### Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

YTBER KITAL

Проректор

по образовательной деятельности

2019 г.

Танфилов

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«МАТЕМАТИЧЕСКИЕ ЗАДАЧИ ЭЛЕКТРОЭНЕРГЕТИКИ»

Направление подготовки: 13.03.02 «Электроэнергетика и электротехника»

Профиль/программа подготовки: «Электроснабжение»

Уровень высшего образования: бакалавриат

Форма обучения: очная

| Семестр | Трудоемкость<br>зач. ед./ час. | Лекции,<br>час. | Практич. за-<br>нятия,<br>час. | Лаборат.<br>работы,<br>час. | СРС,<br>час. | Форма промежуточной аттестации (экзамен/зачет/зачет с оценкой) |
|---------|--------------------------------|-----------------|--------------------------------|-----------------------------|--------------|----------------------------------------------------------------|
| 4       | 4/144                          | 36              |                                | 36                          | 36           | Экзамен (36)                                                   |
| Итого   | 4/144                          | 36              |                                | 36                          | 36           | Экзамен (36)                                                   |

#### 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины. Овладеть методами математического вычислительного моделирования для определения параметров свойств объектов электротехники и электроэнергетики, а также для расчёта установившихся режимов объектов электротехники и электроэнергетики, применяя вычислительные методы обработки числовых массивов.

Задачи: 1) изучить методы анализа и обработки данных для проектирования объектов профессиональной деятельности; 2) изучить методы анализа режимов функционирования объектов профессиональной деятельности для их контроля и последующего определения неисправностей в работе объектов электроэнергетики.

#### 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Математические задачи электроэнергетики» относится к дисциплинам базовой части учебного плана бакалавриата, формируемой участниками образовательных отношений, по профилю «Электроснабжение» (Б1.В.04).

Пререквизиты дисциплины: «Математика», «Информатика», «Инструментальные средства математического программного обеспечения в электроэнергетике», «Вычислительные методы в электротехнических расчётах», «Теоретические основы электротехники» (основы теории цепей).

#### 3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

| Код формируемых компетенций                                                                                                                                                                                      | Уровень освоения<br>компетенции | Планируемые результаты обучения по дисциплине характеризующие этапы формирования компетенций (показатели освоения компетенции)                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-1. Способен вы-<br>полнять сбор и анализ<br>данных для проектиро-<br>вания объектов про-<br>фессиональной дея-<br>тельности, а также со-<br>ставлять конкуренто-<br>способные варианты<br>технических решений | частичное                       | Знать: методы анализа и обработки данных для проектирования объектов профессиональной деятельности; Уметь: применять методы анализа и обработки данных для проектирования объектов профессиональной деятельности; Владеть: методами анализа и обработки данных для проектирования объектов профессиональной деятельности.                                                                                                                                                                                     |
| ПК-7. Способен контролировать режимы функционирования объектов профессиональной деятельности, определять неисправности в их работе                                                                               | частичное                       | Знать: методы анализа режимов функционирования объектов профессиональной деятельности для их контроля и последующего определения неисправностей в работе объектов электроэнергетики; Уметь: анализировать режимы функционирования объектов профессиональной деятельности математическими и вычислительными методами; Владеть: методами анализа режимов функционирования объектов профессиональной деятельности для их контроля и последующего определения неисправностей в работе объектов электроэнергетики. |

**4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ** Трудоемкость дисциплины составляет 4 зачетные единицы, 144 часов.

|          |                                                                                                                                                                                                            | Семестр | Неделя семестра | Виды учебной ра-<br>боты, включая са-<br>мостоятельную ра-<br>боту студентов<br>и трудоемкость (в<br>часах) |                      |                     | ca-<br>pa-<br>B | Объем учебной<br>работы,                                   | Формы<br>текущего кон-                                                               |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| №<br>п/п | Наименование тем и/или разделов/тем<br>дисциплины                                                                                                                                                          |         |                 | Лекции                                                                                                      | Практические занятия | Лабораторные работы | CPC             | с применением<br>интерактивных<br>методов<br>(в часах / %) | троля успеваемо-<br>сти,<br>форма промежу-<br>точной<br>аттестации<br>(по семестрам) |
| 1        | Представление однофазных электрических нагрузок в синусоидальном режиме импедансами или адмиттансами. Алгоритмическая реализация в МАТLAB.                                                                 | 4       | 1               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 2        | Разложение синусоидального режима работы трёхфазной цепи на симметричные составляющие при случайном задании её параметров. Алгоритмическая реализация в МАТLАВ.                                            | 4       | 2               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 3        | Вычислительные технологии разложения несинусоидальных периодических процессов на гармонические составляющие.                                                                                               | 4       | 3               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 4        | Фурье-анализ несинусоидальных периодических режимов линейных однофазных электрических цепей. Алгоритмическая реализация в МАТLAB.                                                                          | 4       | 4               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 5        | Фурье-анализ несинусоидальных периодических режимов линейных трёхфазных электрических цепей. Выделение симметричных составляющих в несинусоидальном режиме. Алгоритмическая реализация в МАТLАВ.           | 4       | 5               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 6        | Энергетический анализ заданного не-<br>синусоидального периодического ре-<br>жима однофазной электрической<br>нагрузки. Алгоритмическая реализа-<br>ция в MATLAB.                                          | 4       | 6               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      | Рейтинг-контроль<br>№ 1                                                              |
| 7        | Расчёт координат центра нагрузки потребителей на генплане предприятия.<br>Алгоритмическая реализация в<br>MATLAB.                                                                                          | 4       | 7               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 8        | Моделирование режимов работы од-<br>нофазных диодных выпрямителей без<br>учёта динамических элементов и па-<br>раметров. Определение их энергетиче-<br>ских показателей по результатам мо-<br>делирования. | 4       | 8               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 9        | Моделирование режимов работы трёхфазных диодных выпрямителей без учёта динамических элементов и параметров. Определение их энергетических показателей по результатам моделирования.                        | 4       | 9               | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |
| 10       | Моделирование компенсации реак-                                                                                                                                                                            | 4       | 10              | 2                                                                                                           |                      | 2                   | 2               | 1/25%                                                      |                                                                                      |

