Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

<u>Реология жидкофазных систем</u> (наименование дисциплины)

Направление подготовки 18.03.01 «Химическая технология» Профиль подготовки Технология и переработка полимеров Уровень высшего образования бакалавриат

Форма обучения очная

Трудоем-Лек-Практич. Лаборат. Форма промежуточного CPC, Семестр кость зач. ции, занятия, работы, контроля час. час. час. час. (экз./зачет) ед. 5 7 (252 ч) Экзамен, 45 18 **18 36** 135 7 (252 ч) 18 18 **36** 135 Экзамен,45 Итого

г.Владимир

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины (модуля) «<u>Реология жидкофазных систем</u> » **является:**

- ознакомление студентов с концептуальными основами химического производства полимерных материалов как важнейшей отрасли промышленности в стране;
- формирование научно обоснованного понимания технологических процессов получения полимерных материалов заданного качества;
- ознакомление с современными методами определения эксплуатационных характеристик полимеров и полимерных композиций. Ознакомить студентов с содержанием и характеристикой химических производств: их типами, организационными формами их работы, структурой производственного процесса, способами нормирования технологических операций;
- Обучить студентов основополагающим закономерностям протекания химических процессов, определяющих достижение полимерных материалов необходимого качества;
- Сформировать у студентов навыки и умения по организации операций с безбрачной обработкой деталей, как в процессе проектирования операций, так и в производственных условиях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «<u>Реология жидкофазных систем</u>» является дисциплиной вариативной части бакалавриата, направления подготовки «Химическая технология» (код 18.03.01).

Для успешного изучения дисциплины «Реология жидкофазных систем» студенты должны быть знакомы с основными положениями таких дисциплин, как органическая химия, физика полимеров, химия полимеров и пройти производственную практику на предприятии соответствующего профиля.

Дисциплина «Реология жидкофазных систем» дает студентам представление о технологических схемах получения и эксплуатационных свойствах полимерных материалов. Для понимания основных процессов протекающих при производстве полимерных материалов и композиций должны вынести сведения о разновидностях полимерных материалов, их конструкционных и технологических свойствах, способах получения, основных механизмах протекания химических реакций. Их влияние на состояние процесса производства.

При изучении дисциплины «<u>Реология жидкофазных систем</u>» студенты должны хорошо усвоить основные химические процессы, проходящие при синтезе, что дает им полное представление о происходящем технологическом процессе.

Знание конструкции различных химических аппаратов и процессов, протекающих в них, позволит студентам адекватно усвоить основные мероприятия при технологическом процессе производства полимерных материалов.

Производственная практика на предприятии соответствующего профиля дает возможность студентам увидеть и познакомиться с химическим производством, технологией изготовления типовых деталей и процессами выполнения станочных операций, что позволит им легче усваивать излагаемый на учебных занятиях материал.

Дисциплина «Реология жидкофазных систем» является составной частью в изучении общего курса химической технологии. Закладывает у студентов основы понимания общих технологических процессов химических производств.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В процессе освоения дисциплины обучающийся формирует и демонстрирует следующие компетенции:

использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-1);

готовностью использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы (ОПК-2);

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

Знать: природу и строение полимерных материалов соответствии с направлением и профилем подготовки (ОПК-2);

Уметь: организовывать проведение экспериментов и испытаний в соответствии со знаниями о структуре и природе полимерных материалов (ОПК-1)

Владеть: пониманием свойств полимерных материалов с использованием современных представлений физической картины мира (ОПК-2).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа

№ п/п	Раздел (тема) дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)							Объем учебной работы, с применени ем интеракти вных методов (в часах / %)	Формы текущего контроля успеваемости (по неделям семестра), форма промежуточн ой аттестации (по семестрам)
				Лекции	Семинары	Практические занятия	Лабораторные работы	Контрольные работы	CPC	KII/KP		
1	Цели и задачи курса. Реология как наука. История учения о растворах. Приготовление растворов полимеров.	5	1	2		2			25		2/50	
2	Фазовое равновесие в бинарных системах. Фазовые диаграммы.		1- 4	4		4	6		30		7/50	Рейтинг- контроль 1
3	Классификация систем полимер - растворитель. Сочетание отдельных типов фазового равновесия.		5- 6	4		4	6		20		7/50	
4	Фазовое равно- весие в трех- компонентных системах		7- 9	4		4	6		30		7/50	Рейтинг- контроль 2
5	Структура и свойства систем полимер - растворитель		10	4		4	18		30		13/50	Рейтинг- контроль 3
	ИТОГО			18		18	36		135		36/50	Экзамен,45

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации учебной работы используются ориентация на следующие тактические образовательные технологии, являющиеся конкретным способам достижения целей образования в рамках намеченной стратегической технологии.

