5.4. Работа изохорного процесса

Изохорным процессом называется процесс, протекающий при постоянном давлении (V = const). Все тепло , сообщаемое газу, идет исключительно на увеличение его внутренней энергии; работа \boldsymbol{L} равна 0. Процесс выражается следующими уравнениями:

$$Q=n\overline{C}_{v}(T_{2}-T_{1})$$
 [5.20]; $Q=n\overline{C}_{v}T_{1}(P_{2}-P_{1})/P_{1}$ [5.21]

n — число молей газа, \overline{C}_{v} - средняя мольная теплоемкость газа при постоянном объеме а пределах температур T_{2} и T_{1} ; P_{1} и T_{1} — начальное состояние газа; P_{2} и T_{2} — конечное состояние газа;

Изохорные процессы протекают главным образом в автоклавах и в промышленной практике занимают незначительное место.

Средняя мольная теплоемкость газа при температурах от 0 до t $^{\circ}$ С при постоянном объеме представлена в табл. 5.7

Таблица 5.7

Температурная зависимость средней мольной теплоемкости

 \overline{C}_{v} газов от 0 до t °C при постоянном объеме

Наименование газа	Средняя мольная теплоемкость	
паименование газа	$\overline{C}_{\scriptscriptstyle V}$, кДж/кмоль \cdot град	
Одноатомные газы (He, Ar, пары ме-	20,82	
таллов)		
Двухатомные (H_2 , N_2 , O_2 , CO , NO и т.д)	20,6+0,00193t	
CO_2 , SO_2	38,6+0,00248t	
H_2O, H_2S	17,2+0,0090t	
Все четырехатомные газы (NH ₃ и др.	41,9+0,00193t	
Все пятиатомные газы (СН ₄ и др)	50,3+0,00193t	

Пример 5.5 В автоклаве находится $0,040\,$ м 3 азота под давлением $0,2\,$ МПа и $20\,$ °C. При нагревании давление в автоклаве поднялось до $0,4\,$ МПа. Определить:

- 1) Сколько тепла сообщено азоту в автоклаве, если $\overline{C}_v = 20.935 \text{ кДж/моль град}$
 - 2) До какой температуры нагреется азот

Решение. Нагревание азота протекает при постоянном объеме - протекает изохорический процесс. Определим количество молей азота в автоклаве

$$n = P_1 V_1 / RT_1 = (200 \cdot 0.040) / (8.1344 \cdot 293) = 3.357 \cdot 10^{-3}$$
 кмоль

1) По уравнению [5.21] определяем количество тепла

$$Q=n\overline{C}_{v}T_{1}(P_{2}-P_{1})/P_{1} =$$

= $[3,357 \cdot 10^{-3} \text{ кмоль} \cdot 20,935 \text{ кДж/моль} \cdot \text{град} \cdot 293 \text{ град} \cdot (400 - 200) \text{ кH/м}^2]/$ 200 кH/м² = 20,592 кДж;

2) По уравнению [5.20] определяем температуру T_2 азота

$$Q=n\,\overline{C}_{\scriptscriptstyle V}(T_2$$
- $T_I)$
20592 Дж = 3,357 моль·20,935 кДж/моль·град (T_2 -293)
 $T_2=586~\mathrm{K}~(313~^{\mathrm{o}}\mathrm{C})$

<u>Задание 5.5.</u> В автоклаве с объемом V_I находится газ под давлением P_I МПа и t_I °С. При нагревании давление в автоклаве поднялось до P_2 МПа. Определить: 1) Сколько тепла сообщено газу в автоклаве

2) До какой температуры нагреется газ Варианты заданий представлены в табл. 5.8

Таблица 5.8

Вари-	Газ	Объем газа в	P_I кН/м ²	<i>t</i> ₁ °C	Р 2 кН/м ²
ант	1 43	автоклаве, м ³	1 / KH/M		12 KH/W
1	O_2	0,06	60	20	150
2	CO	0,04	20	30	200
3	NO	0,03	10	40	250
4	SO_2	0,02	13	50	300
5	CO_2	0,08	10	60	350
6	H_2S	0,07	70	20	200
7	H ₂ O	0,09	14	30	250
8	CO	0,05	10	40	200
9	Ar	0,06	18	50	550
10	H_2	0,04	26	60	200
11	N_2	0,03	20	100	250
12	Не	0,02	20	30	100
13	Не	0,08	24	10	150
14	O_2	0,07	30	20	200
15	CO	0,09	60	20	150
16	NO	0,05	20	30	200
17	SO_2	0,04	10	40	250
18	CO_2	0,08	13	50	300
19	H_2S	0,07	10	60	350
20	H ₂ O	0,09	70	20	200
21	Ar	0,05	40	30	250
22	H_2	0,06	18	40	200
23	N_2	0,04	26	50	550
24	Не	0,03	20	60	200
25	O_2	0,02	20	100	250
26	CO	0,08	24	20	150
27	NO	0,07	30	30	200
28	SO_2	0,09	60	40	250
29	CO_2	0,05	20	60	300

Продолжение табл.5.8

Вари-	Газ	Объем газа в автоклаве, м ³	P_1 кН/м ²	t₁ °C	Р ₂ кН/м ²
30	Ar	0,04	10	20	150