| ки кривых намагничивания магнитомягких материалов. Пересчёт этих кривых в вебер- амперные характери- стики ветвей магнитных цепей.  12 Вычислительные технологии анализа статических режимов педитейных не- разветвлённых магнитных цепей.  13 Вычислительные технологии анализа статических режимов простейших нелинейных размагничивания магнитных цепей.  14 Вычислительные технологии обработки кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнитной цепи.  15 Вычислительная технология расчёта параметров линейной схемы замещения однофазного трансформатора.  16 Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.  17 Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  18 Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  18 Воделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  2 2 2 1/25%  2 2 1/25%  2 2 1/25%  2 2 1/25%  2 2 1/25%  2 2 1/25%  2 2 1/25%  2 3 1/25%  2 3 1/25%  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |    | тивной мощности конденсаторными установками (КУ) в распределительных сетях низкого напряжения. Определение потерь мощности в КУ и в подводящих линиях. |   |    |    |    |    |        |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|----|----|--------|-------------------------|
| татических режимов нелинейных неразветвлённых магнитных цепей  Вычислительные технологии анализа статических режимов простейших нелинейных разветвлённых магнитных цепей.  14 Вычислительные технологии обработки кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнита ветвыо магнитной цепи.  15 Вычислительная технология расчёта параметров линейной схемы замещения однофазного трансформатора по линейной схемы замещения однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.  17 Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования на напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  18 Моделирование регулирования на напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  2 2 2 1/25%  2 2 1/25%  2 2 1/25%  Всего за 4 семестр:  36 36 36 18/25%  Экзамен (36)                                                                                                                                                                                                                                                                                                                                                           | 11 | ки кривых намагничивания магнито-<br>мягких материалов. Пересчёт этих<br>кривых в вебер- амперные характери-                                           | 4 | 11 | 2  | 2  | 2  | 1/25%  |                         |
| татических режимов простейших нелинейных разветвлённых магнитных цепей.  14 Вычислительные технологии обработки кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнита ветвью магнитной цепи.  15 Вычислительная технология расчёта параметров линейной схемы замещения однофазного трансформатора.  16 Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.  17 Моделирование потери активной и редактивной мощности в однофазной трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования на выходе однофазного трансформатора компенсатором реактивной мощности.  Всего за 4 семестр:  36 36 36 18/25% Экзамен (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 | статических режимов нелинейных не-                                                                                                                     | 4 | 12 |    | 2  | 2  | 1/25%  | Рейтинг-контроль<br>№ 2 |
| ки кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнита ветвью магнитной шепи.  15 Вычислительная технология расчёта параметров линейной схемы замещения однофазного трансформатора.  16 Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.  17 Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования 4 18 2 2 2 1/25% Рейтинг-контроливной мощности.  Всего за 4 семестр: 36 36 36 18/25% Экзамен (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 | статических режимов простейших не-<br>линейных разветвлённых магнитных                                                                                 | 4 | 13 | 2  | 2  | 2  | 1/25%  |                         |
| параметров линейной схемы замещения однофазного трансформатора.  16 Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.  17 Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  Всего за 4 семестр:  36 36 36 18/25% Экзамен (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 | ки кривых размагничивания магни-<br>тотвёрдых материалов. Представление<br>постоянного магнита ветвью магнит-                                          | 4 | 14 | 2  | 2  | 2  | 1/25%  |                         |
| жимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.       4       17       2       2       1/25%         17 Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.       4       18       2       2       2       1/25%       Рейтинг-контрольна регулирования на пряжения на выходе однофазного трансформатора компенсатором реактивной мощности.       8       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36                                                                                                                                                                                                         | 15 | параметров линейной схемы замеще-                                                                                                                      | 4 | 15 | 2  | 2  | 2  | 1/25%  |                         |
| активной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.  18 Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.  Всего за 4 семестр:  36 36 36 18/25% Экзамен (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16 | жимов работы однофазного транс-<br>форматора при его работе на актив-<br>ную, индуктивную и ёмкостную                                                  | 4 | 16 | 2  | 2  | 2  | 1/25%  |                         |
| напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.       № 3         Всего за 4 семестр:       36       36       36       18/25%       Экзамен (36)         Наличие в дисциплине КП/КР       —       —       Окзамен (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 | активной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании                    | 4 | 17 | 2  | 2  | 2  | 1/25%  |                         |
| Наличие в дисциплине КП/КР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.                                                                     | 4 | 18 |    |    |    | 3      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                                                                                                                        |   |    | 36 | 36 | 36 | 18/25% | Экзамен (36)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                                                                                                                        |   |    | 36 | 36 | 36 | 18/25% | Экзамен (36)            |

#### Содержание лекционных занятий по дисциплине

- Тема 1. Представление однофазных электрических нагрузок в синусоидальном режиме импедансами или адмиттансами. Алгоритмическая реализация в MATLAB.
- Тема 2. Разложение синусоидального режима работы трёхфазной цепи на симметричные составляющие при случайном задании её параметров. Алгоритмическая реализация в MATLAB.
- Тема 3. Вычислительные технологии разложения несинусоидальных периодических процессов на гармонические составляющие.
- Тема 4. Фурье-анализ несинусоидальных периодических режимов линейных однофазных электрических цепей. Алгоритмическая реализация в MATLAB.
- Тема 5. Фурье-анализ несинусоидальных периодических режимов линейных трёхфазных электрических цепей. Выделение симметричных составляющих в несинусоидальном режиме. Алгоритмическая реализация в MATLAB.
- Тема 6. Энергетический анализ заданного несинусоидального периодического режима однофазной электрической нагрузки. Алгоритмическая реализация в MATLAB.
- Тема 7. Расчёт координат центра нагрузки потребителей на генплане предприятия. Алгоритмическая реализация в MATLAB.

- Тема 8. Моделирование режимов работы однофазных диодных выпрямителей без учёта динамических элементов и параметров. Определение их энергетических показателей по результатам моделирования.
- Тема 9. Моделирование режимов работы трёхфазных диодных выпрямителей без учёта динамических элементов и параметров. Определение их энергетических показателей по результатам моделирования.
- Тема 10. Моделирование компенсации реактивной мощности конденсаторными установками (КУ) в распределительных сетях низкого напряжения. Определение потерь мощности в КУ и в подводящих линиях.
- Тема 11. Вычислительные технологии обработки кривых намагничивания магнитомягких материалов. Пересчёт этих кривых в вебер- амперные характеристики ветвей магнитных цепей.
- Тема 12. Вычислительные технологии анализа статических режимов нелинейных неразветвлённых магнитных цепей.
- Тема 13. Вычислительные технологии анализа статических режимов простейших нелинейных разветвлённых магнитных цепей.
- Тема 14. Вычислительные технологии обработки кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнита ветвью магнитной цепи.
- Тема 15. Вычислительная технология расчёта параметров линейной схемы замещения однофазного трансформатора.
- Тема 16. Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку.
- Тема 17. Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения.
- Тема 18. Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности.

#### Содержание лабораторных занятий по дисциплине

- 1) Представление однофазных электрических нагрузок в синусоидальном режиме импедансами или адмиттансами. Алгоритмическая реализация в MATLAB (2 часа).
- 2) Разложение синусоидального режима работы трёхфазной цепи на симметричные составляющие при случайном задании её параметров. Алгоритмическая реализация в MATLAB (2 часа).
- 3) Разложение несинусоидальных периодических процессов на гармонические составляющие. Алгоритмическая реализация в MATLAB (2 часа).
- 4) Фурье-анализ несинусоидальных периодических режимов линейных однофазных электрических цепей. Алгоритмическая реализация в MATLAB (2 часа).
- 5) Фурье-анализ несинусоидальных периодических режимов линейных трёхфазных электрических цепей. Выделение симметричных составляющих в несинусоидальном режиме. Алгоритмическая реализация в MATLAB (2 часа).
- 6) Энергетический анализ заданного несинусоидального периодического режима однофазной электрической нагрузки. Алгоритмическая реализация в MATLAB (2 часа).
- 7) Расчёт координат центра нагрузки потребителей на генплане предприятия. Алгоритмическая реализация в MATLAB (2 часа).
- 8) Моделирование режимов работы однофазных диодных выпрямителей без учёта динамических элементов и параметров. Определение их энергетических показателей по результатам моделирования (2 часа).
- Моделирование режимов работы трёхфазных диодных выпрямителей без учёта динамических элементов и параметров. Определение их энергетических показателей по результатам моделирования (2 часа).
- 10) Моделирование компенсации реактивной мощности конденсаторными установками (КУ) в распределительных сетях низкого напряжения. Определение потерь мощности в КУ и в подводящих линиях (2 часа).
- 11) Обработка кривых намагничивания магнитомягких материалов. Пересчёт этих кривых в вебер- амперные характеристики ветвей магнитных цепей. Алгоритмическая реализация в MATLAB (2 часа).

- 12) Анализ статических периодических режимов нелинейных неразветвлённых магнитных цепей (дросселей с магнитными сердечниками) (2 часа).
- 13) Анализ статических режимов простейших нелинейных разветвлённых магнитных цепей. Алгоритмическая реализация в MATLAB (2 часа).
- 14) Обработка кривых размагничивания магнитотвёрдых материалов. Представление постоянного магнита ветвью магнитной цепи. Алгоритмическая реализация в MATLAB (2 часа).
- 15) Расчёт параметров линейной схемы замещения однофазного трансформатора по каталожным (паспортным) данным. Алгоритмическая реализация в MATLAB (2 часа).
- 16) Моделирование синусоидальных режимов работы однофазного трансформатора при его работе на активную, индуктивную и ёмкостную нагрузку при изменении коэффициента загрузки. Алгоритмическая реализация в MATLAB (2 часа).
- 17) Моделирование потери активной и реактивной мощности в однофазном трансформаторе по линейной схеме замещения и по эмпирической формуле, применяемой при проектировании систем электроснабжения. Алгоритмическая реализация в MATLAB (2 часа).
- 18) Моделирование регулирования напряжения на выходе однофазного трансформатора компенсатором реактивной мощности. Алгоритмическая реализация в MATLAB (2 часа).

