Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

<u>Институт прикладной математики, физики и информатики</u> (Наименование института)

УТВЕРЖДАЮ:

Директор института

К.С. Хорьков

TE NITORE

_2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Основы оптики

(наименование дисциплины)

направление подготовки / специальность

12.03.05 «Лазерная техника и лазерные технологии»

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Лазерные и квантовые технологии

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины «Основы оптики» являются последовательное рассмотрение оптических явлений на основе единого электродинамического подхода и сформировать у студентов понимание теоретических и физических основ современной оптики и практику применения полученных знаний в фундаментальных и прикладных исследованиях в области лазерных технологий.
Задачи:

- изучение основных законов распространения света с точки зрения классической электромагнитной волновой теории Максвелла-Лоренца;
- изучение основных законов взаимодействия света с веществом в линейном приближении на основе модели Лоренца для материальных сред;
- освоение применения фундаментальных физических законов оптических явлений для описания принципов функционирования различных оптических приборов и систем, включая лазерную технику;
- приобретение навыков самостоятельного решения типовых задач квантовой, волновой и геометрической оптики.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы оптики» относится к части, формируемой участниками образовательных отношений блока Б1 Дисциплины (модули) учебного плана.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции		учения по дисциплине, в соответствии с достижения компетенции	Наименование оценочного	
(код, содержание Индикатор достиже компетенции) компетенции (код, содержание индик		Результаты обучения по дисциплине	средства	
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1. Знает принципы сбора, отбора и обобщения информации. УК-1.2. Умеет соотносить разнородные явления и систематизировать их в рамках избранных видов профессиональной деятельности. УК-1.3. Владеет навыками научного поиска и практической работы с информационными источниками; методами принятия решений.	 Знает: принципы системного подхода при анализе проблемных ситуаций; основные проблемы и тенденции развития области профессиональной деятельности. Умеет: описывать проблемную ситуацию как систему; определять пробелы в информации, необходимой для решения проблемной ситуации. Владеет: навыками разработки и содержательной аргументации стратегии решения проблемной ситуации на основе системного и междисциплинарных подходов. 	Комплексный отчёт по практическим и лабораторным занятиям. Контрольные вопросы к текущей и промежуточной аттестации.	
УК-4. Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской	УК-4.1. Знает литературную форму государственного языка, основы устной и письменной коммуникации на иностранном языке, функциональные стили родного языка, требования	Знает: литературную форму государственного языка, основы устной и письменной коммуникации на иностранном языке, функциональные стили родного языка Умеет: выражать свои мысли на государственном, родном и	Тестовые вопросы Практико- ориентированное задание Защиты КР	

Федерации и иностранном(ых) языке(ах)	к деловой коммуникации. УК-4.2. Умеет выражать свои мысли на государственном, родном и иностранном языке в ситуации деловой коммуникации. УК-4.3. Владеет навыками составления текстов на государственном и родном языках, опыт перевода текстов с иностранного языка на родной, опыт общения на государственном и иностранном языках.	иностранном языке в ситуации деловой коммуникации. Владеет: навыками составления текстов на русском и английском языках	
УК-6. Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	УК-6.1. Знает основные принципы самовоспитания и самообразования, исходя из требований рынка труда. УК-6.2. Умеет эффективно планировать и контролировать собственное время; использовать методы саморегуляции, саморазвития, самообучения. УК-6.3. Владеет способами управления своей познавательной деятельностью и удовлетворения образовательных интересов и потребностей.	Знает: основные принципы самовоспитания и самообразования, исходя из требований рынка труда. Умеет: эффективно планировать и контролировать собственное время; использовать методы самообучения. Владеет: способами управления своей познавательной деятельностью и удовлетворения образовательных интересов и потребностей.	
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием, конструированием и технологиями производства лазерной техники	ОПК-1.1. Знает основные законы естественных наук, методы математического анализа и моделирования, основные законы и методы общеинженерных дисциплин, основные принципы разработки и производства элементов и устройств лазерной техники, основную номенклатуру лазерной техники, особенности ее конструкции, технологии производства, а также условия и методы их эксплуатации. ОПК-1.2. Умеет применять естественнонаучные и инженерные знания для проектирования, конструирования и производства лазерной техники. ОПК-1.3. Владеет методами расчетов и проектирования, а также компьютерными	основные законы естественных наук; методы математического анализа и моделирования оптических явлений; основные законы и методы общеинженерных дисциплин; правила оформления чертежей и конструкторской документации; основные принципы разработки и производства элементов и устройств лазерной техники, лазерных технологических установок, а также оптических материалов и элементов; основную номенклатуру лазерной техники, особенности ее конструкции, технологии производства, а также условия и методы их эксплуатации; умеет: применять естественнонаучные и инженерные знания для проектирования, конструирования и производства	Комплексный отчёт по практическим и лабораторным занятиям. Контрольные вопросы к текущей и промежуточной аттестации. КР

системами, используемыми при моделировании и проектировании лазерных установок, комплексов, систем и лазерных технологий. лазерной техники; Владеет:

- методами расчетов и проектирования технологий и исследований на основе естественнонаучных и инженерных знаний;
- методами и компьютерными системами, используемыми при моделировании и проектировании лазерных установок, комплексов, систем и лазерных технологий.

ПК-1. Способен анализировать задачи по проектированию типовых систем, приборов, узлов и деталей лазерной техники, лазерных оптико-электронных приборов и систем

ПК-1.1. Знает принципы генерации излучения лазерами, элементную базу лазерной техники, основные типы и характеристики оптических систем лазерных оптикоэлектронных приборов и оборудования, принципы конструирования лазерных оптико-электронных приборов, их узлов и элементов, опасные и вредные эксплуатационные факторы, их предельнодопустимые уровни воздействия на человека, технику и окружающую среду при эксплуатации лазерных систем и технологий. ПК-1.2. Умеет определять параметры и характеристики элементов лазерных систем и технологий для заданных условий и режимов эксплуатации, анализировать взаимодействие лазерного излучения с материалами и средами, применять информационные ресурсы и технологии, представлять информацию в систематизированном виде, работать с научнотехнической литературой и информацией. ПК-1.3. Владеет навыками работы со средствами компьютерного проектирования, используемыми при конструировании узлов и блоков лазерных комплексов, навыками проектирования типовых систем, приборов, узлов и деталей лазерной техники, лазерных оптико-

Знает:

- принципы генерации излучения лазерами;
- элементную базу лазерной техники;
- основные типы и характеристики оптических систем лазерных оптикоэлектронных приборов и оборудования;
- принципы конструирования лазерных оптико-электронных приборов, их узлов и элементов:
- опасные и вредные эксплуатационные факторы, их предельно-допустимые уровни воздействия на человека, технику и окружающую среду при эксплуатации лазерных систем и технологий;
- методы работы с научно-технической литературой и информацией Умеет:
- определять параметры и характеристики элементов лазерных систем и технологий для заданных условий и режимов эксплуатации;
- анализировать взаимодействие лазерного излучения с материалами и средами;
- применять информационные ресурсы и технологии;
- представлять информацию в систематизированном виде;
 - работать с научно-

