Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Владимирский государственный университет

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт архитектуры, строительства и энергетики

УТВЕРЖДАЮ: Директор института

роите С.Н.Авдеев

«<u>10</u> » 03 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Химия

направление подготовки / специальность

13.03.02 Электроэнергетика и электротехника

направленность (профиль) подготовки

Электроснабжение

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Химия» являются:

- ознакомление студентов с концептуальными основами химии как современной комплексной науки;
- формирование представлений научного мировоззрения на основе системных знаний о составе, строении и свойствах химических соединений;
- формирование и развитие у студента химического мышления, способности применять химический инструментарий при изучении профессиональных дисциплин;
- формирование навыков применения знаний в области химии при решении профессиональных задач.

Задачи дисциплины:

- приобретение студентами устойчивых знаний по вопросам учения о строении вещества, термодинамики и кинетики химических реакций, теории обменных и окислительно-восстановительных процессов;
- формирование навыков применения теоретических знаний в ходе выполнения лабораторных работ и при решении расчетных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Химия» относится к обязательной части ОПОП ВО. Дисциплина опирается на знания предметов основной образовательной программы среднего (полного) общего образования по предметам : химия, физика, математика.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции	Планируемые результаты о соответствии с индикатором	Наименование оценочного средства	
(код, содержание	Индикатор достижения	Результаты обучения по	
компетенции)	компетенции	дисциплине	
	(код, содержание		
	индикатора)		
ОПК-2. Способен	ОПК-2.1. Знает	Знать базовые принципы	Вопросы, тестовые
применять	математический аппарат	системного анализа в химии,	вопросы, контрольная
соответствующий	аналитической геометрии,	принципы научного	работа
физико-	линейной алгебры,	наблюдения химических	
математический	дифференциального и	явлений и методы измерения	
аппарат, методы	интегрального исчисления	физико-химических величин.	
анализа и	функции одной переменной.	Уметь применять	
моделирования,	Умеет: ОПК-2.2. Применять	полученные знания в	
теоретического и	аппарат теории функции	области химии для освоения	
математический	нескольких переменных,	общепрофессиональных	
экспериментального	теории функций	дисциплин, анализировать,	
исследования при	комплексного переменного,	представлять и оформлять	
решении	теории рядов, теории	результаты химического	
профессиональных	дифференциальных	эксперимента.	
задач	уравнений;	Владеть навыками	
	ОПК-2.3. Применять	применения законов химии	
	математический аппарат	при постановке и реализации	
	теории вероятностей и	экспериментальных	
	математической статистики;	исследований.	
	ОПК-2.4. Применять		
	математический аппарат		

численных методов. Владеет: ОПК-2.5. За	
физических явлений:	
механики, термоди	
электричества и магн	
ОПК-2.6. Элементарн	
основами оптики, ква	
механики и атомной (ризики.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

Тематический план форма обучения – очная

			a	Контактная работа обучающихся с педагогическим работником			Я	Формы текущего контроля успеваемости,
№ п/п	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	форма промежуточной аттестации (по семестрам)
1	Раздел 1.Основные понятия и законы химии Тема 1 Основные понятия химии. Тема 2 Основные законы химии.	1	1-3	2		4	4	
2	Раздел 2 Строение атома и периодический закон. Химическая связь. Тема 1. Квантово-механическая модель строения атома. Тема 2.Периодический закон и периодическая система элементов Д.И.Менделеева Тема 3.Химическая связь и строение молекул	1	4-6	4			8	1-й рейтинг- контроль
3	Раздел 3. Основы химической термодинамики и кинетики. Тема 1. Энергетика и направление химических реакций. Тема 2. Химическое равновесие. Тема 3. Основы химической кинетики.	1	7-12	4		4	8	

4	Раздел 4. Растворы. Окислительновосстановительные процессы. Тема 1. Способы выражения концентрации растворов. Общие свойства растворов. Тема 2. Равновесия в водных растворах электролитов. Тема 3. Окислительновосстановительные реакции.	1	13-15	4	4	8	2-й рейтинг- контроль
5	Раздел 5. Электрохимические системы Тема 1. Гальванические элементы Тема 2. Коррозия металлов Тема 3. Электролиз	1	16-18	4	6	8	3-й рейтинг- контроль
Всего за 1 семестр:				18	18	36	Зачет
Нали	Наличие в дисциплине КП/КР						
Итого по дисциплине				18	18	36	Зачет

Содержание лекционных занятий по дисциплине

Раздел 1. Основные понятия и законы химии

Тема 1 Основные понятия химии.