Работа с использованием активных и интерактивных методов проведения занятий. При чтении лекций обычно используется метод проблемного изложения с использованием интерактивной формы проведения занятий. При проведении занятий по темам 1,2,3 будут использованы компьютерные симуляции; по темам 4,5,6 - применение деловых и ролевых игр; по темам 7, 8 - разбор конкретных ситуаций. При реализации учебной работы используются ориентация на следующие тактические образовательные технологии, являющиеся конкретным способам достижения целей образования в рамках намеченной стратегической технологии. Работа с использованием активных и интерактивных методов проведения занятий. При чтении лекций обычно используется метод проблемного изложения с использованием интерактивной формы проведения занятий. При проведении занятий по темам 1,2,3 будут использованы компьютерные симуляции; по темам 4,5,6 - применение деловых и ролевых игр; по темам 7, 8 - разбор конкретных ситуаций.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Текущий контроль успеваемости студентов осуществляется в форме рейтинг-контроля Рейтинг-контроль №1

- 1. Приготовление растворов полимеров: набухание, перемешивание, фильтрование, обезвоздушивание и иные технические приемы.
- 2. История развития учения о растворах и студнях полимеров. Классификация систем полимер растворитель по А.А.Тагер и по С.П.Папкову.
- 3. Правило фаз Гиббса. Основные виды фазовых диаграмм аморфных и кристаллизующихся систем.
- 4. Причины распада систем на фазы. Бинодали и спинодали.

- 5. Специфика фазового равновесия в системах полимер растворитель.
- 6. Фазовый распад систем полимер растворитель с образованием студня и рыхлого осадка.

Рейтинг-контроль №2

- 1. Кристаллическое обычное и жидкокристаллическое фазовые равновесия. Кристаллосольваты на фазовых диаграммах..
- 2. Сочетание отдельных типов фазовых равновесий в полимерных системах.
- 3. Фазовое равновесие в трехкомпонентных системах.
- 4. Появление растворяющей способности у двух порознь нерастворяющих жидкостях.
- 5. Свойства однофазных систем полимер растворитель.
- 6. Свойства двухфазных систем полимер растворитель. Принципы получения мембран
- 7. Основы термодинамики растворов полимеров. С чем связано изменение объема, энтальпии и энтропии при растворении полимера?
- 8. Ранние теории растворов полимеров: теории регулярных растворов, решеточных моделей растворов, теория строго регулярных растворов.
- 9. Основные положения теории растворов Флори Хаггинса. Параметра взаимодействия.

Рейтинг-контроль №3

- 1. Фазовый распад раствора полимера с точки зрения теории Флори Хаггинса. 0растворители.
- 2. Теория растворов полимеров Пригожина Паттерсона. "Соответственное состояние вещества".
- 3. Новая теория Флори для разбавленных растворов полимеров.
- Принципы теоретического расчета фазовых диаграмм систем полимер растворитель.
 Лабораторные занятия

На лабораторные занятия отведено 36 часов аудиторных занятий.

На лабораторных занятиях рассматриваются конкретные методы измерения вязкости растворов и расплавов полимеров.

Изучаются следующие установки для измерения вязкости:

- 1) вискозиметры Оствальда и Убеллоде для измерения вязкости разбавленных растворов полимеров;
 - 2) реовискозиметр для изучения систем со средней вязкостью;
 - 3) вискозиметр с падающим шариком;
 - 4) вискозиметр типа «Reotest»;
 - 5) вискозиметр с новым принципом измерения.

Практические занятия

Практические занятия студенты проходят в соответствии с графиком составляемым преподавателем. Практические занятия имеют цель приобретения практических навыков работы с учебно-методической, научно-технической и справочной литературой при расчетах процессов переработки пластических масс. Подготовку к практическим занятиям студенты выполняют самостоятельно вне аудитории в соответствии со стандартом ВлГУ об оформлении отчетов по практическим занятиям. Выполненные работы студенты защищают при активном обсуждении ответов другими студентами с анализом результатов и теоретическим обоснованием процессов. По окончании практических занятий студенты сдают зачет.

- Занятие 1. Растворители полимеров
- Занятие 2. Смешение.
- Занятие 3. Термодинамические процессы в процессах растворения.
- Занятие 4. Реологические характеристики растворов и расплавов полимеров.

Вопросы к экзамену

- Приготовление растворов полимеров: набухание, перемешивание, фильтрование, обезвоздушивание и иные технические приемы.
- о История развития учения о растворах и студнях полимеров. Классификация систем полимер растворитель по A.A.Тагер и по С.П.Папкову.
- Правило фаз Гиббса. Основные виды фазовых диаграмм аморфных и кристаллизуюшихся систем.
- о Причины распада систем на фазы. Бинодали и спинодали.
- о Специфика фазового равновесия в системах полимер растворитель.
- Фазовый распад систем полимер растворитель с образованием студня и рыхлого осадка.
- о Аморфное фазовое равновесие. ВКТР и НКТР.
- о Кристаллическое обычное и жидкокристаллическое фазовые равновесия. Кристаллосольваты на фазовых диаграммах...
- о Сочетание отдельных типов фазовых равновесий в полимерных системах.
- о Фазовое равновесие в трехкомпонентных системах.
- о Появление растворяющей способности у двух порознь нерастворяющих жидкостях.
- о Свойства однофазных систем полимер растворитель.
- о Свойства двухфазных систем полимер растворитель. Принципы получения мембран
- о Основы термодинамики растворов полимеров. С чем связано изменение объема,

энтальпии и энтропии при растворении полимера?