ПК-2. Способен участвовать в разработке технических требований и заданий на проектирование типовых систем, приборов, узлов и деталай лазерных приборов и систем, оптические материалы и требования, предъявляемые к разрабатываемым оптическим узлам и элементам лазерных приборов и систем, обосновывать технические решения, примерова и систем, обосновывать предлагаемые технические решения, применять информационные ресурсы и технологии; ПК-2.3. Владеет навыками проектирования типовых систем, приборов, узлов и деталей лазерной техники, лазерных оптико-электронных приборов и систем обосновывать предлагаемые технические решения, применять информационные ресурсы и технологии; ПК-2.3. Владеет навыками проектирования типовых систем, приборов, узлов и деталей лазерной техники, лазерных оптико-электронных приборов и систем обосразраба лазерн от систем обосразра от систем от систем обосразраба от систем обосразра от с	навыками работы со вами компьютерного гирования, заующимися при руировании узлов и блоков вых комплексов; навыками проектирования мах систем, приборов, узлов лей лазерной техники, вых оптико-электронных ров и систем основные области вения лазерной техники и ых технологий; принципы построения и лазерных приборов и систем; принципы конструирования конструирования вых оптико-электронных вых оптико-электронных обв, их узлов и элементов; оптические материалы и огии; опасные и вредные атационные факторы, их ьно-допустимые уровни ствия на человека, технику и ношую среду при атации лазерных систем и огий; методы работы с научноеской литературой и мацией анализировать технические ания, предъявляемые к атываемым оптическим узлам ентам лазерных приборов и систем; обосновывать предлагаемые еские решения при ировании узлов и элементов ых приборов и систем; применять информационные ых приборов и систем; применять информационные ы и технологии. тт: навыками проектирования и лазерной техники, лазерных нарежтронных приборов и и технологии.	КР Отчет по практической подготовке (приложение I)
ПК-3. Способен рассчитывать, конструирования лазерных	основные типы и	

конструировать приборов, их узлов и лазерных оптико-электронных приборов, оборудования и типовые системы, элементов, элементную базу, используемую в технологий; приборы, узлы и детали лазерной изделиях лазерной техники. принципы конструирования техники, лазерных ПК-3.2. Умеет выбирать лазерных оптико-электронных оптикометод(ы) расчёта при приборов, их узлов и элементов; электронных разработке лазерных элементную базу, приборов и систем приборов и систем, используемую в изделиях лазерной рассчитывать параметры и техники: характеристики методы работы с научнооптического узла лазерных технической литературой и приборов и систем, информацией; конструировать типовые правила оформления детали и узлы лазерной чертежей и конструкторской техники, подбирать по документации; заданным параметрам и компьютерные технологии характеристикам моделирования и конструирования элементную базу лазерных лазерных оптико-электронных приборов и систем. приборов; ПК-3.3. Владеет опасные и вредные прикладными программами эксплуатационные факторы, их расчёта лазерных оптикопредельно-допустимые уровни электронных приборов, воздействия на человека, технику и компьютерными окружающую среду при технологиями расчёта и эксплуатации лазерных систем и конструирования лазерных технологий оптико-электронных Умеет: приборов выбирать метод(ы) расчёта при разработке лазерных приборов и систем: рассчитывать параметры и характеристики оптического узла лазерных приборов и систем; рассчитывать и выбирать поля допусков на конструктивные элементы оптических деталей и узлы крепления; разрабатывать конструкторскую документацию; конструировать типовые детали и узлы лазерной техники; подбирать по заданным параметрам и характеристикам элементную базу лазерных приборов и систем; применять информационные ресурсы и технологии; анализировать, представлять и оформлять результаты проектноконструкторской деятельности при разработке лазерных приборов, систем и технологий Владеет: прикладными программами расчёта лазерных оптикоэлектронных приборов;

ПК-4. Способен проводить научно-

ПК-4.1. Знает методы и средства планирования и Знает:

методы и средства

технологиями расчёта и

электронных приборов.

компьютерными

конструирования лазерных оптико-

исследовательские и опытноконструкторские разработки по отдельным разделам темы в области лазерных и квантовых технологий

организации исследований и разработок в области лазерных и квантовых технологий, методы проведения экспериментов и наблюдений, обобщения и обработки информации. ПК-4.2. Умеет находить аналитические решения задач квантовой теории, применять нормативную документацию, связанную с проведением научноисследовательских и опытно-конструкторских работ, оформлять результаты научноисследовательских и опытно-конструкторских работ, применять методы проведения экспериментов. ПК-4.3. Владеет методами организации и проведения измерений и исследований в области лазерных и квантовых технологий, включая планирование, разработку, организацию и проведение исследований, навыками применения математического аппарата для решения типовых задач квантовой механики, составления отчётов (разделов отчётов) по теме или по результатам проведённых

планирования и организации исследований и разработок;

- методы проведения экспериментов и наблюдений, обобщения и обработки информации;
- методы организации труда и управления персоналом;
- теоретические основы лазерных и квантовых технологий,
- методические и организационные аспекты осуществления научноисследовательской и опытноконструкторской деятельности в профессиональной деятельности;
- основы конструирования лазерных систем, а также же применение квантовых технологий Умеет:
- находить аналитические решения задач квантовой теории;
- практически применять теоретические знания при решении физических задач;
- проводить научноисследовательские и опытноконструкторские разработки в сфере лазерных и квантовых технологий.
 Владеет:
- методами организации и проведения измерений и исследований в области лазерных и квантовых технологий, включая планирование, разработку, организацию и проведение исследований;
- навыками применения математического аппарата для решения типовых задач квантовой механики.

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 11 зачетных единиц, 396 часов

экспериментов.

Тематический план форма обучения – очная

No	№ Наименование тем и/или разделов/тем		семестра	Контактная работа обучающихся с педагогическим работником				ельная ra	Формы текущего контроля успеваемости, форма промежуточной аттестации (по семестрам)
n/n	дисциплины	Семе	Семестр Неделя семес	Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки	Самостоятельная работа	
1	Уравнения Максвелла. Волновое уравнение.	3	1-3	6	6	2	5	12	
2	Энергия световых полей. Фотометрия.	3	4-5	4	4	2	3	13	

3	Классическая теория излучения атомов и молекул.	3	6-9	8	8	4	6	22	Рейтинг- контроль№ 1
4	Геометрическая оптика. Инварианты. Принцип Ферма.	3	10-13	8	8	4	6	22	Рейтинг- контроль№ 2
5	Сложение волн. Интерференция света.	3	14-17	8	8	4	6	22	Рейтинг- контроль№ 3
6 Квантовая теория света. Законы Эйнштейна.		3	17-18	2	2	2	1	8	
Всего за 3 семестр:		-	(-)	36	36	18	-	99	Экзамен (27)
1	Введение в Фурье-оптику.	4	1-3	6	6	-	4	11	
2	Дифракция света.	4	4-7	8	8	-	4	16	
3	Поляризация света. Оптика анизотропных сред.	4	8-11	8	8		4	11	Рейтинг- контроль№ 1
4	Вращение плоскости поляризации.	4	12-14	6	6	+	3	13	Рейтинг- контроль№ 2
5	Рассеяние света. Теории Рэлея и Эйнштейна.	4	15-18	8	8		4	14	Рейтинг- контроль№ 3
Всего за 4 семестр:		-	-	36	36	-	-	72	Экзамен (36), КР
Нал	ичие в дисциплине КП/КР	-	-	+	+	-	+	+	KP
Итого по дисциплине		-	-	72	72	18	-	180	Экзамен (54), КР

Содержание лекционных занятий по дисциплине

3 семестр

Раздел 1. Уравнения Максвелла. Волновое уравнение. (6 часов)

Тема 1 Введение. Уравнения Максвелла. (2 часа).

Содержание темы. Исторические вехи оптики. Оптические явления. Уравнения Максвелла. Интегральная и дифференциальная формы.

Тема 2 Волновое уравнение. (2 часа).

Содержание темы. Вывод волнового уравнения из системы уравнений Максвелла. Скорость света. Показатель преломления среды. Проверка решения для плоской монохроматической волны.

Тема 3 Основные свойства электромагнитной волны. (2 часа).

Содержание темы. Поперечность электромагнитной волны. Явление поляризации – естественное состояние поперечных волн. Степень поляризации естественных и искусственных источников. Правовинтовая тройка векторов. Световой вектор. Точеные и плоские источники света.

Раздел 2. Энергия световых полей. Фотометрия. (4 часа).

Тема 1 Энергия светового поля (2 часа).

Содержание темы. Плотность энергии светового поля. Вектор Умова - Пойтинга. Интенсивность света. Скалярное поле световой волны. Уравнение Гельмгольца. Понятие эйконала.

Тема 2 Основные понятия фотометрии (2 часа).