#### 5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Математические задачи электроэнергетики» используются разнообразные образовательные технологии как традиционные, так и с применением активных и интерактивных методов обучения.

Активные и интерактивные методы обучения:

- Интерактивные лекции (по всем темам).
- Анализ ситуаций (по всем темам).

## 6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

### 6.1. Вопросы по разделам программы для проведения текущего контроля

Рейтинг- контроль 1.

- 1. Дано: номинальная активная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить импеданс нагрузки. Записать последовательность вычислительных операторов.
- 2. Дано: номинальная активная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить адмиттанс нагрузки. Записать последовательность вычислительных операторов.
- 3. Дано: номинальная полная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить импеданс нагрузки. Записать последовательность вычислительных операторов.
- 4. Дано: номинальная полная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить адмиттанс нагрузки. Записать последовательность вычислительных операторов.
- 5. Дано: номинальная активная мощность однофазной нагрузки, номинальный tg(ф), номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить импеданс нагрузки. Записать последовательность вычислительных операторов.
- 6. Дано: номинальная активная мощность однофазной нагрузки, номинальный tg(φ), номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить адмиттанс нагрузки. Записать последовательность вычислительных операторов.
- 7. Дано: номинальная полная мощность однофазной нагрузки, номинальный tg(ф), номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить импеданс нагрузки. Записать последовательность вычислительных операторов.

- 8. Дано: номинальная полная мощность однофазной нагрузки, номинальный  $tg(\phi)$ , номинальное действующее значение напряжения. Ток линейно зависит от напряжения. Определить адмиттанс нагрузки. Записать последовательность вычислительных операторов.
- 9. Дано: номинальная активная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость импеданса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 10. Дано: номинальная активная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость адмиттанса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 11. Дано: номинальная полная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость импеданса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 12. Дано: номинальная полная мощность однофазной нагрузки, номинальный коэффициент мощности, номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость адмиттанса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 13. Дано: номинальная активная мощность однофазной нагрузки, номинальный tg(φ), номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость импеданса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 14. Дано: номинальная активная мощность однофазной нагрузки, номинальный  $tg(\phi)$ , номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость адмиттанса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 15. Дано: номинальная полная мощность однофазной нагрузки, номинальный  $tg(\phi)$ , номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость импеданса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 16. Дано: номинальная полная мощность однофазной нагрузки, номинальный tg(ф), номинальное действующее значение напряжения. Комплексная мощность не зависит от напряжения. Определить зависимость импеданса нагрузки от напряжения. Записать последовательность вычислительных операторов.
- 17. Дана трёхфазная цепь. Источники и приёмники соединены звездой. ЭДС источников образуют симметричную систему прямой последовательности. Импедансы подводящих проводов и комплексные мощности нагрузок при линейной зависимости токов от напряжений заданы случайным образом. Законы распределения этих случайных величин также заданы. Вычислить составляющие режима цепи прямой, обратной и нулевой последовательности. Записать последовательность вычислительных операторов.
- 18. Дана трёхфазная цепь. Источники соединены звездой. ЭДС источников образуют симметричную систему прямой последовательности. Приёмники соединены треугольником. Импедансы подводящих проводов и комплексные мощности нагрузок при линейной зависимости токов от напряжений заданы случайным образом. Законы распределения этих случайных величин также заданы. Вычислить составляющие режима цепи прямой, обратной и нулевой последовательности. Записать последовательность вычислительных операторов.
- 19. Дана трёхфазная цепь. Источники и приёмники соединены звездой. ЭДС источников образуют симметричную систему прямой последовательности. Импедансы подводящих проводов и комплексные мощности нагрузок независимо от напряжений заданы случайным образом. Законы распределения этих случайных величин также заданы. Вычислить составляющие режима цепи прямой, обратной и нулевой последовательности. Записать последовательность вычислительных операторов.
- 20. Дана трёхфазная цепь. Источники соединены звездой. ЭДС источников образуют симметричную систему прямой последовательности. Приёмники соединены треугольником. Импедансы подводящих проводов и комплексные мощности нагрузок независимо от напряжений заданы случайным об-

разом. Законы распределения этих случайных величин также заданы. Вычислить составляющие режима цепи прямой, обратной и нулевой последовательности. Записать последовательность вычислительных операторов.

- 21. В табличной форме с мелким шагом по времени дана временная диаграмма одного периода напряжения в точке подключения нагрузки. Определить комплексные действующие значения гармоник напряжения с номерами от 0 до 41. Определить процентные содержания гармоник относительно первой. Записать последовательность вычислительных операторов.
- 22. Последовательная RC цепочка питается от идеального источника ЭДС в форме меандра. Определить комплексные амплитуды гармоник напряжения на резисторе и конденсаторе. Определить активную, реактивную мощности и мощность искажения, генерируемые источником ЭДС и такие же мощности, потребляемые резистором и конденсатором. Записать последовательность вычислительных операторов.
- 23. Дана симметричная трёхфазная четырёхпроводная цепь. Источники и приёмники соединены звездой. Сопротивлениями подводящих проводов можно пренебречь. Фазная нагрузка последовательная RL цепочка с единичным активным и реактивным сопротивлением на частоте первой гармоники. Фазные ЭДС симметричная система меандров прямой последовательности с единичной амплитудой. Определить симметричные составляющие фазных токов во временной и частотной областях. Записать последовательность вычислительных операторов.
- 24. Дана симметричная трёхфазная трёхпроводная цепь. Источники и приёмники соединены звездой. Сопротивлениями подводящих проводов можно пренебречь. Фазная нагрузка последовательная RL цепочка с единичным активным и реактивным сопротивлением на частоте первой гармоники. Фазные ЭДС симметричная система меандров прямой последовательности с единичной амплитудой. Определить мощность искажения, активную, реактивную и полную мощности, генерируемые фазными ЭДС, а также потребляемые резистором и индуктивностью. Определить коэффициенты мощности фазных ЭДС. Записать последовательность вычислительных операторов.
- 25. В табличной форме с мелким шагом по времени даны временные диаграммы одного периода напряжения и тока некоторой однофазной нагрузки. Определить мощность искажения, активную, реактивную и полную мощность, потребляемую нагрузкой. Определить коэффициент мощности. Записать последовательность вычислительных операторов. Как решать задачу в случае, когда временные диаграммы представлены на разных сетках времени?

#### Рейтинг- контроль 2.

- 1. В виде четырёх одномерных массивов даны координаты электропотребителей (геометрических центров зданий и сооружений) на генплане предприятия, а также их расчётные активные и реактивные мощности. Определить координаты центров нагрузки потребителей по активной, реактивной и полной мощности, а также квадрату полной мощности. Записать последовательность вычислительных операторов. Зачем определяется центр нагрузки потребителей при проектировании систем электроснабжения?
- 2. Имеется однополупериодный диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Вольт-амперная характеристика (ВАХ) диода задана таблично. Нагрузка резистор с заданным сопротивлением. Рассчитать осциллограмму одного периода напряжения и тока нагрузки, тока источника. Определить коэффициент мощности на входе выпрямителя и его КПД. Определить реактивную мощность, генерируемую источником. Объяснить невысокое значение коэффициента мощности. Записать последовательность вычислительных операторов.
- 3. Имеется двухполупериодный мостовой диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Вольт-амперная характеристика (ВАХ) диода задана таблично (все 4 диода одинаковые). Нагрузка резистор с заданным сопротивлением. Рассчитать осциллограмму одного периода напряжения и тока нагрузки, тока источника (обратными токами диодов пренебречь). Определить коэффициент мощности на входе выпрямителя и его КПД. Записать последовательность вычислительных операторов. Почему коэффициент мощности близок к единице? В каком случае он был бы точно равен единице?
- 4. Имеется трёхфазный однополупериодный (трёхпульсный) диодный выпрямитель, питаемый от трёхфазного симметричного синусоидального источника ЭДС заданной амплитуды. Нагрузка резистор с заданным сопротивлением. Рассчитать осциллограмму одного периода напряжения и тока нагрузки, токов фаз источника (обратными токами диодов пренебречь). Определить коэффициент мощности на входе выпрямителя и его КПД. Записать последовательность вычислительных операто-

ров. Почему коэффициент мощности ниже, чем у однофазного однополупериодного выпрямителя, а КПД – выше?

