Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт Архитектуры, Строительства и Энергетики

УТВЕРЖДАЮ: Директор института

С.Н. Авдеев

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ

направление подготовки / специальность

13.03.02 «Электроэнергетика и электротехника»

направленность (профиль) подготовки

Электроснабжение

г. Владимир

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Переходные процессы в электроэнергетических системах» является теоретическая и практическая подготовка студентов в области передачи и распределения электрической энергии, о перспективах развития электроэнергетических систем и сетей, о новых методах транспорта электрической энергии при решении задач профессиональной деятельности бакалавров по профилю «Электроснабжение».

Задачи:

- - изучение понятий и принципов теории преобразования электромагнитной энергии в другие виды энергии, соответствующие заданному технологическому процессу;
- - изучение основных методов и средств защиты кабельных и воздушных линий от повреждений и ненормальных режимов функционирования;
- - овладение навыками проектирования, анализа и синтеза кабельных и воздушных линий с использованием современных информационных технологий;
- - приобретение умений правильно выбирать, налаживать и эксплуатировать кабельные и воздушные линии энергетических объектов.
- - приобретение навыков формирования законченных представлений о принятых решениях и полученных результатах в виде научно-технического отчёта с его публичной зашитой.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Переходные процессы в электроэнергетических системах» относится к дисциплинам обязательной части ОПОП.

Пререквизиты дисциплины:

- «Теоретические основы электротехники»
- «Электропитающие системы и электрические сети»
- «Надёжность электроснабжения».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые ком-	Планируемые результаты обуче	Наименование	
петенции	ствии с индикатором дос	оценочного	
(код, содержание	Индикатор достижения компе-	Результаты обучения по	средства
компетенции)	тенции	дисциплине	
	(код, содержание индикатора		
ПК-1 Способен	ПК-1.1 – сбор и анализ	Знает критерии сбора и	
участвовать в	данных для проектирования	анализа данных для про-	ICD
проектировании	объектов профессиональной	ектирования, составляет	КР
объектов профес-	деятельности (ПД);	конкурентно-способные	Вопросы рей-
сиональной дея-	ПК-1.2 – составление кон-	варианты технических	тинг-контроля
тельности (ПД)	курентно-способных вариан-	กอบเอบหนั	
	тов технических решений при	V Meet OOOCHORLIBATE REI-	
	проектировании объектов ПД	Loon Hellecoophagalloro ne-	
	ПК-1.3 — выбор целесооб-	приня на попротавливати	
	разных решений и подготов-	NOOTATII TRATTRAAKTIAI	
	1	TORUMAUTAILINI IIA OCIIODA	
	ка разделов предпроектной	, , , , , , , , , , , , , , , , , , ,	

до	кументации на основе ти-	типовых технических ре-	
ПО	вых технических решений	шений.	
дл	ия проектирования объектов	Владеет пониманием	
ПД	Д	взаимосвязи задач проек-	
		тирования и эксплуата-	
		ции.	

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет $\underline{5}$ зачетных единиц, $\underline{180}$ часов

Тематический план форма обучения — очная

			a	Контактная работа обучающихся с педагогическим работником				В	Формы текущего контроля успеваемости,	
№ п/п	Наименование тем и/или разде- лов/тем дисциплины	Семестр Неделя семестра	Лекции	Практические занятия¹	Лабораторные работы	в форме практической подготовки ²	Самостоятельная работа	форма промежу- точной аттестации (по семестрам)		
1	Парамания ў прамада в мананым									
	Переходный процесс в неподвижных магнитносвязанных контурах	7	1	2	2	-		6		
2	Переходный процесс в магнитно-	-	2.2		2	4				
	связанных контурах с вращающи- мися электрическим машинами.	7	2-3	2	2	4		6		
	Уравнение Парка – Горева.									
3	Расчет и анализ токов КЗ. Выбор	7	4-10	5	6	8		18	Рейтинг-контроль – 1	
	электрооборудования по условиям токов КЗ								КР	
4	Расчет токов и напряжений при несимметричных К3	7	11-14	5	4	6		16	Рейтинг-контроль – 2	
5	Замыкания в распределительных									
	сетях и системах электроснабжения		15-16	2	2	-		6		
6	Переходные процессы в узлах	7	17-18	2	2	-		2	Рейтинг-контроль – 3	
Page	нагрузки го за 7 семестр:		18	18	18	18		54	Зачет	
bcei	оза / семестр:		10	10	10	10		34	лачет 7-ой сем.	
7	Переходные электромеханические	8	1-2	2		6		6		

¹Распределение общего числа часов, указанных на практические занятия в УП, с учетом часов на КП/КР ²Данный пункт включаетсмя в рабочую программу только при формировании профессиональных компе-

тенций.

								Экзамен 8-ой сем. 27
Ито	ого по дисциплине			28	18	28	79	Зачет 7-ой сем.
Нал	ичие в дисциплине КП/КР							КР
								8-ой сем. 27
Bcea	го за восьмой семестр:		10	10	-	10	25	Экзамен
	жимов электрических систем							
	чивости и качества переходных ре-							2 – 3
10	Мероприятия по улучшению устой-	8	8-10	2		_	5	Рейтинг-контроль
	режимы							
,	лизации режимов. Асинхронные		0-7	_		_		
9	Анализ устройств и средств стаби-	8	6-7	2		_	6	
	Статическая и динамическая устой-							111
	малых и больших возмущениях.							РГР
8	Устойчивость режимов систем при	8	3-5	5		5	8	Рейтинг-контроль – 1
	системах							
	процессы в электроэнергетических							

Тематический план форма обучения –заочная

Трудоёмкость дисциплины составляет 5 зачётных единиц, 180 часов.