Содержание темы. Сравнительные характеристики лазерного и солнечного света. Световые пучки и импульсы: энергия, мощность, интенсивность. Светимость и освещённость. Закон обратных квадратов. Световые величины.

Раздел 3. Классическая теория излучения атомов и молекул. (8 часов)

Тема 1 Волновое уравнение для света в среде. (2 часа)

Содержание темы. Плоская монохроматическая световая волна в линейной однородной и изотропной среде. Комплексная диэлектрическая проницаемость, линейная оптическая восприимчивость и комплексный показатель преломления среды.

Тема 2 Классическая электронная теория дисперсии. (2 часа).

Содержание темы. Классическая электронная теория дисперсии Лоренца: показатель преломления среды, дисперсия и поглощение света в линейной изотропной среде. Дисперсия и поглощение света в линейной изотропной среде.

Тема 3 Распространение светового импульса в диспергирующей среде. (2 часа)

Содержание темы. Фазовая и групповая скорость. Дисперсионное соотношение среды. Нормальная и аномальные дисперсии. Среды с отрицательным показателем преломления. Спектроскопия.

Тема 4 Элементы металлооптики (2 часа).

Отражение света от поверхности металлов. Стоячие электромагнитные волны. Металлические зеркала.

Раздел 5. Сложение волн. Интерференция света. Интерферометры. (8 часов)

Тема 1 Интерференция света. Когерентность. (2 часа)

Содержание темы. Сложение волн. Стоячие волны. Поверхностные волны на границе проводящих сред. Интерференция света. Интерференционные явления в оптике, временная и пространственная когерентность. Степень когерентности.

Тема 2 Интерференция монохроматических волн. (2 часа).

Содержание темы. Интерференция монохроматических волн. Методы реализации интерференционной картины; интерферометр Майкельсона, схема Юнга, схема Ллойда, бипризма Френеля, билинза Бийе.

Тема 3 Типы интерференции (2 часа).

Содержание темы. Полосы равного наклона и равной толщины. Кольца Ньютона. Интерферометр Майкельсона. Интерференция в тонких плёнках. Просветлённая оптика.

Тема 4 Многолучевая интерференция (2 часа).

Содержание темы. Многолучевая интерференция. Интерферометр Фабри-Перо. Интерференция квазимонохроматического света: временная когерентность и время когерентности; функция когерентности; пространственная когерентность и площадь когерентности. Степень когерентности.

Раздел 6. Квантовая теория света. Законы Эйнштейна. (2 часа)

Тема 1 Квантовая природа электромагнитного излучения.

Содержание темы. Квантовая природа электромагнитного излучения. Принцип неопределенности в теории оптического сигнала и теорема Котельникова. Разрешающая сила оптической системы в классическом рассмотрении. Квантово-механическая модель дифракции монохроматического излучения на щели. Спонтанное и вынужденное излучение. Условия лазерного излучения.

Содержание лекционных занятий по дисциплине

4 семестр

Раздел 1. Введение в Фурье-оптику. Теория формирования оптического изображения. Когерентность. (6 часов)

Тема 1 Введение в Фурье оптику (2 часа).

Содержание темы. Понятия Оптическая система (ОС) и Оптический сигнал. Комплексный сигнал в оптике. Постановка задачи управления. Передаточная функция ОС. Прямая и обратная задачи анализа ОС.

Тема 2 Фурье анализ (2 часа).

Содержание темы. Фурье преобразование и его свойства. Примеры Фурье преобразования: Бесконечные периодические функции; Функции на конечном временном интервале; Комплексные функции.

Тема 3 Обобщенные функции и их свойства. (2 часа).

Содержание темы. Операции свертки и корреляции. Преобразование Гильберта. Авто и Взаимнокорреляционные функции (АКФ и ВКФ). Связь АКФ и функции Спектральной плотности мощности сигнала.

Раздел 2. Дифракция света. Дифракционное формирование изображения. (8 часов) Тема 1 Теория дифракции. (2 часа)

Содержание темы. Теория дифракции Кирхгофа. Приближение Френеля в теории дифракции. Зоны Френеля. Векторные диаграммы. Дифракция Френеля на одномерных структурах.

Тема 2 Дифракционная теория формирования изображения. (2 часа)

Содержание темы. Дифракция от щели и отверстия. Дифракция Фраунгофера как пространственное преобразование Фурье. Предел разрешения оптических приборов. Камера Обскура.

Тема 3 Дифракционные решетки. (2 часа)

Содержание темы. Дифракционная решётка - характеристики. Типы дифракционных решёток. Вывод формулы дифракционной картины от плоской решетки. Основные и побочные максимумы. Дисперсионные характеристики решеток. Дифракционная спектроскопия.

Тема 4 Дифракция рентгеновских лучей (2часа).

Содержание темы Дифракция рентгеновских лучей на атомах кристаллической решетки. Формула Вульфа-Брегга. Дифрактометры в кристаллографии.

Раздел 3. Поляризация света. Оптика анизотропных сред. Эллипсоид показателя преломления (8 часов)

Тема 1 Оптическая анизотропия и основные эффекты кристаллооптики (2 часа).

Содержание темы. Причина оптической анизотропии. Анизотропия структуры среды. Двойное лучепреломление. Структура световой волны в анизотропном кристалле. Тензор диэлектрической восприимчивости. Собственные состояния поляризации световой волны в анизотропном кристалле.

Тема 2 Классификация анизотропных кристаллов (2 часа).

Содержание темы. Поляризация одноосных кристаллов, оо-е и ее-о поляризации. Неколлинеарность векторов D и E. Расчет скорости необыкновенной волны в одноосном анизотропном кристалле. Уравнение нормалей Френеля.

Тема 3 Эллипс и эллипсоид показателя преломления (2 часа).

Содержание темы. Уравнение эллипсоида обыкновенных и необыкновенных волн в одноосном и двуосном кристаллах. Построение эллипса и эллипсоида показателя преломления.

Тема 4 Поляризация световых волн в одноосном анизотропном кристалле (2 часа).

Содержание темы. Поляризация обыкновенной и необыкновенной световых волн в одноосном анизотропном кристалле. Взаимная ориентация обыкновенной и необыкновенной волн. Возможные состояния поляризации световой волны в одноосном кристалле. Управление состоянием поляризации.

Раздел 4. Вращение плоскости поляризации. Естественная и искусственная оптическая активность. Эффекты Фарадея и Керра (6 часов).

Тема 1 Двойное лучепреломление света на границе с анизотропной средой (2 часа).

Содержание темы. Механизмы двойного лучепреломления света на границе с анизотропной средой. Получение и анализ поляризованного света. Естественное вращение плоскости поляризации света.

Тема 2 Естественная оптическая активность (2 часа).

Содержание темы. Направление луча, задаваемое направлением вектора Пойнтинга. Интерференция поляризованных лучей. Управление поляризацией света. Компенсаторы.

Тема 3 Искусственная оптическая активность (2 часа).

Содержание темы. Наведенная анизотропия: электрооптические и магнитооптические эффекты. Эффекты Фарадея и Керра. Эффект Поккельса.

Раздел 5. Рассеяние света. Теории Рэлея и Эйнштейна. Спектроскопия ВКР (8 часов).

Тема 1 Рассеяние света (2 часа).

Содержание темы. Явление рассеяния света в мутных средах. Эффект Тиндаля. Индикатриса рассеяния. Рассеяние Рэлея и Ми. Упругое и неупругое рассеяние. Спектральные и поляризационные свойства рассеянного света (2 часа).

Тема 2 Теории рассеяние Рэлея и Ми (2 часа).

Содержание темы. Модель Рэлея рассеивающей среды. Формула Рэлея. Рассеяние когерентного света частицей, размеры которой сопоставимы с длиной волны света. Установки для наблюдения рассеяния Ми.

Тема 3 Статистическая теория рассеяния света в газах (2 часа).