31	H_2	0,08	13	30	200
32	N_2	0,07	10	40	250
33	Не	0,09	70	50	300
34	O_2	0,02	40	60	350
35	CO	0,03	60	40	200
36	NH ₃	0,02	20	50	250
37	CH ₄	0,08	10	60	200
38	Ar	0,07	13	20	350
39	H_2	0,09	10	30	200
40	N_2	0,05	70	40	250

5.5. Вопросы самопроверки и рейтинг – контроля

- 1. Что необходимо для осуществления произвольного обратимого процесса расширения.
- 2. От чего зависят количество теплоты и совершенная работа обратимого процесса расширения. Какие величины называют функциями линии или функциями процесса.
- 3. Значение интеграла по замкнутому контуру для функций процесса.
- 4. Перечислить основные функции состояния и значение для них интеграла по замкнутому контуру.
- 5. Что такое аддитивность величин основных функций состояния системы, математическое выражение.
- 6. Следствие из аддитивности основных функций состояния системы, математическое выражение для их удельных величин.
- 7. Математическое выражение для основных функций состояния системы по круговому интегралу и интегралу перехода системы из состояния 1 в состояние 2.
- 8. Внутренняя энергия системы, чем она определяется.
- 9. Математическое выражение изменения внутренней энергии для идеального газа.
- 10. Математическое выражение изменения молярной внутренней энергии для смеси идеальных газов.
- 11. Математическое выражение изменения массовой внутренней энергии для смеси идеальных газов.

- 12. Понятие энтальпии, математическое выражение для всей системы, удельной энтальпии системы и удельной энтальпии идеального газа.
- 13. Математическое выражение для изменения энтальпии в изохорном и изобарном процессах.
- 14. Как изменяется энтальпия при изменении внутренней энергии, математическая зависимость.
- 15. Математическое выражение для расчета изменения энтальпии смеси идеальных газов.
- 16. Понятие энтропии, математическая запись дифференциала и её значения при постоянной теплоемкости системы.
- 17. Обще положение первого закона термодинамики.
- 18. Первый закон термодинамики для рабочего тела, находящегося в относительном покое (закрытая система). Интегральное и дифференциальное уравнение для выражениея элементарной работы сжатия (расширения).
- 19. Энергия тела. Математическое выражение кинетической энергии и потенциальной энергии.
- 20. Вечный двигатель первого рода, объяснение с точки зрения термодинамики невозможности его существования

Глава 6. ЗАКОНЫ ТЕРМОДИНАМИКИ

6.1. Второй закон термодинамики, следствие из закона.

Второй закон термодинамики связан с необратимостью (односторонней направленностью) всех естественных процессов, происходящих в макромире. Его наиболее общая формулировка, состоящая в утверждении о том, что природа стремится к переходу от менее вероятных состояний к более вероятным, принадлежит Больцману.

Являясь статистическим законом, второй закон термодинамики отражает поведение большого числа частиц, входящих в состав изолированной системы. В системах, состоящих из небольшого числа частиц, могут иметь место значительные флуктуации, представляющие собой отклонения от второго закона.

Самым вероятным состоянием изолированной термодинамической системы, состоящей из большого, но конечного числа частиц, является состояние ее внутреннего равновесия, которому, как показано ниже, соответствует достижение максимального значения энтропии. Поэтому второй закон нередко называют законом возрастания энтропии. В этой связи его можно сформулировать в виде следующего принципа: энтропия изолированной системы не может убывать.

Отправным моментом к установлению второго закона явилось положение Карно (1796-1832) о том, что необходимым условием получения работы с помощью тепловых машин является наличие как минимум двух источников теплоты: горячего (верхнего) и холодного (нижнего). Это связано с тем, что теплота, полученная рабочим телом от верхнего источника, не может быть полностью превращена в механическую работу. Часть ее должна быть обязательно отдана нижнему источнику теплоты.

Позже выяснилось, что наличие двух источников теплоты обязательно и для работы так называемых тепловых насосов

Приведем несколько формулировок второго закона, относящихся к тепловым машинам:

- а) перпетуум мобиле второго рода невозможен (постулат Оствальда); перпетуум мобиле второго рода воображаемый тепловой двигатель, в котором возможно стопроцентное превращение теплоты в работу;
- б) невозможно создать периодически действующую машину, совершающую механическую работу только за счет охлаждения и теплового резервуара (постулат Кельвина);
- в) самопроизвольный переход теплоты от более холодных тел к более горячим невозможен (постулат Клаузиуса).

Все эти формулировки, различающиеся по форме, эквивалентны друг другу по существу, так как напрямую связаны с принципом невозможности убывания энтропии изолированной системы.

Для получения аналитической формулировки второго закона термодинамики будем исходить из того, что в общем случае бесконечно малое изменение энтропии системы определяется выражением $dS=dS_e+dS_i$ [6.1] где dS_e - изменение энтропии системы, связанное с ее взаимодействием с окружающей средой; dS_i - изменение энтропии системы, обусловленное возможным протеканием внутри нее необратимых процессов, например, в ходе установления в ней внутреннего равновесия. Если рассматривать простые однородные системы с двумя степенями свободы, то речь идет об установлении механического (выравнивание давления) и теплового (выравнивание температуры) равновесия. Увеличение энтропии системы при протекании в ней необратимых процессов иногда называют производством энтропии.