№	Раздел дисциплины	Семестр	Недели семестра	вклю ную	работу оёмкост	амостоя студен гь (в час	тель- гов и ах)		Формы текущего контроля и про- межуточной аттестации
			H	Лек	Практические занятия	Лабораторные работы	в форме практической подготовки ^з	CPC	Формы тек межуточноѐ
1	Переходный процесс в неподвижных магнитносвязанных контурах. Переходный процесс в магнитносвязанных контурах с вращающимися электрическим машинами. Уравнение Парка – Горева.	9		2	2	-		49	Рейтинг- контроль — 1
2	Расчет и анализ токов КЗ. Выбор электрооборудования по условиям токов КЗ. Расчет токов и напряжений при	9		2	2	2		49	Рейтинг- контроль – 2, 3, КР

 $^{^{3}}$ Данный пункт включаетсмя в рабочую программу только при формировании профессиональных компетенций.

_

	несимметричных КЗ. Замыкания в распределительных сетях и системах электроснабжения. Переходные процессы в узлах нагрузки Всего за девятый семестр:		4	4	2	98	Зачет 9-й сем.
1	Переходные электромеханические процессы в электроэнергетических системах. Устойчивость режимов систем при малых и больших возмущениях. Статическая и динамическая устойчивость	1 0	2	-	2	20	Рейтинг- контроль – 1 РГР
2	Анализ устройств и средств стабилизации режимов. Асинхронные режимы. Мероприятия по улучшению устойчивости и качества переходных режимов электрических систем	1 0	2	-	-	19	Рейтинг- контроль – 2, 3, КР
	Всего за десятый семестр:		4	-	2	39	Экзамен 10-й сем. 27
	Наличие в дисциплине КР						КР
Всего за учебный год:			8	4	4	137	Зачет 9-й сем. Экзамен 10-й сем. 27

Содержание лекционных занятий по дисциплине

Раздел 1. Переходный процесс в неподвижных магнитносвязанных контурах.

- *Тема 1*. Параметры режима и параметры системы. Нормальный установившейся режим, аварийный и послеаварийный. Причины возникновения переходных процессов в электрической системе: рабочие коммутации оборудования; аварийные ситуации.
- *Тема 2*. Электромагнитные переходные процессы в электрической системе как следствие коротких замыканий (КЗ). Виды КЗ. Задачи анализа переходных процессов в электрических системах. Простейшая система электроснабжения. Виды электрической несимметрии. Схемы замещения элементов системы.
- *Тема 3.* Дифференциальное уравнение электрической системы и его порядок. Переходный процесс в магнитносвязанных контурах с вращающимися электрическим машинами. Уравнение Парка Горева.
- *Тема 5.* Установившейся режим короткого замыкания в электроэнергетической системе. Основные характеристики и параметры симметричного режима, установившегося КЗ. Векторная диаграмма генератора, работающего с отстающим током.
- *Тема 6.* Влияние и учет нагрузки. Влияние автоматического регулирования возбуждения (APB). Вольтамперная характеристика генератора с APB сильного действия.
- Раздел 2. Расчет и анализ токов КЗ. Выбор электрооборудования по условиям токов КЗ.

- *Тема 1.* Система базисных единиц. Выбор базисной мощности с учетом параметров генератора. Формулы приближенного приведения. Среднее напряжение ступени трансформации. Действующие значения полных величин и их отдельных слагаемых.
- *Тема 2.* Приближенное решение при нулевом активном сопротивлении. Определение эквивалентной постоянной времени.
- *Тема 3.* Внезапное короткое замыкание трансформатора. Включение ненагруженного (холостого) трансформатора. Установившейся режим короткого замыкания в ЭЭС. Основные характеристики и параметры симметричного режима, установившегося КЗ.
- *Тема 4.* Характеристика холостого хода и короткого замыкания СМ. Приблизительная оценка тока возбуждения. Влияние и учет нагрузки. Учет нагрузки в практических расчетах. Влияние автоматического регулирования возбуждения. Соотношения, характеризующие режимы работы генератора с АРВ. Практический расчет начального сверхпереходного и ударного токов.
- Раздел 3. Расчет токов и напряжений при несимметричных КЗ.
- *Тема 1.* Индуктивности обмоток СМ. Применение метода симметричных составляющих. Параметры элементов для токов обратной и нулевой последовательности. Реактивности обратной и нулевой последовательности СМ.
- *Тема 2.* Реактивности обратной и нулевой последовательностей асинхронных машин. Реактивности обобщенной нагрузки. Реактивность нулевой последовательности трансформатора. Схемы замещения трансформаторов для токов нулевой последовательности.
- *Тема 3*. Токи нулевой последовательности воздушных и кабельных линий электропередачи. Схемы замещения прямой и обратной последовательностей. Схема замещения нулевой последовательности. Результирующие ЭДС и сопротивления.
- *Тема 4.* Однократная поперечная не симметрия. Однофазное замыкание на землю. Однофазное замыкание на землю. Двухфазное замыкание. Учет переходного сопротивления в месте короткого замыкания.
- *Тема 5*. Простое замыкание на землю. Расчет значения тока простого КЗ на землю и методы его ограничения. Учет изменения параметров проводников сети.
- *Тема 6.* Расчет токов КЗ в установках напряжением до 1000 В. Учет переходных сопротивлений короткозамкнутой цепи.
- *Тема 7.* Процессы в узлах нагрузки электрических систем. Примерный состав нагрузки промышленного района. Структура баланса энергии в системе. Характеристики элементов нагрузки. Процессы в узлах нагрузки электрических систем при больших возмущениях.
- *Тема 8.* Статические характеристики комплексной нагрузки узлов нагрузки электрических систем. Статические характеристики комплексной нагрузки. Изменение частоты и устойчивость системы.
- Раздел 4. Переходные электромеханические процессы в электроэнергетических системах.
- *Тема 1.* Общая характеристика переходных процессов электрических систем. Осуществимость, устойчивость и надёжность режима работы электрической системы. Учет перехода энергии из одного вида в другой при электромеханических переходных процессах в инженерных расчетах.
- *Тема 2.* Практические критерии устойчивости. Статическая и динамическая устойчивость. Запасы устойчивости режимов энергетической системы.
- *Тема 3*. Алгоритм исследования резких изменений режима трехфазной СМ в начальный момент времени при заданных напряжениях на шинах нагруженной машины.