- о Ранние теории растворов полимеров: теории регулярных растворов, решеточных моделей растворов, теория строго регулярных растворов.
- Основные положения теории растворов Флори Хаггинса. Параметра взаимодействия.
- о Фазовый распад раствора полимера с точки зрения теории Флори Хаггинса. 0растворители.
- Теория растворов полимеров Пригожина Паттерсона. "Соответственное состояние вещества".
- о Новая теория Флори для разбавленных растворов полимеров.
- о Принципы теоретического расчета фазовых диаграмм систем полимер растворитель.

Самостоятельная работа студентов

Целью самостоятельной работы являются формирование личности студента, развитие его способности к самообучению и повышению своего профессионального уровня.

Самостоятельная работа заключается в изучении содержания тем курса по конспектам, учебникам и дополнительной литературе, подготовке к практическим занятиям, к рубежным контролям, к экзамену, оформлении лабораторных работ. Она может включать в себя практику подготовки рефератов, презентаций и докладов по ним. Тематика рефератов должна иметь проблемный и профессионально ориентированный характер, требующий самостоятельной творческой работы студента.

Темы рефератов

Структура и свойства полимеров. Природа полимеров. Структурообразование в полимерах. Влияние температуры кристаллизации на кинетику кристаллизации и морфологию полимеров. Отжиг. Влияние давления на процесс кристаллизации.

Деформационная кристаллизация и кристаллизация, вызванная течением. Влияние холодной вытяжки на свойства полимеров. Морфология аморфных полимеров. Модификация структуры полимеров.

Смешение. Описание смесей. Процессы, протекающие при смешении пластических масс.

Тепловые процессы в переработке пластических масс. Термодинамические константы полимеров. Разогрев и плавление полимеров.

Реология растворов и расплавов полимеров. Основные реологические эффекты. Течение расплава в капилляре. Эффект входа. Эффект выхода. Создание давления в процессах переработки пластических масс. Червячный насос. Течение расплава в литьевой

форме.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основная литература

- 1.Бортников В. Г. Теоретические основы и технология переработки пластических масс: Учебник/В.Г.Бортников 3изд. М.: НИЦ ИНФРА-М, 2015. 480 с.
- 2.Головкин Г. С. Научные основы производства изделий из термопластичных композиционных материалов: Монография / Головкин Г.С., Дмитренко В.П. М.:НИЦ ИНФРА-М, 2015. 471 с.:
- 3.Жмыхов И. Н. Процессы и оборудование производства волокнистых и пленочных материалов [Электронный ресурс] : учеб. пособие / И.Н. Жмыхов [и др.]. Минск: Вышэйшая школа, 2013. 587 с.:

Дополнительная литература

- 1. Айнштейн В. Г. Процессы и аппараты химической технологии. Общий курс : [Электронный ресурс] : в 2 кн. / В.Г. Айнштейн, М.К. Захаров, Г.А. Носов [и др.]; Под ред. В.Г. Айнштейна. 5-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2014. 1758 с
- 2.Сироткин О. С. Основы современного материаловедения: Учебник/О.С.Сироткин М.: НИЦ ИНФРА-М, 2015. 364 с.:
- 3.Гладун А. Д. Фундаментальные основы наукоемких технологий: Учебное пособие/А.Д.Гладун Долгопрудный: Интеллект, 2015. 104 с.
- в) интернет-ресурсы: http://starsilan.ru/Metod.htm

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебного процесса используются мультимедийные средства; наборы слайдов и кинофильмы; демонстрационные приборы, мультимедийное оборудование.

При проведении практических занятий используется следующее оборудование: 1.Аналитические цифровые весы, 2. Сушильная камера 3.Вискозиметр Оствальда 4.Вискозиметр Гепплера

по направлению 18.03.01 «Химическая технология» Рабочую программу составил проф. каф XT Вербегу (ФИО, подписк) Рецензент (представитель работодателя) ОАО «Технологии» 10 С.В. Новикова (место работы, должность, ФИО, подпись) Программа рассмотрена и одобрена на заседании кафедры ХТ ____Ю.Т. Панов Заведующий кафедрой_ (ФИО, подпись) Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления _____ Ю.Т. Панов

(ФИО, подпись)

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на		учебный год	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			