- 5. Имеется группа симметричных трёхфазных электроприёмников низкого напряжения, каждый из которых питает отдельная линия от одного питающего центра (радиальная схема электроснабжения). Активные мощности, коэффициенты мощности, длины питающих линий заданы одномерными массивами. Погонный импеданс линий задан числом. Задано также линейное напряжение питающего центра. Потерями напряжения в линиях пренебречь. Определить реактивные и полные мощности приёмников. Определить потери активной и реактивной мощности в каждой линии и суммарную потерю. Записать последовательность вычислительных операторов.
- 6. Имеется группа симметричных трёхфазных электроприёмников низкого напряжения, каждый из которых питает отдельная линия от одного питающего центра (радиальная схема электроснабжения). Активные мощности, коэффициенты мощности, длины питающих линий заданы одномерными массивами. Погонный импеданс линий задан числом. Задано также линейное напряжение питающего центра. Потерями напряжения в линиях пренебречь. Определить реактивные и полные мощности приёмников. Вблизи питающего центра (источника) установлена конденсаторная батарея. Какую реактивную мощность она должна генерировать, чтобы довести tg(ф) до заданного значения, если потерей активной мощности в конденсаторной установке (КУ) пренебречь? Записать последовательность вычислительных операторов. Повлияет ли установка КУ на потери мощности в питающих линиях?
- 7. Имеется группа симметричных трёхфазных электроприёмников низкого напряжения, каждый из которых питает отдельная линия от одного питающего центра (радиальная схема электроснабжения). Активные мощности, коэффициенты мощности, длины питающих линий заданы одномерными массивами. Погонный импеданс линий задан числом. Задано также линейное напряжение питающего центра. Потерями напряжения в линиях пренебречь. Определить реактивные и полные мощности приёмников. Вблизи питающего центра (источника) установлена конденсаторная батарея. Какую реактивную мощность она должна генерировать, чтобы довести tg(ф) до заданного значения, если тангенс угла потерь в конденсаторной установке (КУ) задан? Записать последовательность вычислительных операторов.
- 8. Имеется группа симметричных трёхфазных электроприёмников низкого напряжения, каждый из которых питает отдельная линия от одного питающего центра (радиальная схема электроснабжения). Активные мощности, коэффициенты мощности, длины питающих линий заданы одномерными массивами. Погонный импеданс линий задан числом. Задано также линейное напряжение питающего центра. Потерями напряжения в линиях пренебречь. Определить реактивные и полные мощности приёмников. Вблизи каждого приёмника установлена конденсаторная батарея, генерирующая такую реактивную мощность, что в питающей линии tg(ф) принимает заданной значение (в исходных данных имеется одномерный массив с заданными значениями). Определить реактивные мощности, генерируемые каждой конденсаторной установкой (КУ). Сравнить потери мощности в питающих линиях при отсутствии и наличии КУ. Потерями активной мощности в КУ пренебречь. Записать последовательность вычислительных операторов.
- 9. Имеется группа симметричных трёхфазных электроприёмников низкого напряжения, каждый из которых питает отдельная линия от одного питающего центра (радиальная схема электроснабжения). Активные мощности, коэффициенты мощности, длины питающих линий заданы одномерными массивами. Погонный импеданс линий задан числом. Задано также линейное напряжение питающего центра. Потерями напряжения в линиях пренебречь. Определить реактивные и полные мощности приёмников. Вблизи каждого приёмника установлена конденсаторная батарея, генерирующая такую реактивную мощность, что в питающей линии tg(ф) принимает заданной значение (в исходных данных имеется одномерный массив с заданными значениями). Определить реактивные мощности, генерируемые каждой конденсаторной установкой (КУ), если тангенсы угла потерь в них заданы одномерным массивом. Сравнить суммарные потери мощности в питающих линиях и в КУ при отсутствии и наличии КУ. Записать последовательность вычислительных операторов. Исходя из этого сравнения объяснить, почему полная компенсация реактивной мощности в системах электроснабжения экономически нецелесообразна.
- 10. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля и значений магнитной индукции. Выбрать технически приемлемый метод интерполяции и изобразить эту характеристику на графике в виде глад-

кой кривой. Рассчитать зависимость статической и дифференциальной магнитной проницаемости материала от напряжённости магнитного поля. Записать последовательность вычислительных операторов.

- 11. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Пусть напряжённость магнитного поля изменяется во времени по синусоидальному закону с амплитудой, равной максимальному по модулю значению из массива Нр. Рассчитать и построить в виде графика осциллограмму магнитной индукции в этом режиме перемагничивания. Записать последовательность вычислительных операторов.
- 12. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Пусть магнитная индукция изменяется во времени по синусоидальному закону с амплитудой, равной максимальному по модулю значению из массива Вр. Рассчитать и построить в виде графика осциллограмму напряжённости магнитного поля в этом режиме перемагничивания. Записать последовательность вычислительных операторов.
- 13. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Из этого материала изготовлен магнитопровод дросселя, эффективная длина которого и площадь поперечного сечения заданы. Дано также число витков токовой обмотки, намотанной на магнитопровод. Рассчитать и построить в виде графика вебер- амперную характеристику дросселя. Записать последовательность вычислительных операторов.
- 14. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Из этого материала изготовлен магнитопровод дросселя, эффективная длина которого и площадь поперечного сечения заданы. Дано также число витков токовой обмотки, намотанной на магнитопровод, в котором имеется немагнитный зазор, длина которого дана. Рассчитать и построить в виде графика вебер- амперную характеристику дросселя. Записать последовательность вычислительных операторов.
- 15. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Из этого материала изготовлен магнитопровод дросселя, эффективная длина которого и площадь поперечного сечения заданы. Дано также число витков токовой обмотки, намотанной на магнитопровод, в котором имеется немагнитный зазор, длина которого дана. Ток в обмотке изменяется во времени по синусоидальному закону, амплитуда которого задана. Рассчитать и построить в виде графика осциллограмму магнитного потокосцепления дросселя и напряжения на зажимах обмотки, если омическим сопротивлением обмотки можно пренебречь. Записать последовательность вычислительных операторов.
- 16. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Из этого материала изготовлен магнитопровод дросселя, эффективная длина которого и площадь поперечного сечения заданы. Дано также число витков токовой обмотки, намотанной на магнитопровод, в котором имеется немагнитный зазор, длина которого дана. Ток в обмотке изменяется во времени по синусоидальному закону, амплитуда которого задана. Рассчитать и построить в виде графика осциллограмму магнитного потокосцепления дросселя и напряжения на зажимах обмотки, если омическое сопротивление обмотки дано. Записать последовательность вычислительных операторов.
- 17. Основная кривая намагничивания магнитомягкого материала представлена таблично в виде двух массивов: значений напряжённости магнитного поля Нр и значений магнитной индукции Вр. Из этого материала изготовлен магнитопровод дросселя, эффективная длина которого и площадь поперечного сечения заданы. Дано также число витков токовой обмотки, намотанной на магнитопровод, в котором имеется немагнитный зазор, длина которого дана. Напряжение на зажимах обмотки изменяется во времени по синусоидальному закону, амплитуда и частота которого заданы. Рассчитать и построить в виде графика осциллограмму тока в обмотке, если её омическим сопротивлением можно пренебречь. Записать последовательность вычислительных операторов.