- *Тема 4.* Статическая и динамическая устойчивость. Запасы устойчивости режимов энергетической системы. Анализ устойчивости простейшей системы в переходных режимах.
- *Тема 5.* Статические и динамические характеристики простейшей электрической системы. Расчетные соотношения для построения векторной диаграммы. Исследование устойчивости при регуляторах пропорционального типа. Статическая устойчивость простейшей системы при сильном регулировании возбуждения.

Содержание практических занятий по дисциплине

- Раздел 1. Переходный процесс в неподвижных магнитносвязанных контурах.
- *Тема 1.* Расчет установившегося тока трехфазного короткого замыкания простейшей системы электроснабжения ограниченной мощности и неизменным напряжением при точном приведении параметров элементов системы.
- **Раздел 2.** Переходный процесс в магнитносвязанных контурах с вращающимися электрическим машинами. Уравнение Парка Горева.
- *Тема 1.* Расчет установившегося тока трехфазного короткого замыкания простейшей системы электроснабжения ограниченной мощности и неизменным напряжением при приближенном приведении параметров элементов системы.
- Тема 2. Расчет мощности КЗ и остаточного напряжения в узловых точках системы.
- Раздел 3. Расчет и анализ токов КЗ. Выбор электрооборудования по условиям токов КЗ.
- *Тема 1.* Расчет остаточного напряжения в конце передачи при использовании формул приближенного приведения.
- *Тема 2*. Расчет для выбора выключателя.
- Раздел 4. Расчет токов и напряжений при несимметричных КЗ.
- Тема 1. Расчет начального сверхпереходного тока трехфазного КЗ аналитическим методом.
- Тема 2. Составление схемы замещения нулевой последовательности при коротком замыкании в точке «К» и нахождение в общем виде суммарного сопротивления нулевой последовательности.

Содержание лабораторных занятий по дисциплине

- 1. Расчетно-лабораторная работа №1. «Несимметричные короткие замыкания в электрических системах»
- 2. Расчетно-лабораторная работа № 2. «Комплексные схемы замещения при поперечной не симметрии в электрических системах».
- 3. Расчетно-лабораторная работа № 3. «Комплексные схемы замещения при продольной не симметрии в электрических системах».
- 4. Расчетно-лабораторная работа № 4. «Экспериментальное определение сопротивления нулевой последовательности трехфазного трансформатора».
- 5. Расчетно-лабораторная работа № 5. Экспериментальное исследование переходных процессов в трехфазном силовом трансформаторе.
- 6. Расчетно-лабораторная работа № 6. Фазировка силовых трансформаторов и сборных шин.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Для текущего контроля успеваемости применяется рейтинг-контроль, проводимый в форме тестирования на 5-й, 9-й и 17-й неделе.

Вопросы к рейтинг-контролю (7-й семестр)

рейтинг-контроль 1

- 1. Структура электрической системы и её составные элементы.
- 2. Режимы и процессы. Различные виды режимов и процессов в электрических системах.
- 3. Статическая и динамическая устойчивость системы.
- 4. Нелинейность элементы в электрической системе.
- 5. Параметры режима и параметры системы.
- 6. Характерные стадии переходных режимов и их влияние на оборудование электрической системы.
 - 7. Возмущение режима и возмущающее воздействие.
- 8. Основные допущения при анализе режимов электрических систем (линеаризация, учет изменения мгновенных значений, учет огибающих).
 - 9. По каким признакам разделяются системы на простые и сложные?
- 10. Основные допущения при составлении схем замещения элементов электрических систем.
 - 11. Схемы замещения линии электропередачи.
 - 12. Схемы замещения синхронной машины.
 - 13. Схемы замещения асинхронного двигателя для точных и приближенных расчетов.
 - 14. Схемы замещения трансформатора для точных и приближенных расчетов.
- 15. Взаимосвязь дифференциальных уравнений движения ротора синхронной машины и электрической системы.
 - 16. Вычисление порядка дифференциального уравнения электрической системы.
 - 17. Пути снижения порядка дифференциального уравнения электрической системы.
 - 18. Система относительных единиц.
 - 19. Короткие замыкания в электрических системах.
 - 20. Определение ЭДС и внутренней реактивности синхронной машины.
 - 21. Алгоритм расчета тока симметричного трехфазного КЗ.
 - 22. Схемы замещения электрической системы и их преобразование.

- 1. Характеристики холостого хода и короткого замыкания СМ.
- 2. Переходные процессы при гашении магнитного поля СМ.
- 3. Переходные процессы при форсировке возбуждения синхронной машины.
- 4. Переходные процессы при включении трансформаторов на холостой ход.
- 5. Внезапное короткое замыкание трехфазного трансформатора.

- 6. Трехфазное короткое замыкание в неразветвленной цепи и за трансформатором.
- 7. Влияние нагрузки на характер переходного процесса при симметричном трехфазном КЗ.
- 8. Вольтамперная характеристика синхронного генератора.
- 9. Влияние APB на характер переходного процесса при симметричном трехфазном К3. Критические параметры генератора.
- 10. Схемы замещения СМ без демпферных обмоток в начальный момент нарушения режима.
- 11. Влияние демпферных обмоток СМ на характер переходного процесса в начальный момент нарушения режима.
- 12. Расчет начального сверхпереходного тока.
- 13. Расчет ударного тока. Учет асинхронных двигателей.
- 14. Вычисление эквивалентной постоянной времени.
- 15. Уравнения потокосцеплений синхронной машины.
- 16. Операторные синхронные и переходные реактивности синхронной машины (СМ).
- 17. Алгоритм исследования резких изменений режима работы СМ.
- 18. Решение системы уравнений СМ в операторном виде и установление характера переходного процесса.
- 19. Взаимосвязь между изменением скорости ротора и вращающим моментом.
- 20. Энергетика переходного процесса.
- 21. Регулирующий эффект нагрузки.
- 22. Продольная и поперечная несимметрия в электрических системах.