Предмет химии. Вещество как химическое понятие. Основные положения атомномолекулярного учения. Состав атома. Химический элемент. Классы и номенклатура химических соединений. Моль – единица количества вещества.

Тема 2 Основные законы химии.

Закон постоянства состава. Закон кратных отношений. Закон Авогадро. Закон сохранения массы веществ. Закон эквивалентов. Современное определение понятия «химический эквивалент». Расчет молярной массы эквивалента простых и сложных веществ. Математическое выражение закона эквивалентов и его применение в химических расчетах.

Раздел 2 Строение атома и периодический закон Д.И.Менделеева. Химическая связь.

Тема 1 Квантово-механическая модель строения атома.

Квантово-механическая модель строения атома. Волновая функция и волновое уравнение Шредингера. Понятие орбитали. Квантовые числа. Структура электронных оболочек атома: квантовые уровни и подуровни, правила заполнения орбиталей в многоэлектронных атомах.

Тема 2. Периодический закон и Периодическая система элементов Д.И.Менделеева. Современная формулировка Периодического закона. Структура периодической системы Д.И.Менделеева. Электронные семейства элементов. Изменение свойств атомов и соединений элементов в периодах и группах.

Тема 3 Химическая связь и строение молекул.

Межатомные и межмолекулярные взаимодействия. Виды химической связи. Ковалентная химическая связь. Метод валентных связей. Обменный и донорно-акцепторный механизм образования ковалентной связи. Делокализованная химическая связь. Свойства ковалентной связи. Ионная химическая связь. Металлическая связь. Свойства ионной и металлической связи. Водородная химическая связь. Связь физических свойств веществ с видом химической связи. Химическая связь в комплексных соединениях.

Раздел 3 Основы химической термодинамики и кинетики.

Тема 1. Энергетика и направление химических реакций

Внутренняя энергия и энтальпия системы. Первый закон термодинамики. Тепловые эффекты химических реакций. Закон Гесса и следствия из него. Теплота (энтальпия) образования химических соединений. Энтропия. Направление химических процессов в изолированных системах. Второй закон термодинамики. Энергия Гиббса. Направление и предел самопроизвольного течения химических реакций.

Тема 2. Химическое равновесие.

Обратимые и необратимые реакции. Химическое равновесие. Константа равновесия. Расчет состава равновесных смесей. Смещение равновесия. Принцип Ле Шателье.

Тема 3. Основы химической кинетики.

Скорость химической реакции. Факторы, влияющие на скорость реакции. Основной закон химической кинетики. Кинетические уравнения. Элементарные и сложные реакции. Порядок и молекулярность реакции. Зависимость скорости реакции от температуры. Закон Вант-Гоффа. Уравнение Аррениуса. Энергия активации. Катализаторы и ингибиторы.

Раздел 4. Растворы. Окислительно-восстановительные процессы.

Тема 1. Способы выражения концентрации растворов. Общие свойства растворов.

Растворимость веществ. Способы выражения концентрации растворов: мольная доля, массовая доля, молярная концентрация, молярная концентрация эквивалента. Коллигативные свойства растворов. Закон Рауля. Эбулиоскопия. Криоскопия.

Тема 2. Равновесия в водных растворах электролитов.

Теория электролитической диссоциации. Сильные и слабые электролиты. Степень диссоциации. Константа диссоциации. Закон разбавления Оствальда. Малорастворимые электролиты. Произведение растворимости. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Гидролиз солей. Буферные растворы.

Тема 3. Окислительно-восстановительные реакции

Степени окисления атомов элементов. Процессы окисления-восстановления. Важнейшие окислители и восстановители. Составление уравнений окислительно-восстановительных реакций.

Раздел 5 Электрохимические системы

Тема 1. Гальванические элементы.

Электродные потенциалы. Металлические электроды. Газовые электроды. Водородный электрод. Стандартные электродные потенциалы. Расчет и измерение потенциалов электродов и ЭДС гальванических элементов.

Тема 2. Коррозия металлов.

Типы коррозионных разрушений. Химическая и электрохимическая коррозия. Способы защиты металлов от коррозии.

Тема 3. Электролиз.

Сущность электролиза. Электролиз растворов и расплавленных сред. Законы Фарадея. Применение электролиза.