По мере приближения изолированной системы к состоянию равновесия производство энтропии будет замедляться, а при установлении равновесия вовсе прекратится. Условие dS=O будет, таким образом, означать, что энтропия системы максимальна. Обобщая сказанное, можно записать $dS_i \ge 0$ [6.2] Состояние равновесия, соответствующее максимуму S при заданных значениях U и V, называют истинным или устойчивым равновесием.

Рассмотрим теперь изменение энтропии системы за счет ее теплообмена с окружающей средой. Будем считать, что он происходит обратимо. Для этого случая изменение энтропии системы дается выражением dS=dQ/T в котором следует только заменить dS на dS_e . В случае, если теплообмен происходит при конечной разности температур, т.е. необратимо, путем переноса границ системы (переход к расширенной системе) задача может быть сведена к только что рассмотренной. С учетом сказанного можно записать $dS=dQ/T+dS_i$. Так как $dS_i \ge 0$, то окончательно $dS \ge dQ/T$ [6.3]. Полученное уравнение является аналитическим выражением второго начала термодинамики. При dQ=0 из [6.3] следует $dS \ge 0$ [6.4]

В обеих последних формулах знак > относится к необратимым процессам, а знак равенства - к обратимым. Так как в случае обратимых процессов $dS_i = O$, a dS = dQ/T, то с учетом (6.1) имеем: TdS = dU + pdv [6.5] Это уравнение называют объединенным уравнением первого и второго

Для 1 кг идеального газа оно может быть записано в виде $ds = c_v dT/T + R dv/v [6.6]$

законов термодинамики для обратимых процессов.

Возьмем уравнение состояния в дифференциальной форме dT/T = dp/p + dv/v [6.7] и подставим его в [6.6]. Тогда

$$ds = c_v \frac{dp}{p} + (c_v + R) \frac{dv}{v}$$
 [6.7]

Учитывая, что $(c_v + R) = c_p$, записываем

$$ds = c_v \frac{dp}{p} + c_p \frac{dv}{v} = c_v \left(\frac{dp}{p} + k \frac{dv}{v}\right)$$
 [6.8]

и далее
$$ds = c_v \frac{d(pv^k)}{pv^k} = c_v d(\ln pv^k)$$
 [6.9]

Это уравнение удобно использовать при исследовании процессов в тепловых машинах, где изменение удельного объема v имеет аналитическое описание, не зависящее от рабочего процесса, а давление р сравнительно просто измерить.

Интегрируя (5.19), имеем
$$\Delta s = s_2 - s_1 = c_v \ln \frac{p_2 v_2^k}{p_1 v_1^k}$$
 [6.10]

Из этого выражения с помощью уравнения Клапейрона и учитывая, что $\chi = c_p/c_v$, можно получить:

при
$$p = const$$
 $\Delta s = c_v \chi \ln(v_2/v_I) = c_p \ln(v_2/v_I) = c_p \ln(T_2/T_I)$ [6.11]

при v=const
$$\Delta s = c_v \ln(p_2/p_I) = c_v \ln(T_2/T_I)$$
 [6.12]

при T=const
$$\Delta s = c_v(\chi -1) \ln(v_2/v_1) = R \ln(v_2/v_1) = R \ln(p_2/p_1)$$
 [6.13] Из уравнений [6.1 – 6.13] следует:

- 1) приращение энтропии определяет степень превращения теплоты в работу;
- 2) для необратимых процессов изменение энтропии показывает степень их необратимости;
- 3) если нет разности температур (ΔT =0), то при помощи периодически действующего двигателя превращение теплоты в работу невозможно (L=0);
- 4) ($\Delta T/T$)= ($\Delta L/Q$) = $\acute{\eta}$; чем больше разность температур системы, тем больше коэффициент превращения теплоты в работу, тем больше коэффициент полезного действия тепловой машины;
- 5) dS = (dL/dQ)- для обратимых процессов; dS > (dL/dQ)- для необратимых процессов. Это означает, что при обратимых процессах теплота , затрачен-

ная на систему , или выделенная системой будет производить максимальную работу. Изменение свободной энергии системы ΔF по своему численному значению равно величине максимальной работы , взятой со знаком минус $L_{\text{макс}} = -\Delta F$ [6.14] . В процессах, идущих при постоянном объеме F_{ν} называют термодинамическим потенциалом при постоянном объеме, или изохорным потенциалом, или свободной энергией. В процессах, идущих при постоянном давлении F_p называют термодинамическим потенциалом при постоянном давлении, или изобарным потенциалом. Между ними имеется связь (ΔF) $_{\nu} = (\Delta F)_{\nu} - P\Delta V$ [6.15].

6.2. Вычисление изменения термодинамических функций в примерах и задачах для самостоятельного решения

Пример 6.1. Вычислить изменение энтропии при переходе 1 κ 2 воды, взятой при 25°С, в состояние перегретого пара с температурой 200°С при нормальном давлении. Принять: а) теплоемкость воды равной 4,2 кДж/кг и независимой от температуры; б) среднюю мольную теплоемкость C_{ν} водяных паров при перегреве их от 100 до 200°С равной 33,8 кДж/кмоль и теплоту испарения воды равной 2260 кДж/кг.