#### Рейтинг- контроль 3.

- 1. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны. Определить магнитные потоки ветвей. Записать последовательность вычислительных операторов.
- 2. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны для двух обмоток. Определить магнитные потоки ветвей, если задано дополнительное соотношение между двумя потоками. Определить намагничивающую силу обмотки, для которой не задан ток или число витков. Записать последовательность вычислительных операторов.
- 3. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны. В одной из ветвей имеется немагнитный зазор, длина которого задана. Определить магнитные потоки ветвей и магнитное напряжение на зазоре. Записать последовательность вычислительных операторов.
- 4. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны. В двух ветвях имеются немагнитные зазоры, длины которых заданы. Определить магнитные потоки ветвей и магнитные напряжения на зазорах. Записать последовательность вычислительных операторов.
- 5. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны. В трёх ветвях имеются немагнитные зазоры, длины которых заданы. Определить магнитные потоки ветвей и магнитные напряжения на зазорах. Записать последовательность вычислительных операторов.
- 6. Имеется магнитопровод стержневого типа, магнитная цепь которого состоит из трёх ветвей и двух узлов (как у трёхфазного трансформатора). Даны их площади поперечного сечения и эффективные длины. Основная кривая намагничивания магнитного материала задана таблично. На каждый из трёх стержней намотаны токовые обмотки, числа витков и протекающие токи даны для двух обмоток. В трёх ветвях имеются немагнитные зазоры, длины которых заданы. Определить магнитные потоки ветвей и магнитные напряжения на зазорах, если задано дополнительное соотношение между двумя потоками. Определить намагничивающую силу обмотки, для которой не задан ток или число витков. Записать последовательность вычислительных операторов.
- 7. Основная кривая размагничивания магнитотвёрдого материала задана таблично в виде зависимости намагниченности от напряжённости магнитного поля. Выбрать метод интерполяции и построить эту характеристику в виде гладкой кривой. Пересчитать эту кривую в зависимость магнитной индукции от напряжённости магнитного поля, построить полученную кривую. Рассчитать коэрцитивную силу по магнитной индукции. Записать последовательность вычислительных операторов.
- 8. Основная кривая размагничивания магнитотвёрдого материала задана таблично в виде зависимости намагниченности от напряжённости магнитного поля. Рассчитать и построить в виде графика зависимость дифференциальной и статической магнитной восприимчивости от напряжённости магнитного поля. Записать последовательность вычислительных операторов.
- 9. Основная кривая размагничивания магнитотвёрдого материала в виде зависимости намагниченности от напряжённости магнитного поля задана параметрами аппроксимирующего выражения по Пятину. Пересчитать эту кривую в зависимость магнитной индукции от напряжённости магнитного поля, построить полученную кривую. Рассчитать коэрцитивную силу по магнитной индукции. Записать последовательность вычислительных операторов.
- 10. Основная кривая размагничивания магнитотвёрдого материала в виде зависимости намагниченности от напряжённости магнитного поля задана параметрами аппроксимирующего выражения по

Пятину. Рассчитать и построить в виде графика зависимость дифференциальной и статической магнитной восприимчивости от напряжённости магнитного поля. Записать последовательность вычислительных операторов.

- 11. Имеется постоянный магнит с однородным распределением вектора остаточной намагниченности. Дана длина магнита в направлении этого вектора и площадь поперечного сечения. Основная кривая размагничивания задана таблично в виде зависимости намагниченности от напряжённости магнитного поля. Представить этот магнит в виде ветви магнитной цепи в двух вариантах: когда в схеме замещения 1) есть и 2) нет источника магнитного потока. Записать последовательность вычислительных операторов.
- 12. Имеется постоянный магнит с однородным распределением вектора остаточной намагниченности. Дана длина магнита в направлении этого вектора и площадь поперечного сечения. Основная кривая размагничивания магнитотвёрдого материала в виде зависимости намагниченности от напряжённости магнитного поля задана параметрами аппроксимирующего выражения по Пятину. Представить этот магнит в виде ветви магнитной цепи в двух вариантах: когда в схеме замещения 1) есть и 2) нет источника магнитного потока. Записать последовательность вычислительных операторов.
- 13. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Определить матрицу импедансов обмоток. Записать последовательность вычислительных операторов.
- 14. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-индуктивной нагрузки, подключаемой к вторичной цепи трансформатора. Рассчитать и построить в виде графика зависимость действующего значения напряжения на нагрузке при изменении коэффициента загрузки трансформатора. Записать последовательность вычислительных операторов.
- 15. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-ёмкостной нагрузки, подключаемой к вторичной цепи трансформатора. Рассчитать и построить в виде графика зависимость действующего значения напряжения на нагрузке при изменении коэффициента загрузки трансформатора. Записать последовательность вычислительных операторов.
- 16. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-индуктивной нагрузки, подключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость комплексной мощности потерь в трансформаторе при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.
- 17. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-ёмкостной нагрузки, подключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость комплексной мощности потерь в трансформаторе при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.
- 18. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение активной мощности, потребляемой нагрузкой. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость действующего значения напряжения на нагрузке от потребляемой реактивной мощности. Записать последовательность вычислительных операторов.

#### Контрольные вопросы по СРС.

- 1. Имеется однофазный однополупериодный диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Диод идеальный. Нагрузка резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.
- 2. Имеется однофазный однополупериодный диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Вольт-амперная характеристика (ВАХ) диода задана таблично.

Нагрузка – резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.

- 3. Имеется трёхфазный однополупериодный (трёхпульсный) диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Диод идеальный. Нагрузка резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.
- 4. Имеется трёхфазный однополупериодный (трёхпульсный) диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Вольт-амперная характеристика (ВАХ) диода задана таблично. Нагрузка резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.
- 5. Имеется трёхфазный двухполупериодный (шестипульсный) диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Диод идеальный. Нагрузка резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.
- 6. Имеется трёхфазный двухполупериодный (шестипульсный) диодный выпрямитель, питаемый от синусоидального источника ЭДС заданной амплитуды. Вольт-амперная характеристика (ВАХ) диода задана таблично. Нагрузка резистор с заданным сопротивлением. Определить комплексные амплитуды 41 гармоник тока. Определить действующее значение тока, средний модуль тока, его максимальное значение, коэффициент формы, коэффициент амплитуды. Записать последовательность вычислительных операторов.
- 7. Суточный график активной мощности потребителей, питаемых от некоторого центра представлен кусочно-постоянной функцией в виде двух одномерных массивов: 1) моментов времени начала частичного интервала (последний элемент время окончания суточного интервала) и 2) значений активной потребляемой мощности в каждом частичном интервале. Определить отпущенную за сутки электроэнергию, максимальную мощность, время использования максимума, среднюю мощность потребителей, коэффициент максимума, коэффициент заполнения и коэффициент формы графика. Дана суммарная установленная мощность электропотребителей. Определить групповой коэффициент использования и коэффициент спроса. Записать последовательность вычислительных операторов.
- 8. Для цеха промышленного предприятия имеется перечень электроприёмников, установленные активные мощности которых заданы одномерным массивом. Заданы также массивы коэффициентов спроса и номинальных коэффициентов мощности. Определить расчётную активную, реактивную и полную мощность цеха без учёта осветительной нагрузки. Записать последовательность вычислительных операторов.
- 9. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-индуктивной нагрузки, подключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость коэффициента полезного действия трансформатора при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.
- 10. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-ёмкостной нагрузки, подключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость коэффициента полезного действия трансформатора при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.
- 11. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-индуктивной нагрузки, под-

ключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость коэффициента мощности трансформатора со стороны первичных зажимов при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.

- 12. Имеется однофазный силовой трансформатор, для которого известны стандартные каталожные (паспортные) данные. Дано значение коэффициента мощности активно-ёмкостной нагрузки, подключаемой к вторичной цепи трансформатора. Путём моделирования режимов по линейной схеме замещения рассчитать и построить в виде графика зависимость коэффициента мощности трансформатора со стороны первичных зажимов при изменении коэффициента загрузки. Сравнить полученный результат с расчётом мощности потерь по известной эмпирической формуле. Записать последовательность вычислительных операторов.
- 13. Выведите формулу, выражающую комплексный коэффициент электромагнитной связи однофазного силового трансформатора через его паспортные (каталожные) данные.