Содержание лабораторных занятий по дисциплине

Раздел 1. Основные понятия и законы химии

Тема 1 Основные понятия химии.

Лабораторная работа «Химические свойства классов неорганических соединений»

Тема 2 Основные законы химии

Лабораторная работа «Определение эквивалентной массы простых и сложных веществ»

Раздел 3. Основы химической термодинамики и кинетики

Тема 1 Энергетика и направление химических реакций

Лабораторная работа «Энергетика химических реакций»

Тема 2 Химическое равновесие

Лабораторная работа «Химическое равновесие»

Раздел 4. Растворы. Окислительно-восстановительные процессы

Тема 1 Способы выражения концентрации растворов

Лабораторная работа «Получение растворов различных концентраций»

Тема 2 Равновесии в водных растворах электролитах

Лабораторная работа «Определение рН растворов»

Раздел 5 Электрохимические системы

Тема 1. Гальванические элементы.

Лабораторная работа «Гальванические элементы"

Тема 2. Коррозия металлов.

Лабораторная работа «Коррозия металлов»

Тема 3. Электролиз

Лабораторная работа «Электролиз»

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Рейтинг-контроль №1

- 1. Приведите формулировку закона Авогадро.
- 2. Вычислите молярную массу эквивалента металла, если 0,493 г хлорида этого металла после обработки нитратом серебра образовали 0,861 г хлорида серебра.
- 3. Перечислите квантовые числа, характеризующие атомную орбиталь. Какие характеристики орбитали определяет каждое из них?
- 4. Назовите элементы, у которых в основном состоянии атома валентные энергетические уровни имеют следующие электронные конфигурации:

приведите значения квантовых чисел всех электронов для указанных конфигураций.

- 5. Напишите электронную формулу атома хрома в порядке заполнения орбиталей, приведите электронно-графическую формулу внешнего и предвнешнего электронных слоев.
- 6. Расположите элементы P, S, Cl, As в ряд по возрастанию электроотрицательности атомов.
- 7. Расположите формулы оксидов MgO,SiO₂, SrO, Al₂O₃ в порядке возрастания их основных свойств.
- 8. Расположите формулы водородных соединений элементов VIIA группы в соответствии с увеличением энергии химической связи между атомами.
- 9. Укажите степень окисления и валентность азота в соединении NH₄Cl.
- 10. Укажите тип химической связи в молекуле сероводорода.
- 11. Между молекулами каких из перечисленных веществ (H₂, NH₃, H₂O, HI) образуются водородные связи ?
- 12. Какими физическими свойствами характеризуются вещества молекулярного строения?

Рейтинг-контроль №2

- 1. Приведите определение стандартной энтальпии образования вещества.
- 2. Рассчитайте тепловой эффект реакции по известным тепловым эффектам других реакций

Реакция	ΔΗ кДж/моль		
$C(\Gamma paфит) + H_2O(\Gamma) = CO(\Gamma) + H_2(\Gamma)$?		
$C(\Gamma paфит) + O_2(\Gamma) = CO_2(\Gamma)$	405,8		
$CO(\Gamma) + \frac{1}{2}O_2(\Gamma) = CO_2(\Gamma)$	284,5		
$H_2(\Gamma) + \frac{1}{2} O_2(\Gamma) = H_2O(\Gamma)$	246,8		

- 3. Какие факторы будут способствовать увеличению скорости реакции $4\text{FeS}_2 + 11\text{O}_2 = 2\text{Fe}_2\text{O}_3 + 8$ SO₂?
- 4. В какую сторону сместится равновесие в реакции $3H_2+N_2 \leftrightarrow 2NH_3+Q$
- а) при повышении давления; б) при увеличении температуры; в) при удалении аммиака из реакционной смеси?
- 5. Вычислите молярную концентрацию эквивалента 20%-ного раствора серной кислоты (плотность 1,14 г/мл).
- 7. Рассчитайте pH 0,01 M раствора CH₃COOH ($K_{дисс.} = 1,74 \cdot 10^{-5}$)
- 7. Определите массу NaOH, использованного для приготовления 200 мл раствора гидроксида натрия, если pH раствора равен 10.
- 8. Составьте ионное и молекулярное уравнение реакции гидролиза CuSO₄. Укажите реакцию среды раствора.
- 9. Приведите формулы соединений, проявляющих в ОВР как окислительные, так и восстановительные свойства.
- 10. Составьте, используя метод электронного баланса уравнение реакции $FeO + HNO_3$ (конц.) = ...