- 1. Суть теории двух реакций.
- 2. Уравнения Парка Горева.
- 3. Взаимосвязь фазных величин трехфазной системы с одноименными величинами двухобмоточной машины.
- 4. Выражение электромагнитного момента по теории двух реакций.
- 5. Взаимосвязь электромагнитного момента и мощности по теории двух реакций.
- 6. Уравнения движения ротора с позиции теории двух реакций.
- 7. Упрощение уравнения движения ротора.
- 8. Физический смысл уравнений Лонглея.
 - 9. Уравнения Парка Горева в операторном виде.
 - 10. Уравнения потокосцеплений синхронной машины.
 - 11. Операторные синхронные и переходные реактивности синхронной машины (СМ).
 - 12. Алгоритм исследования резких изменений режима работы СМ.
- 13. Решение системы уравнений СМ в операторном виде и установление характера переходного процесса.
 - 14. Взаимосвязь между изменением скорости ротора и вращающим моментом.
 - 15. Однократная поперечная несимметрия в электрических системах.
 - 16. Двухфазное короткое замыкание в электрических системах.
 - 17. Двухфазное короткое замыкание на землю в электрических системах.
 - 18. Метод симметричных составляющих при анализе несимметричных КЗ.
 - 19. Двухкратная поперечная несимметрия в электрических системах.
 - 20. Обрыв фазного провода.

21. Обрыв двух фазных проводов.

22. Случай сложной несимметрии в электрических системах.

Вопросы к рейтинг-контролю (8-й семестр)

рейтинг-контроль 1

- 1. Условия осуществимости режима электрической системы.
- 2. Критерии устойчивости и избыточная энергия.
- 3. Критерии устойчивости и избыточная мощность.
- 4. Практические критерии устойчивости электрической системы.
- 5. Текучесть нормального режима электрической системы.
- 6. Критерии устойчивости простейшей электрической системы.
- 7. Критерии устойчивости асинхронного двигателя.
- 8. Критерии динамической устойчивости электрической системы.
- 9. Суть метода последовательных интервалов при определении времени отключения.
- 10. Запас устойчивости электрической системы по напряжению.
- 11. Запас устойчивости электропередачи по мощности.
- 12. Запас устойчивости межсистемной электропередачи.
- 13. Критерии оценки динамической устойчивости электрической системы.
- 14. Определение площадей торможения и ускорения.
- 15. Условия определения предельного угла отключения.
- 16. Понятия начального и критического углов характеристики мощности СГ.
- 17. Запас динамической устойчивости электрической системы при уточненных расчетах.
- 18. Виды и продолжительность КЗ при расчетах коэффициента запаса динамической устойчивости.
- 19. В чем отличие дифференциальных уравнений для расчета статической устойчивости и динамической устойчивости.
- 20. Максимальная мощность в конце электропередачи.
- 21. Максимальная мощность электропередачи по генераторному концу.
- 22. Пропускная способность электропередачи в зависимости от принятой расчетной схемы замешения.

- 1. Упрощенные уравнения Парка Горева и векторные диаграммы СМ.
- 2. Векторная диаграмма явнополюсной СМ.
- 3. Векторная диаграмма неявнополюсной СМ.
- 4. Выражение мощности на шинах генератора через различные ЭДС.
- 5. Выражение мощности на шинах нагрузки (в конце передачи).
- 6. Угловые характеристики СМ для различных режимов.
- 7. Характеристики режима системы.
- 8. Статические характеристики мощности системы.
- 9. Условно динамические характеристики мощности системы.
- 11. Несинхронный режим СМ в простейшей системе.

- 12. Способы нахождения статических характеристик мощности при несинхронном режиме.
- 13. Влияние скольжения СМ на баланс активных мощностей в системе.
- 14. Условия взаимосвязи статических и динамических характеристик с вращающим моментом генератора при несинхронной скорости.
- 15. Задачи анализа сложной электрической системы при переходных режимах.
- 16. Исследование сложной электрической системы при синхронной частоте.
- 17. Метод единичных токов при исследовании распределения токов в ветвях электрической системы.
- 18. Исследование сложной электрической системы при неодинаковой скорости синхронных машин.
- 19. Расчет асинхронных составляющих токов и мощностей сложной электрической системы при неодинаковой скорости синхронных машин.
- 20. Алгоритм расчета статических характеристик нелинейной электрической системы.
- 21. Задачи анализа статической устойчивости нерегулируемой системы.
- 22. Синхронизирующая мощность и приращение угла δ.
- 23. Регулирующий эффект нагрузки.
- 24. Понятие электрического центра системы.
- 25. Задачи анализа устойчивости сложной системы.
- 26. Основные дифференциальные уравнения сложной линеаризованной электрической системы.
- 27. Упрощенные методы исследования устойчивости сложной линеаризованной электрической системы.
- 28. Динамика работы сложной электрической системы в момент внезапного нарушения режима.
- 29. Причины изменения частоты и мощности в сложной электрической системе и пути их минимизации.

- 1. Оценка статической устойчивости нерегулируемой системы по линеаризованной угловой характеристике мощности.
- 2. Условия статической устойчивости идеальной СМ.
- 3. Условия статической устойчивости реальной СМ.
- 4. Влияние демпфирования на условия статической устойчивости.
- 5. Признаки нарушения статической устойчивости при учете электромагнитных процессов.
- 6. Условия статической устойчивости по критерию Гурвица.
- 7. Неустойчивость типа самовозбуждение.
- 8. Неустойчивость типа самораскачивание.
- 9. Статическая устойчивость при АРВ пропорционального типа.
- 10. Статическая устойчивость при АРВ сильного действия.
- 11. Узлы нагрузки. Понятия и определения.
- 12. Задачи анализа устойчивости узла нагрузки.
- 13. Статические и динамические характеристики узла нагрузки.
- 14. Как можно получить расчетом и экспериментом статические характеристики комплексной нагрузки?