Содержание темы. Основные понятия и предположения. Интенсивность света, рассеиваемая объемом газа. Индикатриса рассеяния для случая, когда возбуждающий свет монохроматический и поляризован. Индикатриса рассеяния для случая, когда возбуждающий свет монохроматический и неполяризованн.

Тема 4 Спектроскопия ВКР (2 часа).

Содержание темы. Комбинационное рассеяние света. Спектроскопия КР. Рассеяние света в нелинейной среде. Вынужденное комбинационное рассеяние света. Спектроскопия ВКР.

Содержание практических/лабораторных занятий по дисциплине *3 семестр*.

Раздел 1. Уравнения Максвелла. Волновое уравнение. (6 часов/2 часа)

Тема 1 Введение. Уравнения Максвелла. (2 часа).

Содержание практических занятий. Решение задач на переход уравнений Максвелла от интегральной формы к дифференциальной.

Тема 2 Волновое уравнение. (2 часа/2 часа).

Содержание практических занятий. Решение задач на вывод волнового уравнения, вычисление показателя преломления и волнового вектора.

Содержание лабораторных занятий. Применение пакета Матлаб для выполнения компьютерного практикума по оптике 1

Тема 3 Волновое уравнение. (2 часа).

Содержание практических занятий. Доказательство поперечности световых волн. Решение задач для точеных и плоских источников света.

Раздел 2. Энергия световых полей. Фотометрия. (4 часа/2 часа).

Тема 1 Энергия светового поля (2 часа/2 часа).

Содержание практических занятий. Решение задач на вычисление плотности энергии светового поля, интенсивности и эйконала световой волны.

Содержание лабораторных занятий. Применение пакета Матлаб для выполнения компьютерного практикума по оптике 2

Тема 2 Основные понятия фотометрии (2 часа).

Содержание практических занятий. Решение задач на вычисление энергии, мощности, интенсивности и применении законов светимости и освещённости.

Раздел 3. Классическая теория излучения атомов и молекул. (8 часов/4 часа)

Тема 1 Волновое уравнение для света в среде (2 часа/2 часа).

Содержание практических занятий. Решение задач на вычисление комплексной диэлектрической проницаемости и линейной оптической восприимчивости.

Содержание лабораторных занятий. Изучение графических операций в среде Матлаб

Тема 2 Классическая электронная теория дисперсии. (2 часа).

Содержание практических занятий. Решение задач на вычисление комплексной оптическая восприимчивость и комплексного показателя преломления среды.

Тема 3 Распространение светового импульса в диспергирующей среде. (2 часа/2 часа).

Содержание практических занятий. Выполнение заданий в рамках рейтинга 1.

Содержание лабораторных занятий. Математические операции в среде Матлаб. Тема 4 Элементы металлооптики (2 часа).

Содержание практических занятий. Решение задач на закон Друде-Лоренца

Раздел 4. Геометрическая оптика. Инварианты. Принцип Ферма. (8 часов/4 часа)

Тема 1 Приближение коротких длин волн. Уравнение эйконала (2 часа/2 часа).

Содержание практических занятий. Методы применения принципа Ферма.

Содержание лабораторных занятий. Символьные вычисления в Матлаб.

Тема 2 Преломление и отражение света. (2 часа).

Содержание практических занятий. Решение задач на законы преломления и отражения на плоской и сферической поверхностях.

Тема 3 Идеальные оптические системы. (2 часа/2 часа).

Содержание практических занятий. Выполнение заданий к рейтингу 2

Содержание лабораторных занятий. Матричные вычисления. Обсуждение заданий к компьютерному практикуму.

Тема 4 Матричная теория Гауссовой оптики (2 часа).

Содержание практических занятий. Решение задач на вычисление матрицы преобразования и обратной матрица преобразования.

Раздел 5. Сложение волн. Интерференция света. Интерферометры. (8 часов/4 час)

Тема 1 Интерференция света. Когерентность. (2 часа/2 часа)

Содержание практических занятий. Составление матрицы преломления, переноса, одной преломляющей поверхности.

Содержание лабораторных занятий. Составление матрицы преломления, переноса, одной преломляющей поверхности. Вычисление матрицы преобразования.

Тема 2 Интерференция монохроматических волн. (2 часа).

Содержание практических занятий. Решение задач на вычисление интерференционной картины монохроматических волн от различных схем реализации интерференции.

Тема 3 Типы интерференции (2 часа/2 часа).

Содержание практических занятий. Решение задач на вычисление интерференционной картины для разных типов интерференции: полосы равного наклона и равной толщины.

Содержание лабораторных занятий. Выполнение лабораторной работы Геометрическая оптика.

Тема 4 Многолучевая интерференция (2 часа).

Содержание практических занятий. Выполнение заданий рейтинга 3

Раздел 6. Квантовая теория света. Законы Эйнштейна. (2 часа/2 часа)

Тема 1 Квантовая природа электромагнитного излучения (2 часа/2 часа).

Содержание практических занятий. Решение задач на многолучевую интерференцию.

Содержание лабораторных занятий. Защита работ компьютерного практикума.

Содержание практических занятий по дисциплине

4 семестр

Раздел 1. Введение в Фурье-оптику. Теория формирования оптического изображения. Когерентность. (

Тема 1 Введение в Фурье оптику

БПФ в Матлаб. Алгоритм реализации преобразования Фурье.

Тема 2 Фурье анализ

Аналитическое решение задач на преобразование Фурье.

Тема 3 Обобщенные функции и их свойства.

Вычисление АКФ, ВКФ и спектра мощности оптического сигнала.

Раздел 2. Дифракция света. Дифракционное формирование изображения.

Тема 1 Теория дифракции.

Решение задач – вычисление параметров зон Френеля.

Тема 2 Дифракционная теория формирования изображения

Решение задач дифракции от щели и отверстия.

Тема 3 Дифракционные решетки

Решение задач дифракции на дифракционной решетки.

Тема 4 Дифракция рентгеновских лучей

Решение задач на закон Вульфа-Брегга. Дифрактометры.

Раздел 3. Поляризация света. Оптика анизотропных сред. Эллипсоид показателя преломления

Тема 1 Оптическая анизотропия и основные эффекты кристаллооптики

Решение задач на двойное лучепреломление.

Тема 2 Классификация анизотропных кристаллов

Выполнение заданий Рейтинга 1.

Тема 3 Эллипс и эллипсоид показателя преломления

Составление тензора диэлектрической восприимчивости. Вычисление собственных состояний поляризации световой волны в анизотропном кристалле.

Тема 4 Поляризация световых волн в одноосном анизотропном кристалле

Составление уравнения эллипсоида обыкновенных и необыкновенных волн в одноосном и двуосном кристаллах. Построение эллипса и эллипсоида показателя преломления.

Раздел 4. Вращение плоскости поляризации. Естественная и искусственная оптическая активность. Эффекты Фарадея и Керра

Тема 1 Двойное лучепреломление света на границе с анизотропной средой

Решение задач на Двойное лучепреломление света в оптически активных средах.

Тема 2 Естественная оптическая активность

Решение задач на Эффекты Фарадея, Керра и Поккельса.

Тема 3 Искусственная оптическая активность

Выполнение заданий Рейтинга 2.

Раздел 5. Рассеяние света. Теории Рэлея и Эйнштейна. Спектроскопия ВКР

Тема 1 Рассеяние света.

Решение задач на упругое и неупругое рассеяние в мутных средах.

Тема 2 Теории рассеяние Рэлея и Ми

Решение задач на закон рассеяния Рэлея.

Тема 3 Статистическая теория рассеяния света в газах

Выполнение заданий Рейтинга 3.

Тема 4 Спектроскопия ВКР

Подведение итогов.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

3 семестр

Примерный перечень вопросов к рейтинг-контролю №1

- 1.Запишите уравнение для плоской монохроматической волны, распространяющейся в направлении орта h'.
- 2.Запишите уравнение для плоской линейно поляризованной монохроматической волны, распространяющейся в направлении оси *z* (одномерный случай).