Укажите окислитель и восстановитель.

Рейтинг-контроль №3

- 1. Вычислить э.д.с. и написать схему гальванического элемента, составленного из электродов:
- 1) Pt,H₂ $| 0.01 \text{H} \text{ HNO}_2 | \alpha = 21\%$
- 2) $Zn \mid 0.2M$ $ZnCl_2$ f = 0.5

Полученные результаты использовать при ответе на 2-й и 3-й вопросы.

- 2. Какая реакция будет протекать на аноде при замыкании внешней цепи гальванического элемента, указанного в 1-м вопросе?
- 3. Какая реакция будет протекать на катоде при замыкании внешней цепи гальванического элемента, указанного в 1-м вопросе?
- 4. Как изменяется рН раствора в прикатодном пространстве при электролизе водного раствора хлорида калия?
- 5. Какой процесс протекает на графитовом аноде при электролизе водного раствора КОН?
- 6. Вычислить электрохимический эквивалент хлора в л/(А* час).
- 7. Через раствор нитрата двухвалентного металла пропустили ток силой 2A в течении 40 мин., при этом выделилось 4,992 *г* металла. Назвать соль.
- 8. Железные изделия при никелировании покрывают сначала медью, а потом никелем. Какой процесс протекает на аноде при повреждении этого двухслойного покрытия в 0,1 н. растворе гидроксида натрия?

$$E_{Fe} = -0.161 \text{ B}; \quad E_{Cu} = +0.027 \text{ B}; E_{Ni} = -0.128 \text{ B}.$$

9. В 0,1 н. растворе соляной кислоты опущены по отдельности медная, серебряная и золотая проволоки. Какая проволока будет корродировать с водородной деполяризацией?

$$E_{Cu} = +0.154 \text{ B}; \quad E_{Au} = +0.348 \text{ B}; \quad E_{Ag} = +0.277 \text{ B}; \quad E_{H2} = -0.059 \text{ B}$$

10. В какой среде при нарушении оловянного покрытия железо будет защищено более надежно:

0,1 н. HCl; 0,1 н. NaCl; 0,1 н. NaOH?

5.2. Промежуточная аттестация по итогам освоения дисциплины

Контрольные вопросы для подготовки к зачету

- 1. Основные понятия химии: атом, химический элемент, нуклиды, массовое число нуклида, изотопы, относительная атомная масса элемента, Вещества молекулярного и немолекулярного строения.
- 2. Единица количества вещества моль. Молярная масса, молярный объем.
- 3. Стехиометрические законы: закон сохранения массы веществ, закон постоянства состава, закон эквивалентов, закон Авогадро.
- 4. Химический эквивалент, фактор эквивалентности, молярная масса эквивалента, эквивалентный объем, количество эквивалентов, математическое выражение закона эквивалентов.
- 5. Способы выражения концентрации растворов (мольная доля, массовая доля, молярная концентрация, эквивалентная концентрация растворенного вещества).