- 15. Задачи анализа устойчивости асинхронной нагрузки.
- 16. Статические характеристики асинхронного двигателя.
- 17. Понятие критического скольжения, момента, мощности.
- 18. «Опрокидывание» асинхронного двигателя.
- 19. Лавина напряжения и методы борьбы с ней.
- 20. Динамические характеристики асинхронного двигателя.
- 21. Характеристики синхронной нагрузки.
- 22. Влияние изменения частоты на статическую устойчивость асинхронного двигателя.
- 23. Условия возникновения режима самозапуска двигателей.
- 24. Расчет времени разбега асинхронного двигателя.
- 25. Расчет времени пуска асинхронного двигателя.
- 26. Расчет времени выбега асинхронного двигателя.
- 27. Наброс нагрузки асинхронного двигателя.
- 28. Расчет допустимого времени наброса нагрузки асинхронного двигателя.
- 29. Пуск синхронного двигателя и расчет допустимого времени наброса нагрузки.
- **5.2. Промежуточная аттестация** по итогам освоения дисциплины проводится в форме зачета в седьмом и экзамена в восьмом семестрах.

Вопросы к зачету

- 1. Структура электрической системы и её составные элементы.
- 2. Режимы и процессы. Различные виды режимов и процессов в электрических системах.
- 3. Статическая и динамическая устойчивость системы.
- 4. Нелинейность элементы в электрической системе.
- 5. Параметры режима и параметры системы.
- 6. Характерные стадии переходных режимов и их влияние на оборудование электрической системы.
- 7. Возмущение режима и возмущающее воздействие.
- 8. Основные допущения при анализе режимов электрических систем (линеаризация, учет изменения мгновенных значений, учет огибающих).
- 9. По каким признакам разделяются системы на простые и сложные?
- 10. Основные допущения при составлении схем замещения элементов электрических систем.
- 11. Схемы замещения линии электропередачи.
- 12. Схемы замещения синхронной машины.
- 13. Схемы замещения асинхронного двигателя для точных и приближенных расчетов.
- 14. Схемы замещения трансформатора для точных и приближенных расчетов.
- 15. Взаимосвязь дифференциальных уравнений движения ротора синхронной машины и электрической системы.
- 16. Вычисление порядка дифференциального уравнения электрической системы.
- 17. Пути снижения порядка дифференциального уравнения электрической системы.
- 18. Система относительных единиц.
- 19. Короткие замыкания в электрических системах.
- 20. Определение ЭДС и внутренней реактивности синхронной машины.
- 21. Алгоритм расчета тока симметричного трехфазного КЗ.
- 22. Схемы замещения электрической системы и их преобразование.

- 23. Характеристики холостого хода и короткого замыкания СМ.
- 24. Переходные процессы при гашении магнитного поля СМ.
- 25. Переходные процессы при форсировке возбуждения синхронной машины.
- 26. Переходные процессы при включении трансформаторов на холостой ход.
- 27. Внезапное короткое замыкание трехфазного трансформатора.
- 28. Трехфазное короткое замыкание в неразветвленной цепи и за трансформатором.
- 29. Влияние нагрузки на характер переходного процесса при симметричном трехфазном КЗ.
- 30. Вольтамперная характеристика синхронного генератора.
- 31. Влияние APB на характер переходного процесса при симметричном трехфазном К3. Критические параметры генератора.
- 32. Схемы замещения СМ без демпферных обмоток в начальный момент нарушения режима.
- 33. Влияние демпферных обмоток СМ на характер переходного процесса в начальный момент нарушения режима.
- 34. Расчет начального сверхпереходного тока.
- 35. Расчет ударного тока. Учет асинхронных двигателей.
- 36. Вычисление эквивалентной постоянной времени.
- 37. Уравнения потокосцеплений синхронной машины.
- 38. Операторные синхронные и переходные реактивности синхронной машины (СМ).
- 39. Алгоритм исследования резких изменений режима работы СМ.
- 40. Решение системы уравнений СМ в операторном виде и установление характера переходного процесса.
- 41. Взаимосвязь между изменением скорости ротора и вращающим моментом.
- 42. Энергетика переходного процесса.
- 43. Регулирующий эффект нагрузки.
- 44. Продольная и поперечная несимметрия в электрических системах.
- 45. Суть теории двух реакций.
- 46. Уравнения Парка Горева.
- 47. Взаимосвязь фазных величин трехфазной системы с одноименными величинами двухобмоточной машины.
- 48. Выражение электромагнитного момента по теории двух реакций.
- 49. Взаимосвязь электромагнитного момента и мощности по теории двух реакций.
- 50. Уравнения движения ротора с позиции теории двух реакций.
- 51. Упрощение уравнения движения ротора.
- 52. Физический смысл уравнений Лонглея.
- 53. Уравнения Парка Горева в операторном виде.
- 54. Уравнения потокосцеплений синхронной машины.
- 55. Операторные синхронные и переходные реактивности синхронной машины (СМ).
- 56. Алгоритм исследования резких изменений режима работы СМ.
- 57. Решение системы уравнений СМ в операторном виде и установление характера переходного процесса.
- 58. Взаимосвязь между изменением скорости ротора и вращающим моментом.
- 59. Однократная поперечная несимметрия в электрических системах.
- 60. Двухфазное короткое замыкание в электрических системах.
- 61. Двухфазное короткое замыкание на землю в электрических системах.
- 62. Метод симметричных составляющих при анализе несимметричных КЗ.
- 63. Двухкратная поперечная несимметрия в электрических системах.

- 64. Обрыв фазного провода.
- 65. Обрыв двух фазных проводов.
- 66. Случай сложной несимметрии в электрических системах.