- 3. Запишите уравнение для плоской монохроматической волны, поляризованной по кругу и распространяющейся в направлении оси z (одномерный случай).
- 4. Какой параметр электромагнитного поля доступен для экспериментального определения в случае оптического диапазона длин волн?
- 5. Каково условие квазимонохроматичности в частотной области и как его можно трактовать во временной области?
- 6. Изобразите пространственное распределение векторов \vec{E} и \vec{H} в линейно поляризованной волне, распространяющейся вдоль оси z .
- 7. Сформулируйте принцип суперпозиции для электромагнитных волн оптического диапазона.
 - 8. Электромагнитная волна в вакууме является поперечной. Как Вы это понимаете?
 - 9. Что такое кривая видности человеческого глаза?
- 10. При выполнении каких условий волновой фронт лазерного гауссова пучка может считаться плоским? Ответ поясните.
- 11. При выполнении каких условий волновой фронт лазерного гауссова пучка может считаться сферическим? Ответ поясните.

Примерный перечень вопросов к рейтинг-контролю №2

- 1. Изобразите на сфере Пуанкаре точку, соответствующую поляризованной по левому эллипсу волне с отношением ортогональных амплитуд $a_1 / a_2 = 3$ и сдвигом фаз между ними $\delta = \pi/6$. Принять $S_0 = 1$.
- 2. Изобразите на сфере Пуанкаре точку, соответствующую поляризованной по правому эллипсу волне с отношением ортогональных амплитуд $a_1/a_2=2$ и сдвигом фаз между ними $\delta=\pi/4$. Принять $S_0=1$.
- 3. Изобразите на сфере Пуанкаре точку, соответствующую линейно поляризованной волне единичной интенсивности ($S_0 = 1$), вектор \vec{E} которой наклонен под углом 135° к оси абсцисс.
- 4. Вычислите параметры Стокса для плоской волны, поляризованной по правому кругу. Принять $S_0 = 1$.
- 5. Вычислите параметры Стокса для плоской волны, поляризованной по левому кругу. Принять $S_0 = 1$.
- 6. Светимостью $K[\jmath M / M^2]$ назовем полный световой поток, посылаемый единицей светящейся поверхности в одну сторону, т.е в телесный угол $\Omega = 2\pi$. Найти выражение для K, если источник подчиняется закону Ламберта и имеет яркость $B_{\nu} = B$ и не зависящую от угла наблюдения.
- 7. Вычислите параметры Стокса для плоской волны, линейно поляризованной под углом $\pi/3$ к горизонтальной оси. Принять $S_0=1$.
- 8. Изобразите на сфере Пуанкаре точку, соответствующую поляризованной по правому эллипсу волне с отношением малой и большой осей b/a=1/2 и углом между большой осью эллипса и осью абсцисс, равным $\pi/4$. Принять $S_0=1$.
- 9. Изобразите на сфере Пуанкаре точку, соответствующую поляризованной по левому эллипсу волне с отношением малой и большой осей b/a=1/2 и углом между большой осью эллипса и осью абсцисс, равным $\pi/3$. Принять $S_0=1$.
- 10. Изобразите на сфере Пуанкаре точку, соответствующую поляризованной по левому эллипсу волне с отношением малой и большой осей 1/3 и углом между большой осью эллипса и осью абсцисс, равным $\pi/6$. Принять $S_0=1$.

11. В центре шара находится точечный источник света, имеющий силу света 1 кандела. Найдите освещенность поверхности (в [лк]), если радиус шара равен 0.5 м.

Примерный перечень вопросов к рейтинг-контролю №3

- 1. Изобразите классическую атомную модель Томсона и запишите уравнение колебаний оптического электрона.
 - 2. Сформулируйте условия излучения движущимся зарядом.
- 3. Как быстро изменяется в пространстве переменное электрическое поле, излучаемое диполем, по сравнению с постоянным полем зарядов, его составляющих?
- 4. Излучает ли диполь в направлении, перпендикулярном направлению колебаний? Ответ обоснуйте.
- 5. Излучает ли диполь в направлении, коллинеарном направлению колебаний? Ответ обоснуйте.
- 6. При выполнении каких условий справедливы следующие выражения для полей, излучаемых диполем $E = \frac{1}{c^2 r} [h, [h, h](t-r/c)]], H = -\frac{1}{c^2 r} [h, h](t-r/c)]$?
- 7. Покажите, что вектора h (орт в направлении наблюдения), E (электрическое поле) и H (магнитное поле) для классического осциллятора составляют правую тройку.
- 8. Является ли атомный диполь высокодобротной/ низкодобротной системой? Ответ обоснуйте.
- 9. Чему равно среднее по электрическому полю для ансамбля независимых осцилляторов? Какова средняя интенсивность для того же ансамбля?
 - 10. Какие физические механизмы приводят к уширению спектральных линий?

Семестр 4

Примерный перечень вопросов к рейтинг-контролю №1

- 1. Запишите выражение для естественно уширенной линии.
- 2. Чем определяется спектральная ширина на половине высоты для естественно уширенной линии?
- 3. Сравните по порядку величины естественную и доплеровскую ширины линий для одного и того же атома.
- 4. Возможно ли экспериментально наблюдать естественно уширенный контур линии?
 - Какова физическая природа столкновительного уширения?
 - 6. Какой вид имеет кривая резонансного поглощения?
 - 7. Сформулируйте основное отличие однородного уширения от неоднородного.
- 8. Покажите, что ортогонально поляризованные световые волны не интерферируют.
 - 9. Каковы условия осуществления стационарной интерференционной картины?
- 10. В интерферометре Майкельсона в силу технологических погрешностей не удалось изготовить светоделитель с R = T = 1/2. Реально R = 0.59. Как изменится вид интерференционной картинки по сравнению с идеальным теоретическим случаем?
- 11. Что означает фраза: «Интерферометр настроен на бесконечно широкую полосу полосы конечной ширины?».

Примерный перечень вопросов к рейтинг-контролю №2.

1. На тонкую пленку (n = 1,33) падает параллельный пучок белого света. Угол падения $\varphi = 52^{\circ}$. При какой толщине пленки зеркально отраженный свет будет наиболее сильно окрашен в желтый цвет ($\lambda = 0,60$ мкм)?

- 2. Найти минимальную толщину пленки с показателем преломления n=1,33, при которой свет с длиной волны $\lambda_1=0,64$ мкм испытывает максимальное отражение, а свет с длиной волны $\lambda_1=0,40$ мкм не отражается совсем. Угол падения света равен 30°.
- 3. Для уменьшения потерь света из-за отражения от поверхности стекла стекло покрывают тонким слоем вещества с показателем преломления $n' \approx \sqrt{n}$, где n показатель преломления стекла. В этом случае амплитуды световых колебаний, отраженных от обеих поверхностей такого слоя, будут одинаковыми. При какой толщине этого слоя отражательная способность стекла в направлении нормали будет равна нулю для света с длиной волны λ ?
- 4. Свет с длиной волны $\lambda=0.55$ мкм падает нормально на поверхность стеклянного клина. В отраженном свете наблюдают систему интерференционных полос, причем расстояние между соседними темными полосами $\Delta x=0.21$ мм. Определить угол между гранями клина.
- 5. Если в схеме интерферометра Майкельсона зеркало, расположенное в правом плече, движется также вправо, то интерференционные полосы в поле зрения смещаются вправо или влево (ненужное зачеркнуть). Почему?
- 6. Интерферометр Майкельсона освещается сферической монохроматической волной. Изобразите (качественно) вид интерференционной картины, наблюдаемой на выходе интерферометра.
- 7. Оцените максимальное расстояние, на которое можно перемещать зеркало в метрологическом интерферометре Майкельсона, если он освещается специализированным He-Ne лазером ($\lambda=632.8 \mu M$) излучающим две продольных моды ширина спектра излучения $\delta \upsilon=100$ М Γ ц.
- 8. Покажите, что площади зон Френеля (по крайней мере для 0-ой, 1-ой,...m-й) практически равны. Указание: площадь сферического сегмента дается формулой $S=2\pi rh$; где r радиус сферы, h высота сегмента.
- 9. На рисунке показана схема рефрактометра прибора для измерения показателя преломления прозрачных сред. Здесь S узкая щель, освещаемая светом с длиной волны $\lambda=0.589$ мкм, 1 и 2 кюветы длиной l=10.0 см. Пройдя диафрагму Д с двумя щелями, свет интерферирует на экране Э. В начале в обеих кюветах находится воздух с показателем преломления n=1,000277 .После замены воздуха в трубке 1 аммиаком картина сместилась вверх по экрану на N=17 полос. Определить показатель преломления аммиака.
- 10. В интерферометре Майкельсона при поступательном движении одного из зеркал видность интерференционной картины при его освещении желтым дублетом натрия ($\lambda_1 = 5890A$, $\lambda_2 = 5896A$) периодически уменьшалась до 0. Объяснить физическую природу эффекта и найти перемещение зеркала между двумя последовательными исчезновениями интерференционной картины.
- 11. Для интерферометра Фабри Перо с базой d=2,5cM определить: а) максимальный порядок интерференции для света с длиной волны $\lambda=0.5 m \kappa M$; б) область свободной дисперсии для той же длины волны.
- 12. Интерферометр Фабри Перо освещается гауссовым пучком He-Ne лазера, причем сам интерферометр находится в дальней зоне пучка. Будет ли наблюдаться характерная интерференционная картина в виде колец? Ответ обоснуйте.