- 6. Окислительно-восстановительные реакции. Окислители и восстановители. Составление уравнений OBP методом электронного баланса.
- 7. Строение атома. Атомные орбитали. Квантовые числа. Симметрия орбиталей. Энергетические уровни и подуровни. Число подуровней в энергетическом уровне. Число орбиталей в подуровне.
- 8. Распределение электронов по орбиталям в многоэлектронном атоме: принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Гунда.
- 9. Электронная структура атомов и Периодическая система Менделеева, электронные семейства, электронные аналоги. Электронные формулы атомов.
- 10. Периодический закон. Структура Периодической системы: периоды, группы и подгруппы. Металлы и неметаллы в Периодической системе. Изменение в периодах и группах свойств элементов (радиусов атомов, электроотрицательности, сродства к электрону), окислительных и восстановительных свойств простых веществ.
- 11. Межатомные и межмолекулярные взаимодействия, виды химической связи: ионная, ковалентная (полярная и неполярная), металлическая, водородная.
- 12. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Кратные связи. Делокализованная ковалентная связь. Энергия и длина ковалентных связей.
- 13. Свойства ковалентной связи: поляризуемость, направленность, насыщаемость.
- 14. Гибридизация орбиталей. Геометрия молекул с различным типом гибридизации центрального атома.
- 15. Ионнная связь. Степень ионности связи. Свойства ионной связи. Свойства веществ с ионной связью.
- 16. Металлическая связь. Свойства металлической связи. Свойства веществ с металлической связью.
- 17. Водородные связи, влияние водородной связи на физические свойства веществ.
- 18. Ван-дер-Ваальсовы силы: диполь-дипольное, индукционное и дисперсионное взаимодействия.
- 19. Комплексные соединения. Комплексообразователи и лиганды. Химическая связь в комплексах. Номенклатура комплексных соединений.
- 20. Общие свойства растворов. Закон Рауля. Эбулиоскопия. Криоскопия. Осмотическое давление.
- 21. Электролиты. Электролитическая диссоциация. Степень диссоциации. Факторы, влияющие на степень диссоциации.
- 22. Сильные электролиты. Активность ионов. Ионная сила растворов. Коэффициент активности.
- 23. Слабые электролиты. Константа диссоциации. Закон разбавления Оствальда. Ступенчатая диссоциация слабых электролитов.
- 24. Кислотно-основные равновесия в водных растворах. Ионное произведение воды. Водородный и гидроксильный показатели. Кислотно-основные индикаторы.
- 25. Расчет рН растворов сильных кислот и оснований. Расчет рН растворов слабых кислот и оснований.
- 26. Гидролиз солей. Обратимый гидролиз, изменение рН в зависимости от состава соли.

- 27. Константа гидролиза, ее связь с константами диссоциации слабых электролитов. Необратимый гидролиз.
- 28. Основные понятия химической термодинамики: термодинамическая система, типы термодинамических систем, внутренняя энергия системы. Термодинамический процесс , виды процессов(изобарный, изохорный, изотермический.
- 29. Первый закон термодинамики. Энтальпия. Изменение энтальпии системы при экзотермических и эндотермических реакциях. Термохимические уравнения.
- 30. Закон Гесса и следствия из него. Энтальпии образования веществ, расчет энтальпии реакции.
- 31. Энтропия системы. Второй закон термодинамики.
- 32. Свободная энергия Гиббса. Критерий самопроизвольности химической реакции. Определение по термодинамическим данным возможности протекания химической реакции в прямом и обратном направлении.
- 33. Химическое равновесие: термодинамический критерий, признаки химического равновесия. Закон действующих масс для химического равновесия. Константа равновесия.
- 34. Связь константы равновесия с изменением стандартной энергии Гиббса. Зависимость константы равновесия от температуры.
- 35. Смещение химического равновесия. Принцип Ле-Шателье. Влияние температуры, давления, концентраций веществ на состояние равновесия.
- 36. Скорость химической реакции. Факторы, влияющие на скорость реакции. Закон действующих масс для скорости химической реакции.
- 37. Зависимость скорости химической реакции от температуры. Закон Вант-Гоффа. Уравнение Аррениуса. Энергия активации. Катализаторы и ингибиторы.
- 38. Электрохимические процессы в гальванических элементах. Схемы гальванических элементов. Электродные реакции. Электродные потенциалы. ЭДС гальванического элемента.
- 39. Водородная шкала электродных потенциалов. Стандартные электродные потенциалы. Ряд напряжений металлов.
- 40. Зависимость электродного потенциала от концентрации ионов в растворе. Уравнение Нернста. Расчет электродных потенциалов металлических электродов и водородного электрода.
- 41. Электролиз. Электродные реакции на аноде и катоде. Последовательность восстановления окислителей и окисления восстановителей. Электродные реакции при электролизе расплавов электролитов.
- 42. Электролиз водных растворов электролитов с инертными электродами: реакции на катоде и аноде в зависимости от состава электролита. Изменение состава раствора. Электролиз с растворимым анодом.
- 43. Расчет массы продуктов электродных реакций на основании объединенного закона Фарадея.
- 44. Коррозия металлов. Химическая коррозия. Электрохимическая коррозия: анодные и катодные процессы, зависимость типа деполяризации от соотношения электродных потенциалов металла и окислителей. Методы защиты от коррозии.

5.3. Самостоятельная работа обучающегося.