Решение. В данном примере Δ*S* определится как сумма трех величин: 1) ΔS_I — изменение энтропии воды при нагревании ееот25°C (298°K) до температуры кипения (373°K);

- 2) ΔS_2 то же при переходе воды из жидкого в парообразное состояние;
- 3) ΔS_3 то же при перегреве водяных паров до 200°С (473°К). Подсчитаем каждую из этих величин в отдельности:

$$\Delta S_I = \int_{298}^{373} \frac{C_p dT}{T} = \overline{C}_p \cdot 2.3 \cdot \lg(373/298) = \overline{C}_p \cdot 2.3 \cdot \lg(373/298) = 0,94$$
 кДж/кг

 $\Delta S_{2=} r_{ucn}/T$ =2260/373 =6,06 кДж/кг

$$\Delta S_3 = \int_{373}^{473} \frac{C_p dT}{T} = \overline{C}_p \cdot 2.3 \cdot \lg(473/373) = \overline{C}_p \cdot 2.3 \cdot \lg(473/373) = 8,0 \text{ кДж/кмоль}$$

 ΔS_3 (кДж/кг) = (8,0 кДж/кмоль)/18 = 0,44 кДж/кг Отсюда :

$$\Delta S = 0.94 + 6.06 + 0.44 = 7.44$$
 кДж/кг.

Пример 6.2. Вычислить изменение термодинамических функций 1 кмоль углекислого газа при нагревании его от 0 до 1000°C при нормальном давлении.

Решение. Подсчитаем количество тепла, необходимое для нагревания 1 моль CO_2 от $0^{\circ}C$ (273°K) до $1000^{\circ}C$ (1273°K), пользуясь выражением температурной зависимости его теплоемкости при нормальном давлении (см. табл. 6.2).

$$C_p^{CO_2} = 32,2 + 0,0222T - 3,48 \cdot 10^{-6}T^2; Q = \int_{273}^{1273} (32,2 + 0,0222T - 3,48T^2)$$

Интегрируя это уравнение и вынося (T_2-T_I) за скобку, получим Q= $\Delta I=(1273$ -273) · [32,2+0,0111 (1273+273) - 1,16 • 10^{-6} $(1273^2+1273\cdot 273+273^2)]=40$ 930 кДж/ кмоль. Изменение энтропии подсчитываем по

уравнению
$$\Delta S = \int_{273}^{1273} \frac{C_p dT}{T} = \int_{273}^{1273} \left[(32.2/T) + 0.0222 - 3.48 \cdot 10^{-6} T \right] dT$$

Отсюда: ΔS =32,2 ln (1273/273) + 0.0222 (1273-273) – 1,74·10⁻⁶ (1273² - 273²) = 66 кДж/кмоль·град

Подсчитаем $L = \Delta(PV)$ в пределах 0-1000°C

 $L = \Delta(PV) = PV_2$ - $PV_I = RT_2 - RT_I = 8,3144~(1273 - 273) = 8310 кДж/кмоль Отсюда изменения внутренней (<math>\Delta U$) и свободной (ΔF) энергии CO_2 будут равны:

$$\Delta U = Q \longrightarrow \Delta(PV) = 40 \ 930 \longrightarrow 8310 = 32620 \ кДж/кмоль,$$
 $(\Delta F)_p = \Delta I \longrightarrow T\Delta S = 40 \ 930 \longrightarrow 1273 \bullet 66 = 32620 \ кДж/кмоль.$

Задание 6.1. Вычислить изменение энтропии при переходе m $\kappa 2$ воды, взятой при t_1 °С, в состояние перегретого пара с температурой t_2 °С при нормальном давлении. Принять: а) теплоемкость воды равной 4,2 кДж/кг и независимой от температуры; б) среднюю мольную теплоемкость C_{ν} водяных паров при перегреве их от 100 до 200°С равной 33,8 кДж/кмоль и теплоту испарения воды равной 2260 кДж/кг. Варианты задания представлены в табл. 6.1

Таблица 6.1 Варианты задания 6.1

Вариант	Mасса воды, m кг	t₁°C	t₂°C
1	20	12	180
2	28	10	185
3	16	8	190
4	24	6	200
5	22	12	170

6	20	14	160
7	18	16	155
8	14	18	180
9	26	24	185
10	12	20	190
11	10	22	200
12	8	12	170
13	4	10	160
14	5	8	155
15	2	6	180
16	20	14	185
17	18	16	190
18	14	18	200
19	26	24	170
20	12	20	160
21	10	20	155
22	8	22	160
23	4	14	155
24	5	16	180
25	2	18	185
26	28	24	190
27	16	20	200
28	24	22	170
29	22	14	160
30	20	16	155
31	18	18	180
32	14	24	185

Продолжение табл.6.1

Вариант	Mасса воды, m кг	t_1 °C	t₂°C
33	10	8	170
34	8	6	160
35	18	14	155
36	14	16	180
37	26	18	185
38	12	24	190
39	10	20	200

40	8	20	170

Задание 6.2. Вычислить изменение термодинамических функций n кмоль газа при нагревании его от 0 до t_2 °C при нормальном давлении . Температурная зависимость мольной теплоемкости газов при нормальном давлении представлены табл. 6.2. Варианты задания 6.2 в табл. 6.3.