Вопросы к экзамену

- 1. Классификация переходных процессов и виды коротких замыканий в системах электроснабжения.
- 2. Особенности переходных процессов в неподвижных магнитно связанных цепях.
- 3. Особенности переходных процессов в магнитно связанных цепях с подвижными частями.
- 4. Векторные диаграммы синхронной машины при установившемся режиме короткого замыкания.
- 5. Характеристики холостого хода и короткого замыкания СМ. Спрямление характеристик.
- 6. Переходные процессы при гашении магнитного поля, форсировке возбуждения синхронной машины и включении трансформаторов на холостой ход.
- 7. Переходные процессы при гашении магнитного поля.
- 8. Переходные процессы при форсировке возбуждения синхронной машины.
- 9. Переходные процессы при включении трансформаторов на холостой ход.
- 10. Внезапное короткое замыкание трехфазного трансформатора.
- 11. Трехфазное короткое замыкание в неразветвленной цепи и за трансформатором.
- 12. Влияние нагрузки на характер переходного процесса при симметричном трехфазном К3.
- 13. Влияние АРВ на характер переходного процесса при симметричном трехфазном КЗ. Критические параметры генератора.
- 14. Схемы замещения СМ без ДО в начальный момент нарушения режима.
- 15. Влияние ДО СМ на характер переходного процесса в начальный момент нарушения режима.
- 16. Расчет начального сверхпереходного тока.
- 17. Расчет ударного тока. Учет асинхронных двигателей.
- 18. Дифференциальные уравнения переходного процесса в синхронной машине в фазных координатах и их линейное преобразование.
- 19. Уравнения Парка Горева в классической форме.
- 20. Уравнения Парка Горева в операторной форме.
- 21. Расчет начальных значений периодической составляющей тока трехфазного К3 от синхронной машины без учета и с учетом демпферных контуров.
- 22. Влияние и учет электродвигателей и нагрузок в начальный момент КЗ.
- 23. Расчет начальных значений периодической и апериодической составляющих тока трехфазных КЗ (в том числе и компьютерными методами).
- 24. Переходный процесс в синхронной машине при трехфазном КЗ без учета и с учетом демпферных контуров.
- 25. Влияние системы возбуждения на переходный процесс.
- 26. Переходный процесс в синхронной машине при отключении короткого замыкания и повторном КЗ.
- 27. Выбор электрооборудования по условиям токов коротких замыканий.
- 28. Влияние удаленности КЗ на переходный процесс в синхронной машине.
- 29. Расчет токов при удаленных КЗ. Практические методы расчета токов КЗ.

- 30. Метод расчетных кривых.
- 31. Метод спрямленных характеристик.
- 32. Влияние магнитной не симметрии ротора на фазные напряжения статора.
- 33. Применение метода симметрических составляющих для анализа переходных процессов при несимметричных КЗ в трехфазных цепях, содержащих синхронные машины.
- 34. Параметры прямой, обратной и нулевой последовательности различных элементов электроэнергетической системы. Синхронные и асинхронные машины.
- 35. Параметры прямой, обратной и нулевой последовательности различных элементов электроэнергетической системы. Воздушные и кабельные линии.
- 36. Параметры прямой, обратной и нулевой последовательности различных элементов электроэнергетической системы. Обобщенная нагрузка и трансформаторы.
- 37. Схемы замещения прямой, обратной и нулевой последовательности.
- 38. Расчет токов и напряжений при однофазном и двухфазном замыкании на землю.
- 39. Расчет токов и напряжений при двухфазном КЗ и двухфазном КЗ на землю.
- 40. Комплексные схемы замещения. Использование правила эквивалентности при расчете несимметричных КЗ.
- 41.Основные расчетные соотношения при однократной продольной не симметрии. Обрыв одного и двух проводов.
- 42. Комплексные схемы замещения при продольной не симметрии.
- 43. Сложные виды повреждений. Однофазное КЗ с разрывом фазы.
- 44. Сложные виды повреждений. Двойное замыкание на землю.
- 45. Замыкания в распределительных сетях и системах электроснабжения, особенности расчета токов КЗ в электроустановках напряжением до 1 кВ.
- 46. Основные понятия о переходных электромеханических процессах в электроэнергетических системах.
- 47. Виды режимов электроэнергетической системы. Требования, предъявляемые к режимам. Осуществимость и устойчивость режимов. Возмущения в системах. Виды устойчивости.
- 48. Простейшая электрическая система и ее схема замещения.
- 49. Векторные диаграммы простейшей электрической системы с неявнополюсными и явнополюсными генераторами.
- 50. Выражения для активных и реактивных мощностей через различные ЭДС генератора.
- 51. Собственные и взаимные сопротивления электроэнергетической системы и способы их определения.
- 52. Определение угловых характеристик мощности через собственные и взаимные сопротивления.
- 53. Динамическая устойчивость. Причины и характер больших возмущений в электрической системе. Задачи исследования динамической устойчивости.
- 54. Задачи исследования динамической устойчивости. Допущения, принимаемые при анализе динамической устойчивости
- 55. Энергетические соотношения, характеризующие движение ротора генератора. Уравнение движения ротора генератора.

56.

- 57. Способ площадей: допущения и области применения.
- 58. Численное решение уравнения движения ротора генератора. Метод последовательных интервалов. Учет переходных электромагнитных процессов. Влияние демпфирования.