Примерный перечень вопросов к рейтинг-контролю №3

1. На дифракционную решетку падает нормально волна с длиной волны $\lambda_1=0.65\,\mu m$. При этом угол дифракции во втором порядке $\varphi_{II}=45^{\rm o}$. Определить угол дифракции φ_{III} в третьем порядке для длины волны $\lambda_2=0.5\,\mu m$.

- 2. При нормальном падении света на дифракционную решетку оказалось, что под углом $\varphi = 35^{\circ}$ дифрагируют волны с $\lambda_1 = 0.63 \mu m$ и $\lambda_2 = 0.42 \mu m$, причем для второй волны максимальный порядок в спектре m = 5. Определить период решетки.
- 3. Определить длину волны λ монохроматического света, нормально падающего на решетку с периодом $d=2.2\,\mu m$, если угол $\Delta \varphi$ между направлениями на максимумы первого и второго порядков составляет 15°.
- 4. Свет с длиной волны $\lambda = 0.53 \mu m$ нормально падает на решетку, период которой $d = 1.5 \mu m$. Определить угол φ с нормалью к решетке, под которым образуется максимум наибольшего порядка.
- 5. Свет с длиной волны $\lambda = 0.53 \, \mu m$ под углом $\theta = 60^{\circ}$ падает на решетку, период которой $d = 1.5 \, \mu m$. Определить угол φ с нормалью к решетке, под которым образуется максимум наибольшего порядка.
- 6. В фокальной плоскости спектрографа был получен спектр желтого дублета натрия с использованием двух различных решеток (см. рисунок). Как соотносятся параметры решетки n_1 и n_2 , N_1 и N_2 (ответ в терминах <,>,=)?
- 7. Определить длину волны спектральной линии, изображение которой, даваемое дифракционной решеткой в спектре третьего порядка, совпадает с изображением линии $\lambda = 486.1$ нм в спектре четвертого порядка.
- 8. Сформулируйте краевые условия Кирхгофа для дифракционной задачи. В чем смысл «оптического приближения»?
- 9. Какую разрешающую силу должен иметь спектральный аппарат для разрешения желтого дублета натрия ($\lambda_1 = 589.0$ нм, $\lambda_2 = 589.6$ нм). Каково должно быть при этом минимальное число штрихов N_{\min} у дифракционной решетки, работающей в первом порядке, чтоб она разрешала этот дублет?
- 10. Изменяется ли разрешающая сила дифракционной решетки при изменении угла падения света на эту решетку? (Ответ пояснить).
- 11. Сформулируйте преимущества фазовых отражательных решеток (эшелеттов) в сравнении с амплитудными решетками, работающими на пропускание?
- 12. Вы получаете голограмму маленького зеркально отражающего шарика в схеме Лейта Упатниекса. Нарисуйте качественно вид почернения фотоэмульсии.

5.2. Промежуточная аттестация по итогам освоения дисциплины (экзамен).

Экзамен предполагает письменный ответ студента на теоретический вопрос, проиллюстрированный примером из комплексного отчёта по практическим и лабораторным занятиям.

Примерный перечень вопросов к экзамену

3 семестр:

- 1. Уравнения Максвелла (общий случай и в вакууме).
- 2. Волновое уравнение. Вывод из уравнений Максвелла.
- 3. Гармонические волны. Уравнения волн: плоская, сферическая.
- 4. Электромагнитная природа световых волн и ее экспериментальное подтверждение в опытах Герца.
- 5.Излучение реальных источников. Модулированные волны. Случайно модулированные волны.
- 6. Гауссов пучок, как важнейший тип лазерных пучков. Свойства гауссовых пучков.
- 7. Спектральное разложение в оптике. Принцип суперпозиции.
- 8. Поляризация света. Поперечность световой волны в свободном пространстве.
- 9. Состояния поляризации плоской монохроматической волны. Эллиптическая, круговая, линейная поляризации.
- 10. Параметры Стокса.

- 11. Сфера Пуанкаре.
- 12. Поток энергии в световой волне. Интенсивность света.
- 13. Энергия, мощность, интенсивность световых пучков и импульсов.
- 14. Основные понятия фотометрии.
- 15. Атом как элементарный источник света.
- 16. Решение задачи об излучении классического атома/ диполя.
- 17. Гармонические колебания диполя. Полная мощность излучения диполя.
- 18. Радиационное затухание.
- 19. Излучение ансамбля осцилляторов. Спектр излучения.
- 20. Уширение спектральных линий: естественное, доплеровское и столкновительное уширение.
- 21. Понятие однородного и неоднородного уширения.
- 21. Линейный осциллятор в поле световой волны. Поглощение света осциллятором.
- 22. Поглощение света ансамблем осцилляторов. Закон Бугера.
- 23. Интерференция света. Опыт Юнга как первый интерференционный эксперимент.
- 24. Условие возникновения интерференционной картины.
- 25. Интерферометр Майкельсона. Интерференция монохроматических волн в интерферометре Майкельсона. Настройки интерферометра.
- 26. Полосы равного наклона и полосы равной толщины.
- 27. Интерференция немонохроматического света.
- 28. Понятие видности интерференционной картины.
- 29. Интерференция случайной световой волны.
- 30. Интерференция света от протяженного источника.
- 31. Понятие временной и пространственной когерентности света.
- 32. Многолучевая интерференция.
- 33. Интерферометр Фабри Перо. Формула Эйри и ее исследование для проходящего света.
- 34. Дифракция света. Роль дифракционных эффектов в оптике.
- 35. Принцип Гюйгенса Френеля. Зоны Френеля. Дифракционный интеграл Френеля.
- 36. Принцип Бабине. Дополнительные экраны.
- 36. Расходимость световых пучков в свете дифракционной теории.
- 37. Дифракционная оценка минимального размера пучка в фокусе.
- 38. Количественное решение дифракционной задачи. Интегральная теорема Кирхгофа.
- 39. Граничные условия Кирхгофа. Дифракционный интеграл Кирхгофа Гельмгольца.
- 40. Дифракция на периодических структурах. Основные типы решеток.

4 семестр:

- 1. Прямоугольная амплитудная решетка.
- 2. Спектральное описание пространственной структуры светового поля.
- 3. Линза оптический элемент, выполняющий преобразование Фурье.
- 4. Теория формирования оптического изображения по Аббе.
- 5. Дифракция Фраунгофера, как пространственное Фурье преобразование.
- 6. Разрешающая сила оптических приборов.
- 7. Граничные условия для поля на границе раздела.
- 8. Геометрия отражения и преломления.
- 9. Формулы Френеля. Угол Брюстера.
- 10. Фазовые соотношения на границе раздела сред.
- 11. Отражение света при нормальном падении на границу раздела. Стоячие волны.
- 12. Просветление оптики и диэлектрические зеркала.
- 13. Полное внутрение отражение. Исследование преломленной волны. Исследование отраженной волны.
- 14. Описание явлений на границе металлической поверхности.
- 15. Модель сплошной среды. Уравнения Максвелла для сплошной среды.