Контрольные	вопросы	для	самостоятельного изучения:	
-------------	---------	-----	----------------------------	--

Тема «Номенклатура неорганических соединений»

1. Формула кислоты, нормальной соли и амфотерного гидроксида соответственно:

a) NH ₃ , CaSO ₄ , Al(OH) ₃ 6) HBr, Al ₂ (SO ₄) ₃ , Zn(OH) ₂
B) HNO ₃ , NH ₄ Cl, Ba(OH) ₂ Γ) H ₂ SO ₄ , KHCO ₃ , Cr(OH) ₃
2. Валентность кислотообразующего элемента в марганцевой кислоте равна:
a) VII б) VI в) IV г) III
3. Хлорноватой кислоте отвечает формула:
a) HClO б) HClO ₂ в) HClO ₃ г) HClO ₄
4. Название химического вещества, имеющего формулу СаНРО4
а) фосфат кальция б) гидрофосфат кальция в) гидроксофосфат кальция г) метафосфат кальция
5. Число атомов в молекуле хромовой кислоты равно:
a) 4 б) 5 в) 6 г) 7
Тема «Растворы электролитов»
1. Могут сосуществовать в растворе пары веществ:
a) NaOH, Ca(OH) ₂ б) LiOH, CO ₂ в) SO ₂ , Ba(OH) ₂ г) HF, NO
2. Масса воды (в граммах), которую следует выпарить из 430мл 4%-ного раствора (плотность
1,047г/мл) сульфида натрия, чтобы получить 12%-ный раствор, равна
a) 50 б) 250 в) 300 г) 400
3. Растворимость дихромата калия $K_2Cr_2O_7$ равна $12,5 \Gamma/100 \Gamma$ воды при $20 ^{\circ}C$. Установите,
какова будет масса насыщенного раствора, если для приготовления его использовано 400г
воды
а) 420г б) 500г в) 400г г) 450г
4. Смешали 1л 1М раствора и 1л 3М раствора серной кислоты. Определите молярную
концентрацию серной кислоты в конечном растворе
а) 1,5моль/л б) 2моль/л в) 2,5моль/л г) 1,75моль/л
5. Хлорид-ионы образуются при растворении в воде вещества, имеющего формулу
a) Cl ₂ δ) MgCl ₂ B) AgCl Γ) CCl ₄
Тема «Гальванические элементы»
1. Вычислить потенциал водородного электрона в растворе уксусной кислоты с концентрацией
$0,1$ моль/л. Степень диссоциации для заданной концентрации кислоты α =0,013.
a). – 0,168 B; б). – 0,153 B; в). 0,168 B; г). – 0,020 В.

3. Вычислить потенциалы медных и никелевых электродов, погреженных в растворы CuSO₄ и NiSO₄ с концентрациями:

б). 0,25 моль/л;

в). $4,17\cdot10^{-2}$ моль/л;

г). $6.91 \cdot 10^{-2}$ моль/л.

а). $3.46 \cdot 10^{-2}$ моль/л;

2. Магниевую пластину поместили в раствор соли этого металла. Измеренный потенциал Mg оказался равным -2,40В. Вычислить активную концентрацию ионов Mg в растворе в моль/л.

 $CuSO_4$ (коэффициент активности ионов $\gamma = 0.16$) и $C_m = 0.1$ моль/л;

NiSO₄ (коэффициент активности ионов $\gamma = 0.15$) и $C_m = 0.1$ моль/л.

- a). 0.234 B: 0.36 B:
- б). 0,234 B; 0,3 B; в). 0,234 B; - 0,3 B;
- г).0,286 B; -0,3 B.

4. Вычислить ЭДС гальванического элемента:

Pb / Pb (NO₃)₂,
$$C_m = 0$$
, 01 моль/л, $\gamma = 0.7$ // AgNO₃, $C_m = 1$ моль/л, $\gamma = 0.8$ / Ag.

Составить уравнения реакций, протекающих на аноде и катоде работающего элемента.

- a) 0,982 B;
- б) 1,04 В;
- в) 0,6 B;
- г) 0,54 B.
- 5. Вычислить ЭДС следующей гальванической цепи

Ag / 0,01M AgNO₃ // 0,1M AgNO₃ / Ag

$$f = 0.9$$

$$f = 0.72$$

a) -0.059 B;

- б) 0 B;
- в) 0,029 B; г) 0,059 В.