- 59. Анализ процессов с учетом форсировки и автоматического регулирования возбуждения (APB) генератора. Учет изменения мощности турбины. Автоматическое регулирование частоты вращения (AP4B) ротора турбины.
- 60. Способы приближенного решения уравнения движения ротора генератора. Особенности расчета переходных процессов в сложной системе.
- 61. Статическая устойчивость электрической системы. Задачи и методы исследования.
- 62. Практические критерии статической устойчивости. Основные допущения и области применения.
- 63. Математическое описание переходных процессов при анализе статической устойчивости. Метод малых колебаний.
- 64. Расположение корней характеристического уравнения на комплексной плоскости и вид переходного процесса. Статическая устойчивость и малые колебания в нерегулируемой системе
- 65. Самораскачивание и самовозбуждение. Физика явлений и способы расчетов.
- 66. Упрощенное определение статической устойчивости на основе метода малых колебаний.
- 67. Анализ статической устойчивости простейшей электрической системы с учетом электромагнитных переходных процессов и регуляторов возбуждения пропорционального действия.
- 68. Комплексное автоматическое регулирование возбуждения и частоты вращения агрегата. Статическая устойчивость системы с автоматическим регулятором возбуждения сильного действия.
- 69. Изменения частоты в электроэнергетических системах. Причины и характер изменения частоты. Требования к частоте как к общесистемному показателю качества электроэнергии. Виды регулирования первичных двигателей.
- 70. Статические характеристики нерегулируемых и регулируемых первичных двигателей в системе. Определение динамических характеристик частоты в системе. «Лавина» частоты и способы ее предотвращения.
- 71. Переходные процессы в узлах нагрузки электрических систем. Задачи исследования. Статические и динамические характеристики нагрузки.
- 72. Представление нагрузки эквивалентным асинхронным двигателем. Соизмеримость мощностей нагрузки и источника электроэнергии, и ее влияние на устойчивость нагрузки.
- 73. Практические критерии устойчивости нагрузки. Включение в нагрузку компенсирующих устройств и их влияние на устойчивость.
- 74. Влияние частоты на устойчивость нагрузки. Устойчивость нагрузки, представленной эквивалентным асинхронным двигателем при больших возмущениях.
- 75. Способы решения уравнений движения ротора эквивалентного двигателя.
- 76. Асинхронные режимы в электрических системах. Общая характеристика асинхронных режимов и основные задачи их исследования.
- 77. Причины возникновения асинхронного режима. Понятие результирующей устойчивости. Процесс выпадения из синхронизма и появление асинхронного хода.
- 78. Необходимое условие синхронизации. Практические способы восстановления синхронного режима.
- 79. Последовательность операций при ресинхронизации. Практические критерии ресинхронизации.

5.3.Самостоятельная работа обучающегося.

Цель самостоятельной работы — формирование личности студента, развитие его способности к самообучению и повышению своего профессионального уровня.

Основа самостоятельной работы — изучение рекомендуемой литературы, содержания тем курса по конспекту лекций и рекомендованным источникам, подготовка к написанию реферата. Самостоятельная работа студентов должна закрепить теоретические навыки и практические приемы по программе курса.

Контроль освоения материала и выполнения самостоятельной работы проводится при обсуждении рефератов и на консультациях.

Аудиторная самостоятельная работа выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию (консультации, прием и защита лабораторных работ, выполнение курсовой работы в рамках дисциплины.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия при подготовке к семинарам и лабораторным работам, их оформлению; проведении типовых расчетов.

Темы контрольных заданий (курсовой работы и расчетно-графических работ):

- Расчет токов при коротких замыканиях курсовая работа.
- Расчет устойчивости системы электроснабжения по практическим критериям расчетно-графическая работа.

Вопросы к самостоятельной работе студентов

7-й семестр

1. Симметричные короткие замыкания.

- 1. Алгоритм расчета тока трехфазного КЗ по методу спрямленных характеристик.
- 2. Алгоритм расчета тока трехфазного КЗ по методу расчетных кривых.
- 3. Алгоритм расчета тока трехфазного КЗ по методу типовых кривых.
- 4. Алгоритм определения сопротивлений основных элементов схемы замещения в относительных единицах по формулам точного и приближенного приведения.
- 5. Порядок перехода от относительных к именованным единицам при использовании формул точного и приближенного приведения.
- 6. Векторная диаграмма синхронной машины в переходном режиме и порядок ее построения.
- 7. Схемы замещения синхронной машины в переходном режиме.
- 8. Векторная диаграмма синхронной машины в сверхпереходном режиме и порядок ее построения.
- 9. Схемы замещения синхронной машины в сверхпереходном режиме.
- 10. Порядок практического расчета начального сверхпереходного и ударного тока.
- 11. Влияние и учет нагрузки при трехфазном КЗ.
- 12. Алгоритм расчета тока симметричного трехфазного КЗ при наличии и отсутствии АРВ.
- 13. Какими параметрами характеризуют процесс в начальный момент внезапного нарушения режима СМ и почему?
- 14. Алгоритм расчета начального сверхпереходного тока.
- 15. Алгоритм расчета ударного тока.
- 16. Дифференциальные уравнения СМ без демпферных обмоток.

- 17. Уравнения Парка-Горева в двухосной системе координат ротора.
- 18. Уравнения Парка-Горева в операторной форме.
- 19. Форсировка возбуждения синхронной машины. Критическое время.
- 20. Гашение магнитного поля синхронной машины.
- 21. Внезапное КЗ синхронной машины.
- 22. Влияние АРВ при внезапном КЗ синхронной машины.
- 23. Каскадное отключение и повторное включение К3.
- 24. Взаимное электромагнитное влияние синхронных машин при переходном процессе.
- 25. Практические методы расчета переходного процесса КЗ.
- 26. Расчет для выбора выключателей по отключающей способности.
- 27. Приближенный учет системы при практических расчетах симметричных КЗ.

8-й семестр

2. Несимметричные короткие замыкания.

- 1. Влияние магнитной несимметрии ротора на переходный процесс при несимметричном КЗ.
- 2. Основные уравнения Кирхгофа в базисе несимметричных составляющих.
- 3. Симметричные составляющие несимметричной трехфазной цепи.
- 4. Параметры синхронных машин для токов обратной и нулевой последовательности.
- 5. Параметры асинхронных двигателей и обобщенной нагрузки для токов обратной и нулевой последовательностей.
- 6. Параметры трансформаторов и автотрансформаторов для токов обратной и нулевой последовательностей.
- 7. Параметры воздушных линий для токов нулевой последовательности.
- 8. Порядок составления схем замещения отдельных последовательностей.
- 9. Результирующие Э.Д.С. и сопротивления при несимметричных режимах.
- 10. Распределение и трансформация токов и напряжений при несимметричных КЗ.
- 11. Расчет тока КЗ при двухфазном КЗ.
- 12. Расчет тока при однофазном КЗ.
- 13. Расчет тока при двухфазном КЗ на землю.
- 14. Влияние переходного сопротивления на величину тока К3.
- 15. Комплексные схемы замещения.
- 16. Сущность правила эквивалентности прямой последовательности и порядок его применения в расчетах несимметричного КЗ.
- 17. Порядок построения векторных диаграмм токов и напряжений в месте К3 (например, для однофазного К3).
- 18. Порядок расчета несимметричного КЗ по методу расчетных кривых.
- 19. Порядок расчета несимметричного КЗ по методу спрямленных характеристик.
- 20. Приведите сравнение видов К3 по величине остаточного напряжения в месте К3 и токов прямой последовательности.
- 21. Расчет для выбора выключателей по отключающей способности при несимметричном КЗ.
- 22. Порядок расчета фазных токов при разрыве одной фазы.
- 23. Порядок расчета разности фазовых напряжений при разрыве двух фаз.