Таблица 6.2 Температурная зависимость истинной мольной теплоемкости газов и паров при нормальном давлении

Наименование газа	Истинная мольная теплоемкость,	Температура
	кДж/моль·град	границы, °С
He, Ne, Ar, Kr, Xe и	20,82	-
пары металлов		
Cl_2 , Br_2 , I_2	31 + 0,0042 T	0-2000
H_2	$28,8 + 0,000276T + 1,17 \cdot 10^{-6} T^2$	0-1700
H_2O, H_2S	$28,8 + 0,01375T - 1,435 \cdot 10^{-6} T^2$	0-2000
O ₂ , N ₂ , CO, HCl,	$28,3 + 0,00254T + 0,545 \cdot 10^{-6} T^2$	0-2000
воздух		
CO_2 , SO_2	$32,2+0,0222T-3,48\cdot10^{-6}T^{2}$	0-2200
NH_3	$24,8 + 0,0376T - 7,40 \cdot 10^{-6} T^2$	0-1700
NO_2	$29,3 + 0,0298T - 3,61 \cdot 10^{-6} T^2$	-
CH ₄	$14,15 + 0,075T - 17,54 \cdot 10^{-6} T^2$	0-1000
C_2H_6	$5,76 + 0,1755T - 0,058 \cdot 10^{-3} T^2$	0-1200
C ₃ H ₈	$0,504 + 0,270T - 0,0952 \cdot 10^{-3} T^2$	0-1200
C_2H_2	$24,4+0,0222T-0,0231\cdot10^{-3}T^{2}$	0-1200
C_6H_6	$-21,1+0,401T-0,170\cdot10^{-3}T^{2}$	-
S_2	35,9+0,00125T	0-1200

Продолжение табл.6.2

Наименование газа	Истинная мольная теплоемкость,	Температура
	кДж/моль град	границы, °С
SO_3	18,85 + 0,067T	-
СН ₄ ОН (газ)	$20,45 + 0,1037T - 0,0247 \cdot 10^{-3} T^{2}$	0-400
С ₂ Н ₅ ОН (газ)	$9,05 + 0,208T - 0,0651 \cdot 10^{-3} T^2$	0-400
СН ₃ СНО (газ)	$19,0+0,1395T-0,0389\cdot10^{-3}T^{2}$	0-400
НСНО (газ)	$20,94 + 0,0586T - 0,0156 \cdot 10^{-3} T^{2}$	0-1250
НСООН (газ)	$30,70 + 0,0895T - 0,0346 \cdot 10^{-3} T^2$	0-1250

Таблица 6.3 Варианты задания 6.2

Вариант	Газ	Количество мо-	Температура,
		лей газа, п	t₂°C
1	NH ₃	20	1500
2	NO ₂	40	800
3	CH ₄	18	600
4	C_2H_6	16	1000
5	C ₃ H ₈	26	200
6	C_2H_2	14	800
7	C_6H_6	34	400
8	S_2	12	1000
9	SO ₃	8	200
10	СН ₄ ОН (газ)	6	300
11	С ₂ Н ₅ ОН (газ)	32	350
12	СН ₃ СНО (газ)	36	400
13	НСНО (газ)	26	800
14	НСООН (газ)	38	1000
15	Cl ₂	16	1200
16	O_2	26	1400
17	N_2	14	1600
18	Br ₂	34	1800
19	H_2	12	1500
20	I_2	8	1500
21	CO_2	6	1700

Продолжение табл.6.3

Вариант	Газ	Количество мо-	Температура,		
		лей газа, п	Температура, $t_2^{\circ}\mathrm{C}$		
22	SO_2	36	1800		
23	CO	26	800		
24	воздух	38	700		
25	H ₂ O	12	400		
26	H_2S	8	1200		
27	HCl	6	600		

28	НСНО (газ)	32	1000
29	НСООН (газ)	36	1200
30	Cl_2	26	1000
31	O_2	38	1200
32	C_3H_8	16	1200
33	C_2H_2	26	1200
34	C_6H_6	14	1000
35	S_2	34	600
36	SO_3	12	200
37	NH ₃	8	400
38	NO_2	6	500
39	CH ₄	32	600
40	С ₂ Н ₅ ОН (газ)	36	300

6.3. Третий закон термодинамики, следствие из закона

Третий закон термодинамики был установлен Нернстом (1864—1941, Лауреат Нобелевской премии 1920 г.) на основе обобщения экспериментальных исследований различных веществ при сверхнизких температурах. Он известен как тепловая теорема или принцип Нернста: в любом изотермическом процессе, проведенном при абсолютном нуле температуры, изменение энтропии системы равно нулю, т.е. $\Delta S_{T\to 0} = 0$, $S = S_o = \text{const.}$ Иначе говоря при абсолютном нуле температуры изотермический процесс одновременно является изоэнтропийным. Принцип Нернста был развит Планком, который предположил, что при абсолютном нуле температуры энтропия равна нулю.