### 6.2. Вопросы (задачи) к экзамену

- 1. Имеется идеализированный диод, участок ВАХ которого в открытом состоянии представлен таблицей. На этом диоде реализован однополупериодный выпрямитель, схема которого дана. Индуктивных и ёмкостных элементов нет. Рассчитать и построить осциллограмму двух периодов изменения напряжения на нагрузке.
- 2. Одно и то же значение тока измерено амперметром n раз. Получился разброс измеренных значений тока. Этот разброс задан выражением, в котором вызывается генератор случайных чисел. Определить минимальное и максимальное показание прибора, среднее значение показаний, среднеквадратичное отклонение от среднего, разность между максимальным и минимальным показанием прибора.
- 3. Пусть некоторая однофазная нагрузка питается от электронного преобразователя частоты. Формы напряжения и тока искажены по отношению к синусоиде и заданы в виде осциллограмм в табличной форме. Построить графики мгновенных значений напряжения, тока и потребляемой мощности. Определить постоянные составляющие, средние модули, действующие значения напряжения и тока. Определить активную и полную мощность, потребляемую нагрузкой. Определить коэффициент мощности.
- 4. Из четырёх идеализированных диодов составлен двухполупериодный выпрямитель, который питается от идеального синусоидального источника ЭДС. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Рассчитать и построить график двух периодов изменения напряжения на нагрузке.
- 5. Имеется идеализированный диод, участок ВАХ которого в открытом состоянии представлен таблицей. На этом диоде реализован однополупериодный выпрямитель, схема которого дана. Индуктивных и ёмкостных элементов нет. Выполнить с помощью функции interp1 кусочнолинейную интерполяцию ВАХ в заданном диапазоне напряжений с заданным шагом по напряжению. Пусть выпрямитель питается от идеального источника синусоидальной ЭДС и нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС задана. В одной фигуре построить графики (осциллограммы) двух периодов изменения мгновенной мощности, генерируемой источником ЭДС (входной мощности выпрямителя), и мгновенной мощности, потребляемой нагрузкой.
- 6. Имеется идеализированный диод, участок ВАХ которого в открытом состоянии представлен таблицей. На этом диоде реализован однополупериодный выпрямитель, схема которого дана. Индуктивных и ёмкостных элементов нет. Выполнить с помощью функции interp1 кусочнолинейную интерполяцию ВАХ в заданном диапазоне напряжений с заданным шагом по напряжению. Пусть выпрямитель питается от идеального источника синусоидальной ЭДС и нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС задана. Определить активную и полную мощность, генерируемую источником ЭДС, активную мощность, потребляемую нагрузкой, а также КПД и коэффициент мощности выпрямителя в данном режиме работы.
- 7. Из четырёх идеализированных диодов составлен двухполупериодный выпрямитель, который питается от идеального синусоидального источника ЭДС. Выпрямитель нагружен на идеальный

резистор с заданным сопротивлением. Амплитуда ЭДС задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Рассчитать и построить график двух периодов изменения мгновенной мощности, генерируемой источником и потребляемой нагрузкой.

- 8. Из четырёх идеализированных диодов составлен двухполупериодный выпрямитель, который питается от идеального синусоидального источника ЭДС. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Определить активную и полную мощность, генерируемую источником ЭДС, активную мощность, потребляемую нагрузкой, а также КПД и коэффициент мощности выпрямителя в данном режиме работы.
- 9. Из трёх идеализированных диодов составлен трёхфазный однополупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Рассчитать и построить график двух периодов изменения напряжения на нагрузке. Периоды отсчитывать по фазной ЭДС. При расчёте диод фазы считать открытым, если мгновенное значение соответствующей фазной ЭДС больше мгновенных ЭДС остальных фаз.
- 10. Из трёх идеализированных диодов составлен трёхфазный однополупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Рассчитать и построить график двух периодов изменения суммарной мгновенной мощности, генерируемой источниками ЭДС, и мгновенной мощности, потребляемой нагрузкой. Периоды отсчитывать по фазной ЭДС. При расчёте диод фазы считать открытым, если мгновенное значение соответствующей фазной ЭДС больше мгновенных ЭДС остальных фаз.
- 11. Пусть некоторая однофазная нагрузка питается от электронного преобразователя частоты. Формы напряжения и тока искажены по отношению к синусоиде и заданы в виде осциллограмм в табличной форме. Построить графики мгновенных значений напряжения, тока и потребляемой мощности. Определить постоянные составляющие, средние модули, действующие значения напряжения и тока, а также действующие значения переменной составляющей напряжения и тока. Определить коэффициенты формы напряжения и тока.
- 12. Пусть некоторая однофазная нагрузка питается от электронного преобразователя частоты. Формы напряжения и тока искажены по отношению к синусоиде и заданы в виде осциллограмм в табличной форме. Построить графики мгновенных значений напряжения, тока и потребляемой мощности. Определить постоянные составляющие, средние модули, действующие значения напряжения и тока, а также действующие значения переменной составляющей напряжения и тока. Определить комплексные амплитуды первой гармоники напряжения и тока.
- 13. Пусть некоторая однофазная нагрузка питается от электронного преобразователя частоты. Формы напряжения и тока искажены по отношению к синусоиде и заданы в виде осциллограмм в табличной форме. Построить графики мгновенных значений напряжения, тока и потребляемой мощности. Определить постоянные составляющие, средние модули, действующие значения напряжения и тока, а также действующие значения переменной составляющей напряжения и тока. Определить действующие значения и начальные фазы первой гармоники напряжения и тока.
- 14. Пусть некоторая однофазная нагрузка питается от электронного преобразователя частоты. Формы напряжения и тока искажены по отношению к синусоиде и заданы в виде осциллограмм в табличной форме. Построить графики мгновенных значений напряжения, тока и потребляемой мощности. Определить постоянные составляющие, средние модули, действующие значения напряжения и тока, а также действующие значения переменной составляющей напряжения и тока. Определить активную, реактивную и полную мощности первой гармоники напряжения и тока.
- 15. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки проме-

жуточных значений напряжённости магнитного поля. Построить график доопределённой кривой намагничивания.

- 16. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки промежуточных значений напряжённости магнитного поля. Построить временную диаграмму изменения магнитной индукции при изменении напряжённости магнитного поля по синусоидальному закону с заданной амплитудой и частотой и с нулевой начальной фазой, пренебрегая гистерезисом и динамикой магнитных свойств материала.
- 17. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки промежуточных значений напряжённости магнитного поля. Построить временную диаграмму изменения напряжённости магнитного поля при изменении магнитной индукции по синусоидальному закону с заданной амплитудой и частотой и с нулевой начальной фазой, пренебрегая гистерезисом и динамикой магнитных свойств материала.
- 18. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки промежуточных значений напряжённости магнитного поля. Определить значения напряжённости магнитного поля при заданных значениях магнитной индукции.
- 19. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки промежуточных значений напряжённости магнитного поля. Пересчитать полученную кривую в веберамперную характеристику участка магнитопровода заданной длины L и площадью поперечного сечения S. При пересчёте учесть, что на этом участке имеется токовая обмотка с заданной намагничивающей силой F. Пусть положительные направления магнитного напряжения участка магнитопровода, магнитного напряжения и намагничивающей силы обмотки совпадают. Построить график этой характеристики функцией plot.
- 20. Дана основная кривая намагничивания электротехнической стали в виде таблицы. Предполагается, что магнитная индукция равна нулю при равной нулю напряжённости магнитного поля. С помощью функции fliplr распространить кривую намагничивания на отрицательную область. С помощью функции, выполняющей интерполяцию, доопределить кривую для мелкой сетки промежуточных значений напряжённости магнитного поля. Пересчитать полученную кривую в веберамперную характеристику участка магнитопровода заданной длины L и площадью поперечного сечения S. Данная ветвь магнитной цепи без токовой обмотки. Пусть положительные направления магнитного напряжения участка магнитопровода, магнитного напряжения и намагничивающей силы обмотки совпадают. Построить график этой характеристики функцией plot.
- 21. В табличной форме с помощью последовательности вычислительных операторов задана основная кривая размагничивания материала постоянного магнита (зависимость намагниченности вещества от напряжённости магнитного поля). Пересчитать эту кривую в зависимость магнитной индукции от напряжённости магнитного поля. Построить полученную кривую в виде графика.
- 22. В табличной форме с помощью последовательности вычислительных операторов задана основная кривая размагничивания материала постоянного магнита (зависимость намагниченности вещества от напряжённости магнитного поля). Пересчитать эту кривую в зависимость дифференциальной магнитной восприимчивости от напряжённости магнитного поля. Построить график.
- 23. Имеется группа приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Определить реактивные и полные мощности приёмников, а также разности фаз между напряжением и токами приёмников в номинальном режиме.