- 16. Классическая Лоренцевская/ осцилляторная модель среды.
- 17. Дисперсия и поглощение света в линейной изотропной среде.
- 18. Нормальная и анормальная дисперсия.
- 19. Распространение светового импульса в диспергирующей среде. Фазовая и групповая скорости света. Формула Рэлея.
- 20. Структура световой волны в анизотропном кристалле.
- 21. Материальное уравнение анизотропной среды. Тензор оптической восприимчивости.
- 22. Классификация кристаллических сред.
- 23. Собственные состояния поляризации световой волны в анизотропной среде.
- 24. Вычисление скорости распространения необыкновенной волны в одноосном кристалле.
- 25. Двойное лучепреломление на границе с анизотропной средой. Построение Гюйгенса.
- 26. Получение поляризованного света. (поляризационные призмы).
- 27. Анализ поляризованного света. (кристаллические пластины и компенсаторы).
- 28. Искусственная анизотропия. (эффекты Керра и Поккельса).
- 29. Френелевская теория оптической активности.
- 30. Магнитное вращение плоскости поляризации (эффект Фарадея). Оптический вентиль.
- 31. Задача рассеяния света микрочастицами (Эффект Тиндаля). Задача Ми.
- 32. Молекулярное (Рэлеевское) рассеяние света.
- 33. Комбинационное и мандельштамм бриллюэновское рассеяние света.
- 34. Спектроскопия комбинационного рассеяния света.

5.3. Самостоятельная работа обучающегося.

Самостоятельная работа студентов по дисциплине «Основы оптики» включает в себя следующие виды деятельности:

- 1) проработку учебного материала по конспектам, учебной и научной литературе;
- 2) подготовку к практическим и лабораторным занятиям;
- 3) выполнение курсовой работы;
- 3) подготовку по всем видам контрольных мероприятий, в том числе к текущему контролю знаний и промежуточной аттестации.

Темы для самостоятельной работы студентов

3 семестр:

- 1. Принцип суперпозиции в оптике гласит, что...;
- 2. Волновой фронт это ...;
- 3. Плоская монохроматическая волна это волна, у которой ...;
- 4. Сферическая монохроматическая волна это волна, у которой ...;
- 5. Уравнение для плоской монохроматической волны имеет вид: ...:
- 6. В свободном пространстве электромагнитная волна поперечна. Что это означает?
- 7. Правая поляризация соответствует волне, для которой при распространении от источника к наблюдателю ...;
- 8. Наиболее общий вид поляризации светового пучка Он характеризуется следующими параметрами...;
- 9. Круговая (циркулярная) поляризация является частным видом поляризации эллиптической и характеризуется ...;
- 10. Линейная поляризация представляет собой простейший случай поляризационного состояния, при котором ...;
- 11.B оптике основные величины, характеризующие световое поле в теоретическом описании это ...;
- 12.В оптике основной величиной, характеризующей световое поле в эксперименте, является ...;
 - 13. Интенсивность светового поля это ...;

- 14. Кривая видности человеческого глаза определяет его чувствительность к различным длинам волн и имеет следующий вид (примерно);
 - 15. Покоящийся или равномерно движущийся заряд не излучает, излучает заряд, ...;
 - 16. Естественная (радиационная) ширина спектральной линии обусловлена ...;
 - 17. Доплеровское уширение спектральной линии обусловлено ...;
 - 18. Столконовительное уширение спектральной линии обусловлено ...;
- 19. Среднее поле/ средняя интенсивность ансамбля невзаимодействующих осцилляторов равна;
 - 20. В дальней зоне гауссов пучок имеет практически ... волновой фронт;
 - 21. В ближней зоне гауссов пучок имеет практически ... волновой фронт;
 - 22. Изобразить схему интерферометра Майкельсона/ Юнга;
 - 23. Условие существования интерференции состоят в том, что ...;
 - 23. Видность интерференционной картины описывается формулой ...;
 - 24. Время когерентности света это параметр, определяемый следующим образом:
 - 25. Принцип Гюйгенса-Кирхгофа формулируется следующим образом:
 - 26. Число Френеля является важнейшей характеристикой дифракции и показывает.
 - 27. Дифракционная длина это длина Z при которой ...;
- 28. Граничные условия Кирхгофа являются приблизительными. Они дают правильный результат только в случае;

4 семестр

- 1. Понятия "дальняя" и "ближняя" зона в дифракционной теории.
- 2. "Угловая дисперсия и разрешающая способность (сила) дифракционной решётки.
- 3. Чем определяется разрешающая способность микроскопа?
- 4. Чем определяется разрешающая способность телескопа?
- 5. Линейная оптическая среда это среда, для которой ...
- 6. Дать определение понятия «фазовая скорости света».
- 7. Дать определение понятия «групповая скорости света».
- 8. Дать определение понятия "нормальная" дисперсия.
- 9. Дать определение понятия "аномальная" дисперсия.
- 10. Сформулируйте граничные условия для тангенциальной компоненты вектора E на плоской границе раздела двух сред.
- 11. Сформулируйте граничные условия для нормальной компоненты вектора D на плоской границе раздела двух сред.
- 12. Понятие "угол Брюстера".
- 13. Понятие "полное внутреннее отражение".
- 14. Дать определение понятий "изотропная" и "анизотропная" среда.
- 15. Оптическая ось кристалла это
- 16. Главная плоскость в анизотропной среде это
- 17. Дать определение понятий одноосного и двуосного кристалла.
- 18. Обыкновенная волна в одноосном кристалле это
- 19. Необыкновенная волна в одноосном кристалле это....
- 20. Изобразить на рисунке взаимную ориентацию векторов E, D, K, U, U в обыкновенной и необыкновенной волне.
- 21. Что такое «поляризатор»? Приведите примеры физической реализации данного оптического устройства.
- 22. Что такое «Четверть/ полуволновая пластинка»? Приведите примеры физической реализации данного оптического устройства.
- 23. Что такое «эффект Фарадея»?
- 24. Дайте определение понятия "упругое" рассеяние света.
- 25. Дайте определение понятия "неупругое" рассеяние света.
- 26. Принципы формирования изображений.

- 27. Принцип Гюйгенса в формулировке Кирхгофа. Дифракция частично когерентного света.
- 28. Представление о голографии. Методы создания голографических изображений.
- 29. Механизм магнитного вращения плоскости поляризации.
- 30. Классическая теория излучения и поглощения. Комбинационное рассеяние света.

Примерные темы и задания для курсовых работ.

4 семестр.

$Tема\ 1.$ Основные физические закономерности и практическое использование отражения и преломления плоских волн.

Задание

- 1) каковы основные свойства и характеристики электромагнитных волн;
- 2) как получаются законы отражения и прохождения плоских электромагнитных волн для плоской границы раздела диэлектрических сред;
 - 3) вывести формулы Френеля;
- 4) рассмотреть эффекты, связанные с распределением энергии поля падающей на плоскую границу раздела волны и поляризационные эффекты;
- 5) какие устройства могут быть созданы для использования исследуемых эффектов на практике.

Тема 2. Распространение ТЕ-волн в слоистых средах.

Задание

- 1) каковы основные свойства и характеристики электромагнитных волн;
- 2) как получены основные дифференциальные уравнения, описывающие законы, определяющие взаимодействие плоских электромагнитных волн на плоских границах раздела диэлектрических сред;
- 3) как выводятся выражения для элементов характеристической матрицы слоистой среды;
- 4) получить выражения для амплитуд отраженной и прошедшей сквозь слоистую среду волн;
 - 5) какие устройства могут быть созданы на основе исследуемых эффектов на практике.