В соответствии с третьим законом изотерма-изоэнтропа T=0, S=0. в sT-координатах вырождается в точку (начало координат). В результате этого замкнутый круговой процесс, состоящий, например, из двух изотерм и двух адиабат, в случае теплоотвода при T=0 изобразился бы в sT-координатах отрезком прямой на оси T, т.е. его площадь была бы равна нулю. В этой связи третий закон термодинамики нередко формируют как принцип невозможности вечного двигателя третьего рода - воображаемого двигателя, в котором осуществлялся бы замкнутый круговой процесс с отводом теплоты от рабочего тела при абсолютном нуле температуры.

Следствием третьего закона термодинамики является положение о недостижимости абсолютного нуля температуры. Данное следствие, конечно,

не запрещает приближаться к нему сколь угодно близко. Равенство нулю энтропии при абсолютном нуле температуры имеет своей причиной квантовый характер процессов, происходящих при низких температурах, и выполняется для обычных систем, которые могут находиться при сверхнизких температурах в состоянии истинного равновесия.

Так называемые необычные системы (например, кристаллы LiF) могут находиться в состояниях как с положительной, так и отрицательной температурой.

6.4. Работа адиабатического и политропического процесса

Адиабатическим называется такой процесс, при котором между системой и окружающей средой не происходит теплообмена, т. е. dQ=0, а работа, затраченная на систему или совершенная системой, идет исключительно на изменение её внутренней энергии L=- ΔU .

Подобные процессы являются идеальными, т.к. в действительности изолировать полностью систему от окружающей среды не представляется возможным. Однако при работе компрессоров, сжатие идет настолько быстро, что сжатый газ не успевает передать выделяющееся тепло в окружающую среду. В холодильных установках, конденсаторах при наличии высококачественной теплоизоляции обмен теплом с окружающей средой сведен до минимума, и расчеты ведут, пользуясь уравнениями адиабатического или, более точно, политропического процесса. Уравнения адиабатического процесса:

$$PV^{\chi} = \text{const} [6.14] 39 ; TV^{\chi-1} = \text{const} [6.15] 39-a ; TP^{(1-\chi)/\chi} = \text{const} [6.16] 39-6$$

где показатель адиабаты χ –величина постоянная и равна $\chi = \bar{C}_p / \bar{C}_v$ На основании вышеизложенного получаем уравнения состояния системы при адиабатическом процессе,

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\chi-1} = \left(\frac{P_2}{P_1}\right)^{\frac{\chi-1}{\chi}}$$
 [6.17] 40 где P_I , V_I , T_I — начальное состояние

газа; P_2 , V_2 , T_2 – конечное состояние газа. Решая уравнение Менделеева-Клапейрона относительно работы в адиабатическом процессе имеем:

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right] = \frac{nRT_1}{\chi - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right]$$
 [6.18]

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right] = \frac{nRT_1}{\chi - 1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right]$$
 [6.19]

$$L = \frac{P_1 V_1}{\chi - 1} \left[1 - \frac{T_2}{T_1} \right] = \frac{nRT_1}{\chi - 1} \left[\frac{T_1 - T_2}{T_1} \right] = \frac{nR}{\chi - 1} [T_1 - T_2] \quad [6.20]$$

$$L = \frac{P_1 V_1 - P_2 V_2}{\chi - 1} \tag{6.21}$$

Уравнения [6.18] - [6.21] дают выражения работы абсолютно адиабатического процесса. В этом процессе рабочее тело (газ) при адиабатическом сжатии или расширении <u>не совершает</u> замкнутого (кругового) цикла. Однако сжатие или расширение газа или пара в двигателях протекает таким образом, что газ или пар, совершая в цилиндре двигателя работу, периодически возвращается в начальное состояние. Работа такого замкнутого (кругового) процесса в χ раз больше работы абсолютного адиабатического процесса. Следовательно при подсчете работы двигателей и компрессоров уравнения [6.18] - [6.21] примут вид

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right] = \frac{\chi}{\chi - 1} nRT_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{\chi - 1} \right]$$
 [6.22]

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right] = \frac{\chi}{\chi - 1} nRT_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\chi - 1}{\chi}} \right]$$
 [6.23]

$$L = \frac{\chi}{\chi - 1} P_1 V_1 \left| 1 - \frac{T_2}{T_1} \right| = \frac{\chi}{\chi - 1} nR \left[T_1 - T_2 \right]$$
 [6.24]

$$L = \frac{\chi(P_1 V_1 - P_2 V_2)}{\gamma - 1}$$
 [6.25]

В действительности сжатие и расширение в этих процессах протекает не адиабатически и не изотермически, и лишь в определенных случаях только приближается к одному из них. Такие реальные процессы, в которых отводится тепло наружу или поступает в систему извне называются политропными процессами. Во се уравнения адиабаты вместо показателя адиабаты χ входит показатель политропы m. Политропические уравнения будут выражены:

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{m-1} = \left(\frac{P_2}{P_1}\right)^{\frac{m-1}{m}}$$
 [6.26]

$$L = \frac{m}{m-1} P_1 V_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{m-1} \right] = \frac{m}{m-1} nRT_1 \left[1 - \left(\frac{V_1}{V_2} \right)^{m-1} \right]$$
 [6.27]

$$L = \frac{m}{m-1} P_1 V_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{m-1}{m}} \right] = \frac{m}{m-1} nRT_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{m-1}{m}} \right]$$
 [6.28]

Уравнения [6.26] и [6.28] применимы как к адиабатическим, так и к политропическим процессам.