- 24. Имеется группа приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Определить активную, реактивную и полную мощность всей группы приёмников, а также разность фаз между напряжением и током группы приёмников в номинальном режиме.
- 25. Имеется группа потребителей электроэнергии, питаемых от общей распределительной сети высокого напряжения. Даны номинальные активные мощности потребителей и их номинальные коэффициенты мощности. Даны также координаты *x* и *y* их расположения на площадке предприятия. Определить координаты центров нагрузки потребителей по активной, реактивной и полной мощности, а также координаты усреднённого центра нагрузки потребителей.
- 26. Имеется группа приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Определить активную, реактивную и полную мощность всей группы приёмников в номинальном режиме, если эта группа работает совместно с конденсаторной установкой, обеспечивающей для всей группы приёмников заданное значение тангенса разности фаз между напряжением и током.
- 27. Имеется группа приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Эта группа работает совместно с конденсаторной установкой, обеспечивающей для всей группы приёмников тангенс разности фаз между напряжением и током, равный заданному значению. Определить потерю активной мощности в конденсаторной установке, если тангенс угла диэлектрических потерь в конденсаторах задан.
- 28. . Имеется группа приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Каждый из приёмников работает совместно с конденсаторной установкой. Даны значения тангенса угла разности фаз между напряжением и током при совместной работе приёмника и конденсаторной установки (без учёта активной мощности, теряемой в конденсаторах). Для каждой конденсаторной установки даны значения тангенса угла диэлектрических потерь. Определить потери активной мощности в каждой конденсаторной установке и во всей группе установок.
- 29. Имеется группа симметричных трёхфазных приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Линейное напряжение задано. Каждый приёмник питает отдельная кабельная линия с заданным погонным комплексным сопротивлением. Длина каждой линии дана. Определить потери активной и реактивной мощности в каждой линии и во всех линиях.
- 30. Имеется группа симметричных трёхфазных приёмников электроэнергии, питаемых от общей сети низкого напряжения. Даны номинальные активные мощности приёмников и их номинальные коэффициенты мощности. Линейное напряжение задано. Каждый приёмник питает отдельная кабельная линия с заданным погонным комплексным сопротивлением каждого провода. Длина каждой линии дана. Каждый из приёмников работает совместно с конденсаторной установкой. Даны значения тангенса угла разности фаз между напряжением и током при совместной работе приёмника и конденсаторной установки. Конденсаторные установки работают в непосредственной близости от приёмников, и в них нет потерь активной мощности. Определить потери активной и реактивной мощности в каждой линии и во всех линиях, а также реактивные мощности, генерируемые каждой из конденсаторных установок.
- 31. Из трёх идеализированных диодов составлен трёхфазный однополупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Определить активную и полную мощность, генерируемую источником ЭДС в фазе А, активную мощность, потребляемую нагрузкой, суммарную активную мощность трёх фаз, а также КПД и коэффициент мощности выпрямителя в данном режиме работы. При расчёте диод фазы считать открытым, если мгновенное значение соответствующей фазной ЭДС больше мгновенных ЭДС остальных фаз.
- 32. Из шести идеализированных диодов составлен трёхфазный двухполупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого

из диодов в открытом состоянии представлен таблицей. Рассчитать и построить график двух периодов изменения напряжения на нагрузке.

- 33. Из шести идеализированных диодов составлен трёхфазный двухполупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Построить график двух периодов изменения суммарной мгновенной мощности, генерируемой источниками ЭДС, и мгновенной мощности, потребляемой нагрузкой. Периоды отсчитывать по фазной ЭДС.
- 34. Из шести идеализированных диодов составлен трёхфазный двухполупериодный выпрямитель, который питается от трёх идеальных синусоидальных источников ЭДС, образующих симметричную трёхфазную систему прямой последовательности. Выпрямитель нагружен на идеальный резистор с заданным сопротивлением. Амплитуда ЭДС каждой из фаз задана. Участок ВАХ каждого из диодов в открытом состоянии представлен таблицей. Определить активную и полную мощность, генерируемую источником ЭДС в фазе A, активную мощность, потребляемую нагрузкой, суммарную активную мощность трёх фаз, а также КПД и коэффициент мощности выпрямителя в данном режиме работы.
- 35. В виде рисунка представлена схема замещения трёхфазной электрической цепи, соединённой по схеме «звезда-звезда». Фазные ЭДС образуют симметричную трёхфазную систему прямой последовательности. Действующее значение фазной ЭДС на стороне задано. Импедансы подводящих фазных проводов и нейтрали заданы. Za представляет собой однофазную активноиндуктивную электрическую нагрузку с номинальной полной мощностью  $S_a$  и номинальным коэффициентом мощности  $\cos(\phi_a)$ ;  $Z_b$  представляет собой однофазную активно-индуктивную электрическую нагрузку с номинальной полной мощностью  $S_b$  и номинальным коэффициентом мощности  $\cos(\phi_b)$ ;  $Z_c$  представляет собой однофазную активно-ёмкостную электрическую нагрузку с номинальной полной мощностью  $S_c$  и номинальным коэффициентом мощности  $\cos(\varphi_c)$ . Эти номинальные параметры указаны для номинального заданного напряжения на однофазной нагрузке. Определить активные и реактивные мощности, генерируемые источниками фазных ЭДС и суммарную генерируемую активную и реактивную мощность. Определить потери активной и реактивной мощности в каждом из подводящих проводов и суммарную мощность потерь в них. Определить активные и реактивные мощности, потребляемые каждой из однофазных нагрузок и суммарную мощность нагрузок. Определить для фазы а симметричные составляющие напряжения  $\dot{U}_{1a}$  ,  $\dot{U}_{2a}$  ,  $\dot{U}_{0}$  , симметричные составляющие тока  $\dot{I}_{1a}$  ,  $\dot{I}_{2a}$  ,  $\dot{I}_{0}$  (напряжения и токи прямой, обратной и нулевой последовательности).
- 36. В виде рисунка представлена схема замещения трёхфазной электрической цепи, соединённой по схеме «треугольник-треугольник». Фазные ЭДС образуют симметричную трёхфазную систему прямой последовательности. Действующее значение фазной ЭДС на стороне задано. Импедансы подводящих фазных проводов и нейтрали заданы.  $Z_{ab}$  представляет собой однофазную активноиндуктивную электрическую нагрузку с номинальной полной мощностью  $S_{ab}$  и номинальным коэффициентом мощности  $\cos(\phi_{ab})$ ;  $Z_{bc}$  представляет собой однофазную активно-индуктивную электрическую нагрузку с номинальной полной мощностью  $S_{bc}$  и номинальным коэффициентом мощности  $\cos(\phi_{bc})$ ;  $Z_{ca}$  представляет собой однофазную активно-ёмкостную электрическую нагрузку с номинальной полной мощностью  $S_{ca}$  и номинальным коэффициентом мощности соѕ(фса). Эти номинальные параметры указаны для номинального заданного напряжения на однофазной нагрузке. Определить активные и реактивные мощности, генерируемые источниками фазных ЭДС и суммарную генерируемую активную и реактивную мощность. Определить потери активной и реактивной мощности в каждом из подводящих проводов и суммарную мощность потерь в них. Определить активные и реактивные мощности, потребляемые каждой из однофазных нагрузок и суммарную мощность нагрузок. Определить для фазы ab симметричные составляющие напряжения  $\dot{U}_{1ab}$  ,  $\dot{U}_{2ab}$  ,  $\dot{U}_{0}$  , симметричные составляющие тока  $\dot{I}_{1ab}$  ,  $\dot{I}_{2ab}$  ,  $\dot{I}_{0}$  (напряжения и токи прямой, обратной и нулевой последовательности).