Тема «Электролиз»

- 1. При электролизе раствора хлорида калия образуются:
 - а) калий, водород, хлор, кислород;

- б) гидроксид калия, водород, хлор;
- в) гидроксид калия, соляная кислота, кислород;
- г) калий, водород, оксид хлора.
- 2) Какой процесс происходит на медном аноде при электролизе раствора NaBr:
 - а) окисление воды;
 - б) окисление ионов брома;
 - в) окисление меди;
 - г) восстановление меди.
- 3) При электролизе водного раствора $SnCl_2$ на аноде выделилось 4,48 л хлора (н.у.). Найти массу выделившегося на катоде олова:
 - а) 23,7 г б) 11,85 г
- в) 5,925 г
- г) 47,4 г
- 4) Веществом, при электролизе раствора которого образуется кислород, является:
- б) CuSO₄;
- в) PbCl₂;
- г) SnBr₂.
- 5) В результате электролиза водного раствора НF водородный показатель:
 - а) увеличился; б) уменьшился;
- в) остался без изменений.
- 6) Если в раствор или расплав электролита погрузить электроды и пропустить электрический ток, то:
 - а) катионы будут двигаться к катоду и принимать от него электроны;
 - б) катионы будут двигаться к аноду и отдавать ему электроны;
 - в) катионы будут двигаться к катоду и отдавать ему электроны;
 - г) катионы будут двигаться к аноду и принимать от него электроны.

 (ΦOM) Фонд оценочных материалов ДЛЯ проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид	Год	КНИГООБЕСПЕЧЕННОСТЬ
издания, издательство	издания	Наличие в электронном каталоге ЭБС
Основная л	итература	
1. Чернова О.Б, Кузурман В.А., Диденко С.В. Учебное пособие по химии для студентов нехимических направлений ч.І.— Владимир: ВлГУ	2011	http://e.lib.vlsu.ru/handle/123456789/6185
2. Кузурман В.А., Чернова О.Б, Диденко С.В. Учебное пособие по химии для студентов нехимических направлений ч. II. – Владимир: ВлГУ	2012	http://e.lib.vlsu.ru/handle/123456789/2377
3. Кузурман В.А., Диденко С.В., Задорожный И.В. Практикум по химии для студентов нехимических направлений. — Владимир: ВлГУ	2015	http://e.lib.vlsu.ru/handle/123456789/4255
4. Орлин Н.А., Кузурман В.А., Архипова Н.А. Практикум для самостоятельной работы по химии для студентов нехимических направлений. – Владимир: ВлГУ	2005	http://e.lib.vlsu.ru/handle/123456789/576
Дополнительна	я литератур	oa e
1. Коровин Н.В. Общая химия: учебник для вузов по техническим направлениям и специальностям. — Москва: Высшая школа	2000 2003 2004	11 экз 14 экз 4 экз
	2005 2007 2008	11 экз 15 экз 1 экз
2. Глинка Н. Л. Общая химия : учебное пособие для вузов . — Ленинград : Химия	1984	49 экз

6.2. Периодические издания

- 1. Российский Химический Журнал (Журнал Российского химического общества им.Д.И.Менделеева)
 - 2. Журнал "Успехи химии"
 - 3. Журнал «Известия Академии наук. Серия химическая»

6.3. Интернет-ресурсы

- 1. http://www.scirus.com
- 2. http://www.iupac.org
- 3. http://www.anchem.ru
- 4. http://chemteg.ru/lib/book
- 5. http://www.elsevier.com
- 6. http://www.uspkhim.ru
- 7. http://www.strf.ru/database.aspx
- 8. http://www.chem.msu.su
- 9. http://chemistry.narod.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного и практического типов, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Рабочую программу составил доцент кафедры химии, к.т.н	Kepypeacen	Кузурман В.А.
Рецензент Зав. кафедрой проф. образования ВИРО к.пед.н.,	Ulef	Шабалина Е.А.
Программа рассмотрена и одобрена на заседан Протокол № от 23.06. 2021 ода Заведующий кафедрой химии	ии кафедры химии	Смирнова Н.Н.
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комисси электротехника Протокол № 08 от 1003.20 Дугода Председатель комиссии		Электроэнергетика и

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины "Химия"

образовательной программы направления подготовки 13.03.02 "Электроэнергетика и электротехника", направленность: электроснабжение

Номер	Внесены изменен	ния в части/разделы	Исполнитель	Основание
изменения	рабочей	программы	ФИО	(номер и дата протокола
				заседания кафедры)
1				
2				
Заведующий	і кафедрой химии			
		Подпись	ФИО	