В случае расширения газа либо по закону адиабаты, либо по закону политропы имеют место два случая: 1) расширение идет с совершением внешней работы (сжатый газ при расширении воздействует на поршень цилиндра и через него производится работа); 2) расширение идет без совершения внешней работы, например, когда газ через вентиль переходит из сосуда с высоким давлением в сосуд с низким давлением (дросселирование газа). В этом случае все уравнения [6.14] - [6.28] ко второму процессу не применимы. Для второго случая используются эмпирические уравнения для подсчета перепада температур:

$$\Delta T = \alpha \left(\frac{273}{T_1}\right)^2 \Delta P \quad [6.29]; \quad \Delta T = (a + b\Delta P) \quad \left(\frac{273}{T_1}\right)^2 \Delta P \quad [6.30];$$
$$\Delta P = 5,75 \cdot 10^{-2} \left[\Delta T - 2043,55 \lg \left(1 - \frac{\Delta T}{888,5 - T_2}\right)\right] \quad [6.31]$$

В уравнениях [6.29] - [6.30] ΔT — перепад температур, ΔP - перепад давлений в к $H/м^2$. T_I и P_I —температура и давление газа до расширения; T_2 и P_2 —температура и давление газа после расширения; α , a и b — коэффициенты, найденные эмпирическим путем представлены в табл. 6.4 Уравнения [6.29] - [6.30] дают точные результаты для сравнительно высоких температур и низких давлений. В расчетной практике при других условиях пользуются тепловыми (T - S) и (I - T) диаграммами.[2]

Таблица 6.4 Значения эмпирических коэффициентов

Газ	α	а	b
1.Кислород	$3.5 \cdot 10^{-3}$	$3,13 \cdot 10^{-3}$	8,5 · 10 ⁻⁸
2. Углекислый газ	$3.5 \cdot 10^{-3}$	3,13·10 ⁻³	8,5 · 10 ⁻⁸
3. Воздух	$2,87 \cdot 10^{-3}$	$2,68 \cdot 10^{-3}$	8,6 ·10 ⁻⁸

4. Азот	$3,2 \cdot 10^{-3}$	-	-
5. Водород	$0.31 \cdot 10^{-3}$	-	-

6.5. Примеры задач и варианты для их решения

Пример 6.1. 150 м³ водорода подвергаются адиабатическому сжатию от 100 кH/м² до 500 кH/м²; температура газа до сжатия 17°C. Подсчитать температуру и объем водорода после сжатия , если $\chi_{H2} = 1,41$ Решение. По уравнению [6.26] определяем T_2 и V_2

$$T_2$$
= 290 · (500/100)^{0.29}=462 K (189 °C)
 V_2 = 150^{0,41}· (290/462)= 48,4 m³

Пример 6.2. Компрессор засасывает 100 м^3 водорода в 1 мин (60 сек) и сжимает его от 100 кH/m^2 до 800 кH/m^2 . Определить потребную мощность двигателя компрессора, если сжатие водорода идет адиабатически, коэффициент полезного действия (к.п.д.) от двигателя к компрессору равен 0.8.

Решение. По уравнению [6.23] получаем $L = [(1,41\cdot100\cdot100)/(1,41-1)]\cdot[1-(800/100)^{0,29}] = -28600$ кДж *) * знак минус свидетельствует о том, что работа затрачивается на систему Мощность компрессора составит W = 28600 кДж/60 сек = 476 кВт, мощность двигателя $W_{\partial 8} = W/\dot{\eta} = 476/0,8 = 595$ кВт

Варианты решения задач представлены в табл.6.5 и 6.6

Задание 6.3. Заданный объем газа V_I подвергается адиабатическому сжатию от P_I до P_2 . температура газа до сжатия 20° С. Подсчитать температуру и объем газа после сжатия, $\chi_{\text{газа}}$ определить по табл. 5.3

Таблица 6.5. Варианты задания 6.3

Вариант	Газ	V_I , M^3	P_I , к H/M^2	P_2 , к H/M^2
1	кислород	100	70	600
2	окись углерода	120	80	260
3	сероводород	140	90	800

4	этан	180	100	340
5	Аргон	200	40	420
6	воздух	260	50	560
7	азот	220	60	380
8	метан	240	70	490
9	пропилен	120	80	500
10	углекислый газ	140	20	480
11	этилен	180	30	600
12	Аммиак	200	90	260
13	Ацетилен	260	100	800
14	водород	220	60	340
15	гелий	240	70	420
16	воздух	100	80	560
17	азот	120	20	380
18	метан	140	30	490
19	пропилен	180	90	500
20	углекислый газ	200	100	480
21	этилен	260	90	
22	Аммиак	220	100	260
23	Ацетилен	240	40	800
24	водород	120	50	340
25	гелий	140	60	420
26	метан	180	20	560
27	пропилен	200	30	380
28	углекислый газ	260	90	490
29	этилен	220	100	500
30	Аммиак	240	90	480
31	Ацетилен	140	100	600
32	водород	180	40	260

Продолжение табл. 6.5

Вариант	Газ	V_I , M^3	P_I , к H/M^2	P_2 , к H/M^2
33	гелий	200	50	800
34	воздух	260	60	340
35	азот	220	100	420
36	метан	240	90	560
37	пропилен	120	100	380

38	углекислый газ	140	40	490
39	этилен	180	50	500
40	Аммиак	200	60	480

Задание 6.4. . Компрессор засасывает V_I м³ газа в 2 мин и сжимает его от P_I кН/м² до P_2 кН/м². Определить потребную мощность двигателя компрессора, если сжатие газа идёт адиабатически, коэффициент полезного действия (к.п.д.) от двигателя к компрессору равен 0,85.