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

# 7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

### 7.1. Книгообеспеченность

| Наименование литературы: автор,                                                                                                                                                                                                                                                                                            | Год издания | КНИГООБЕСПЕЧЕННОСТЬ                                                       |                                                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| название, вид издания, издатель-<br>ство                                                                                                                                                                                                                                                                                   |             | Количество экземпляров изданий в библиотеке ВлГУ в соответствии с ФГОС ВО | Наличие в электронной биб-<br>лиотеке ВлГУ         |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                          | 2           | 3                                                                         | 4                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            | Основ       | ная литература                                                            |                                                    |  |  |  |  |
| 1. Шахнин В.А. Методические рекомендации к выполнению курсовой работы по дисциплине «Электроснабжение промышленных предприятий» для студентов, обучающихся в магистратуре по направлению 140400.68 Электро-                                                                                                                | 2014        |                                                                           | http://e.lib.vlsu.ru:80/handle/12<br>3456789/3790  |  |  |  |  |
| энергетика и электротехника. —<br>Владимир: Изд-во ВлГУ, 2014. —<br>95 с.                                                                                                                                                                                                                                                  |             |                                                                           |                                                    |  |  |  |  |
| 2. Трансформаторы: учеб. пособие / А.С. Серебряков. – М.: Издательский дом МЭИ, 2013. – 360 с.: ил. – ISBN 978-5-383-00871-3.                                                                                                                                                                                              | 2013        |                                                                           | http://www.studentlibrary.ru/bo<br>ok/MPEI217.html |  |  |  |  |
| 3. Матюнина Ю.В., Кудрин Б.И., Жилин Б.В. Электроснабжение потребителей и режимы [Электронный ресурс]: учебное пособие/ Матюнина Ю.В., Кудрин Б.И., Жилин Б.В. – М.: Издательский дом МЭИ, 2013. – 412 с.: ил. – ISBN 978-5-383-00753-2.                                                                                   | 2013        |                                                                           | http://www.studentlibrary.ru/book/MPEI196.html     |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                          | 2           | 3                                                                         | 4                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            | Дополнит    | тельная литература                                                        |                                                    |  |  |  |  |
| 1. Шведов Г.В. Электроснабжение городов: электропотребление, расчетные нагрузки, распределительные сети [Электронный ресурс]: учебное пособие/ Шведов Г.В. — М.: Издательский дом МЭИ, 2012. — 268 с. — ISBN 978-5-383-00743-3.                                                                                            | 2012        |                                                                           | http://www.studentlibrary.ru/book/MPEI179.html.    |  |  |  |  |
| 2. Шведов Г.В. Городские распределительные электрические сети [Электронный ресурс]: схемы и режимы нейтрали: учебное пособие/ Шведов Г.В. – М.: Издательский дом МЭИ, 2011. –108 с. – ISBN 978-5-383-00642-9.                                                                                                              | 2011        |                                                                           | http://www.studentlibrary.ru/book/MPEI70.html      |  |  |  |  |
| 3. Шведов Г.В., Сипачева О.В., Савченко О.В. Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение [Электронный ресурс]: учебное пособие для вузов / Шведов Г.В., Сипачева О.В., Савченко О.В. — М.: Издательский дом МЭИ, 2013. —424 с.: ил." — ISBN 978-5-383-00832-4. | 2013        |                                                                           | http://www.studentlibrary.ru/book/MPEI205.html     |  |  |  |  |
| 4. Розанов Ю.К., Воронин П.А., Рывкин С.Е., Чаплыгин Е.Е. "Справочник по силовой электронике [Электронный ресурс] / Ю.К. Розанов, П.А. Воронин, С.Е. Рывкин, Е.Е. Чаплыгин; под ред. Ю.К.                                                                                                                                  | 2014        |                                                                           | http://www.studentlibrary.ru/book/MPEI230.html     |  |  |  |  |

| Розанова. – М.: Издательский дом  |  |
|-----------------------------------|--|
| МЭИ, 2014." – 472 с., ил." – ISBN |  |
| 978-5-383-00872-0.                |  |

#### 7.2. Периодические издания

- 1. Журнал «Вестник компьютерных и информационных технологий».
- 2. Журнал «Вестник РАН».
- 3. Журнал «Вычислительные технологии».
- 4. Журнал «Квант».
- 5. Журнал «Успехи математических наук».

#### 7.3. Интернет-ресурсы

- 1. http://www.apmath.spbu.ru/ru/structure/depts/is/vm-sergeev-2013.pdf
- 2

 $https://ru.wikibooks.org/wiki/\%D0\%A7\%D1\%82\%D0\%BE_\%D1\%82\%D0\%B0\%D0\%BA\%D0\%BE\%D0\%B5_\%D0\%B2\%D1\%88\%D1\%87\%D0\%B8\%D1\%81\%D0\%BB\%D0\%B8\%D1\%82\%D0\%B5\%D0\%BB\%D1\%8C\%D0\%BD\%D0\%B0\%D1\%8F_\%D0\%BC\%D0\%B0\%D1\%82\%D0\%B8\%D0\%BA\%D0\%B0$ 

3. http://www.math.kemsu.ru/files/books/comp\_math.pdf

4.

 $http://portal.tpu.ru/SHARED/k/KOCHEG/study/Tab/%D0%9B%D0%B0%D0%B1\_\%D0%BF%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D0%BA%D1%83%D0%BC\_2014.pdf$ 

5. https://mipt.ru/education/chair/computational\_mathematics/study/materials/compmath/

#### 8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лабораторные работы проводятся в компьютерном классе 519-3.

Перечень используемого лицензионного программного обеспечения

- 1. Microsoft Office
- 2. MATLAB

| Рабочую программу составил доцент Шмелёв В.Е                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Рецензент (представитель работодателя) Начальник проектного отдела ООО «МФ Электро» Чебрякова Ю.С.                                                                                                                           |
| Программа рассмотрена и одобрена на заседании кафедры «Электротехника и электроэнергетика» Протокол $N$ 1 от 04 сентября 2019 года                                                                                           |
| Заведующий кафедрой Бадалян Норайр Петикович                                                                                                                                                                                 |
| Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 13.03.02 «Электроэнергетика и электротехника» Протокол № $\underline{1}$ от $\underline{04}$ сентября $\underline{2019}$ года |
| Председатель комиссии Бадалян Норайр Петикович                                                                                                                                                                               |

# ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

| Рабочая программа одобрена на 2020/2021 учебный год                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|
| Протокол заседания кафедры №/ от <u>02. 09, 202</u> года                                                                  |
| Заведующий кафедрой                                                                                                       |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
| Рабочая программа одобрена на <u>2021/22</u> учебный год<br>Протокол заседания кафедры № <u>7</u> от <u>11.03 21</u> года |
| Протокол заседания кафедры № $\nearrow$ от $11.03 21$ года                                                                |
| Заведующий кафедрой                                                                                                       |
|                                                                                                                           |
| Рабочая программа одобрена на учебный год                                                                                 |
| Протокол заседания кафедры № от года                                                                                      |
| Завелующий кафелрой                                                                                                       |

### ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

### в рабочую программу дисциплины *НАИМЕНОВАНИЕ*

образовательной программы направления подготовки код и наименование ОП, направленность: наименование (указать уровень подготовки)

| Номер<br>изменения | Внесены изменения в части/разделы рабочей программы | Исполнитель<br>ФИО | Основание<br>(номер и дата протокола<br>заседания кафедры) |
|--------------------|-----------------------------------------------------|--------------------|------------------------------------------------------------|
| 1                  |                                                     |                    |                                                            |
| 2                  |                                                     |                    |                                                            |
| Зав. кафедро       | Й/<br>Подпись ФИО                                   |                    |                                                            |