- 24. Порядок построения векторных диаграмм при однократной продольной несимметрии.
- 25. Комплексные схемы замещения для случаев продольной несимметрии.
- 26. Расчет симметричных составляющих токов КЗ при двойном замыкании на землю.
- 27. Простое замыкание на землю в распределительных сетях.
- 28. Учет изменения параметров проводников распределительной сети.
- 29. Порядок расчета токов КЗ в установках до 1000 В.
- 30. Короткие замыкания в длинных линиях передачи переменного тока.

В ходе самостоятельной работы по освоению дисциплины студенты имеют возможность использовать активные элементы электронных методических материалов, размещённых в электронной библиотеке кафедры (ауд.519-3) и на сайте системы дистанционного обучения (СДО) университета.

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИ-ПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания,		КНИГООБЕСПЕЧЕННОСТЬ			
издательство	издания	Наличие в электронном каталоге ЭБС			
Основная лите	ратура*				
1. Колесник Г.П. Переходные электромагнитные	2003	http://e.lib.vlsu.ru			
процессы в электроэнергетических системах.					
Учеб. пособие. Владимир, ВлГУ, 2003. – 140 с.					
1. Колесник Г.П. Переходные электромеханиче-	2007	http://e.lib.vlsu.ru			
ские процессы в электроэнергетических систе-					
мах. Учеб. пособие. Владимир, ВлГУ, 2007. –					
117 c.					
3. Расчет токов при коротких замыканиях в элек-	2015	http://e.lib.vlsu.ru			
трических системах (Электронный ресурс). Ме-					
тодические указания к курсовой работе. Сост.					
Колесник Г.П. ВлГУ, Владимир, 2015. 81 с.					
4. Анализ переходных режимов электроэнерге-	2015	http://e.lib.vlsu.ru			
тических систем (Электронный ресурс). Мето-					
дические указания к практическим занятиям и					
расчетно-графической работе. Сост. Колесник					
Г.П. ВлГУ, Владимир, 2015. 53 с.					
Дополнительная л					
1. Хрущев Ю.В., Заподовников К.И., Юшкова	2012	http://elibrary.ru			
А.Ю. Электромеханические переходные процес-					
сы. Учебное пособие. Томский политехнический					
университет, 2012, - 154 с.	2010	1,,, // 1*1 1			
2. Колесник Г.П. и др. Переходные электро-	2010	http://e.lib.vlsu.ru			
магнитные процессы при поперечной и про-					
дольной несимметрии в электроэнергетических					
системах. Методические указания к лаборатор-					
ным работам. ВлГУ, Владимир, 2010. 64 с.	2004	1 // 1*1			
3. Шабад В.К. Переходные электромагнитные	2004	http://elibrary.ru			

процессы в электроэнергетических системах.			
Московский открытый университет, 2004. 263 с.			
4. Расчет токов при коротких замыканиях и	2005	http://e.lib.vlsu.ru	
устойчивости систем электроснабжения по прак-		ii ii	
тическим критериям. Методические указания к			
курсовой работе и расчетно-графической работе.			
Сост. Колесник Г.П. ВлГУ, Владимир, 2005. 86 с.			

6.2. Периодические издания: Журнал «Электричество» (Библиотека ВлГУ);

Журнал «Энергия единой сети (сайт www.soyuzpechat.ru);

Журнал «Электрические станции» (Библиотека ВлГУ);

Журнал «Электротехника» (Библиотека ВлГУ);

Журнал «Электрические системы и комплексы» (Библиотека ВлГУ);

6.3. Интернет-ресурсы: http://www.studentlibrary.ru; http://znanium.com/catalog; http://www.studentlibrary.ru/book

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Лекции по дисциплине «Переходные процессы в электроэнергетических системах» читаются в аудиториях кафедры ЭтЭн, оборудованных электронными проекторами (ауд. 517-3; 520-3; 522-3), с использованием комплекта слайдов (Электронное средство обучения по дисциплине «Переходные процессы в электроэнергетических системах» / Комплект из 519 слайдов. Составитель Г.П. Колесник. – Владимир: ВлГУ).

Практические занятия проводятся в аудиториях кафедры ЭтЭн, оборудованных электронными проекторами (ауд. 517-3; 520-3; 522-3), и компьютерном классе кафедры ЭтЭн (лаб. 519-3; 16 компьютеров) с использованием лицензионного программного обеспечения.

- 7.2. Средства вычислительной техники и демонстрационное оборудование:
- 1. Необходимые расчеты при решении практических задач проводятся в компьютерном классе кафедры ЭтЭн (лаб. 519-3; 16 компьютеров) с использованием лицензионного программного обеспечения.

Рабочую программу составил Колесник Г.П., профессор Рецензент технический директор ООО «Энергетика Технологий», Хромов Н.С. инженер Программа рассмотрена и одобрена на заседании кафедры электротехники и электроэнергети-Протокол № / от 30.08. 20 Ггода Заведующий кафедрой Бадалян Н.П. Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления Протокол № 4 от 30.08.202/ года Председатель комиссии Бадалян Н.П., зав.кафедрой

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ

образовательной программы направления подготовки

13.03.02 «Электроэнергетика и электротехника»

направленность (профиль) подготовки

Электроснабжение (бакалавриат)

образовательной программы направления подготовки код и наименование $O\Pi$, направленность: наименование (указать уровень подготовки)

Номер	Внесены изменения в части/разделы	Исполнитель	Основание
изменения	рабочей программы	ФИО	(номер и дата протокола
			заседания кафедры)
1			
2			
Заведующи	й кафедрой/		
	Подпись ФИО		