Таблица 6.6. Варианты задания 6.4

Вариант	Газ	V_I , M^3	P_I , $\kappa H/M^2$	P_2 , к H/M^2
1	кислород	100	90	800
2	окись углерода	120	100	340
3	сероводород	140	40	420
4	этан	180	50	560
5	Аргон	200	60	380
6	воздух	260	70	490
7	азот	220	80	500
8	метан	240	20	480
9	пропилен	120	30	600
10	углекислый газ	140	90	260
11	этилен	180	100	800
12	Аммиак	200	90	340
13	Ацетилен	260	100	420
14	водород	220	40	560
15	гелий	240	50	380
16	воздух	100	60	490
17	азот	120	70	500

Продолжение табл. 6.6

Вариант	Газ	V_I , M^3	P_I , $\kappa H/M^2$	P_2 , к H/M^2
18	метан	140	80	480
19	пропилен	180	90	500
20	углекислый газ	200	100	480
21	этилен	260	40	400
22	Аммиак	220	50	260

23	Ацетилен	240	60	800
24	водород	120	70	340
25	гелий	140	80	420
26	метан	180	20	560
27	пропилен	200	30	380
28	углекислый газ	260	90	490
29	этилен	220	100	500
30	Аммиак	240	90	480
31	Ацетилен	140	100	600
32	водород	180	40	260
33	гелий	200	70	800
34	воздух	260	80	340
35	азот	220	90	420
36	метан	240	100	560
37	пропилен	120	40	380
38	углекислый газ	140	50	490
39	этилен	180	60	500
40	Аммиак	200	70	480

6.6. Вопросы самопроверки и рейтинг – контроля

- 1. С чем связан второй закон термодинамики.
- 2. Что отражает второй закон термодинамики.
- 3. Что явилось отправным моментом к установлению второго закона термодинамики.
- 4. Формулировка второго закона термодинамики применительно к тепловым машинам.
- 5. Исходные положение для получения аналитической формулировки второго закона термодинамики.
- 6. Аналитическое описание изолированной системы при её приближенной к состоянию равновесия. Выражение энтропии.
- 7. Какое состояние системы называют истинным или устойчивым равновесием.
- 8. Аналитическая формулировка второго закона термодинамики.
- 9. Следствия из уравнения аналитического выражения второго закона термодинамики

- 10. Объединенное уравнение первого и второго законов термодинамики для обратимых процессов в общем виде.
- 11. Объединенное уравнение первого и второго законов термодинамики для обратимых процессов для 1 кг газа.
- 12. Объединенное уравнение первого и второго законов термодинамики для обратимых процессов в дифференциальной форме.
- 13. Выражение энтропии в дифференциальной форме через изменение изобарной и изохорной теплоемкостей.
- 14. Выражение энтропии в интегральной форме через изменение изобарной и изохорной теплоемкостей.
- 15. Интегральное выражение изменения энтропии при v=const
- 16. Интегральное выражение изменения энтропии при T=const
- 17. Формулировка третьего закона термодинамики закон Нернста.
- 18. Обоснование невозможности создания вечного двигателя третьего рода
- 19. Трактовка сущности следствия из третьего закона термодинамики о не возможности достижении абсолютного нуля.
- 20. Работа адиабатического процесса.
- 21. Уравнения адиабатического процесса.
- 22. Работа политропного процесса.
- 23. Уравнения политропного процесса.
- 24. Область применимости уравнений политропного процесса при расширении газа.
- 25. Уравнения для расчета перепада температур и давления газа при дросселировании
- 26. Эмпирические коэффициенты

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. В.В. Нечаев, Г.Н. Елманов, А.А. Полянский. Электронный учебник «Введение в прикладную феноменологическую термодинамику» МИ-ФИ, Москва: E-mail: nechaev@phm.mephi.ru, 2005., 9,817 *MB*
- 2. С.Д. Бесков Технохимические расчеты М.:Высшая школа,1966.-320 с.

- 3. Теплотехника: Учеб. пособие/ Хазен М.М., Матвеев Г.А., Грицевский М.Е., Казакевич Ф.П.; Под ред. Г.А. Матвеева.- М.: Высш. шк., 1981.- 480 с., ил.
- 4. Н.Н. Лариков. Теплотехника: Учеб. для вузов.- 3-е изд., перераб. и доп.- М.: Стройиздат, 1985.- 432 с., ил.
- 5. А.В. Чечеткин, Н.А. Занемонец. Теплотехника: учебник для хим.техн. спец. вузов. – М.: Высш. школа, 1986.-344 с.
- 6. Теплотехника: Учеб. для вузов/ В.Н. Луканин, М.Г. Шатров, Г.М. Камфер и др. ; Под ред. В.Н. Луканина.— 3-е изд., испр.— М.: Высш. шк., 2002.-671 с.: ил.