Тема 3. Распространение ТМ - волн в слоистых средах.

Задание

- 1) каковы основные свойства электромагнитного поля, методы описания и анализа этих полей:
- 2) как получены основные дифференциальные уравнения, описывающие законы, определяющие взаимодействие плоских электромагнитных волн на плоских границах раздела диэлектрических сред;
- 3) как выводятся выражения для элементов характеристической матрицы слоистой среды;
- 4) получить выражения для амплитуд отраженной и прошедшей сквозь слоистую среду волн;
 - 5) какие устройства созданы для использования исследуемых эффектов на практике.

Тема 4. Распространение электромагнитных волн в анизотропных средах. Распространение плоских волн в кристаллических средах.

Задание

- 1) какие среды называются анизотропными, какова их классификация и характеристики;
- 2) какие существуют методы анализа волн в анизотропных средах;
- 3) рассмотреть различные варианты получения дисперсионных уравнений;
- 4) как получено уравнение Френеля для анизотропных и негиротропных кристаллов;
- 5) дать качественный анализ полученных выражений.

Тема 5. Оптические свойства кристаллов.

Задание

- 1) какие среды называются анизотропными, какова их классификация и характеристики;
- 2) какие существуют методы анализа волн в анизотропных средах;
- 3) рассмотреть различные варианты получения дисперсионных уравнений, в том числе, и для одноосных кристаллов;
 - 4) как получено уравнение Френеля для одноосных кристаллов;
 - 5) дать качественный анализ полученных выражений.

Тема б. Основы геометрической оптики. Приближение очень коротких волн.

Задание

- 1) в чем состоит приближение геометрической оптики;
- 2) как получено уравнение эйконала, уравнение переноса, в чем состоит их физический смысл;
 - 3) получить формулы для интенсивности в рамках геометрической оптики;
 - 4) сформулировать границы применимости геометрической оптики;

Тема 7. Интерференция двух монохроматических волн. Стоячие волны.

Задание

- 1) в чем состоит сущность явления интерференции;
- 2) проанализировать интерференцию двух монохроматических волн; привести примеры, демонстрирующие явление интерференции;
- 3) изучить методы измерения длины волны и угловых размеров, основанные на явлении интерференции;
 - 4) дать определение стоячих волн, сформулировать их физические особенности.

Тема 8. Применение импедансных граничных условий для анализа отражения электромагнитных волн от проводящих поверхностей.

Задание

- 1) ознакомиться с различными способами формулировки граничных условий в электродинамике;
- 2) изучить поведение преломленного поля в среде с большой проводимостью и убедиться, что поле носит характер плоской волны, распространяющейся нормально к границе раздела;
- 3) как получается выражение приближенного граничного условия Леонтовича-Щукина, в чем состоит приближение;
- 4) проанализировать, в каких случаях целесообразно применять импедансные граничные условия.

Тема 9. Явление дисперсии электромагнитных волн в диэлектриках.

Задание

- 1) как получаются уравнения электромагнитного поля для сред с дисперсией;
- 2) для определения зависимости диэлектрической проницаемости от частоты (закона дисперсии) изучить решение задачи о взаимодействии электромагнитной волны с имеющимися в среде зарядами на примере простейшей модели диэлектрика совокупности нейтральных молекул;
- 3) проанализировать решение уравнения движения электронов в молекуле с целью определения вектора объемной плотности поляризации (поляризуемости), найти их смещение как функцию поля;
 - 4) как зависят показатель преломления и коффициент поглощения от частоты.

Тема 10. Распространение волн в средах с учетом пространственной дисперсии (изотропные гиротропные среды).

Задание

- 1) как получаются уравнения электромагнитного поля для сред с дисперсией;
- 2) записать материальные уравнения при условии нелокальности связи между векторами напряженности электрического поля и электрической индукции;
- 3) проанализировать зависимость частоты от волнового вектора в простейшем случае слабой пространственной дисперсии;

4) как формулируется закон изменения тензора диэлектрической проницаемости от волнового вектора.

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕННОСТЬ
,		Наличие в электронном каталоге ЭБС
Основная литература*		•
1. Варданян, В. А. Физические основы оптики: учебное пособие / В. А. Варданян. — 2-е изд., перераб. — Санкт-Петербург: Лань, 2018. — 272 с. — ISBN 978-5-8114-2970-7.— Текст: электронный// Лань: электронно-библиотечная система.	2018	https://e.lanbook.com/book /106868
2.Зверев, В. А. Основы вычислительной оптики: учебное пособие / В. А. Зверев, И. Н. Тимощук, Т. В. Точилина. — Санкт-Петербург: Лань, 2018. — 356 с. — ISBN 978-5-8114-3140-3.	2018	https://e.lanbook.com/book /108450
3. Сергеева, О. Н. Сборник заданий для практических занятий по дисциплине «Основы оптики и светотехники» : учебнометодическое пособие / О. Н. Сергеева, Г. М. Некрасова. — Тверь : Тверская ГСХА, 2018. — 28 с.	2018	https://e.lanbook.com/book /134195
Дополнительная литература		
1. Суханов И.И. Основы оптики. Теория оптического изображения [Электронный ресурс]: учебное пособие/ Суханов И.И.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2015.— 108 с.	2015	http://www.iprbookshop.ru/91641.html
2. Ремпель С.В. Основы оптики [Электронный ресурс]: учебное пособие/ Ремпель С.В.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2013.— 132 с.	2013	http://www.iprbookshop.ru/68363.html.
3. Степанова В.А. Физика. Основы волновой оптики [Электронный ресурс]: учебное пособие/ Степанова В.А.— Электрон. текстовые данные.— Москва: Издательский Дом МИСиС, 2012.— 128 с.	2012	http://www.iprbookshop.ru/56600.html.

6.2. Периодические издания

- 1. Квантовая электроника: http://www.quantum-electron.ru
- 2. Успехи физических наук: http://ufn.ru
- 3. Журнал технической физики, Письма в ЖТФ, Оптика и спектроскопия: http://journals.ioffe.ru/pjtf

6.3. Интернет-ресурсы

- 1. http://www.laser.ru
- 2. http://www.cislaser.com
- 3. https://www.comsol.ru/events/
- 4. http://www.exponenta.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий практического/лабораторного типа, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Практические и лабораторные занятия проводятся в аудитории (компьютерном классе) 5116-3 (или аналогичном компьютерном классе в зависимости от сетки расписания).

Перечень используемого лицензионного программного обеспечения:

- 1) GPSS World Student Version (свободно распространяемое);
- 2) MS Word;
- 3) MS PowerPoint;
- 4) MS Visual Studio.

Рабочую программу составил <u>проф. каф. ФИПМ</u>	А, Бутковский О.Я.
(должность	, ФИО, подпись)
Рецензент	
	А.В. Осипов о работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседани	
Протокол №1 от 30.08.2021 года	mapagasi i
Заведующий кафедрой	С.М. Аракелян
•	О, подпись)
Рабочая программа рассмотрена и одобрена	12 03 05
на заседании учебно-методической комиссии н Протокол №1 от 30.08.2021 года	аправления 12.03.03
Председатель комиссии	С.М. Аракелян
председатоль компент	(ФИО, должность, подпись)
ЛИСТ ПЕРЕУТ	верждения
РАБОЧЕЙ ПРОГРАМ!	мы дисциплины
Рабочая программа одобрена на 20 <u>Да</u> / 20 <u>Да</u>	
Протокол заседания кафедры № от 30.	<i>Мо</i> года
Заведующий кафедрой	VI DAI NOT
опредующий кафедром	1
	\mathcal{V}
Рабочая программа одобрена на 20/ 20	_ учебный года
Протокол заседания кафедры № от	года
Заведующий кафедрой	
Рабочая программа одобрена на 20 / 20	_ учебный года
Протокол заседания кафедры № от	года
Заведующий кафедрой	