Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

<u>Институт прикладной математики, физики и информатики</u> (Наименование института)

УТВЕРЖДАЮ:

— раз радиректор института

— к.С. Хорьков

математики

— маними в раз радиректор института

— к.С. Хорьков

— математики

— маними в раз радиректор института

— маними в радиректор института

— маними в

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

КВАНТОВАЯ МЕХАНИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА

(наименование дисциплины)

направление подготовки / специальность

12.03.05 Лазерная техника и лазерные технологии

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Лазерные и квантовые технологии

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Квантовая механика и статистическая физика» являются: приобретение углубленных знаний по ключевым разделам квантовой физики; отражающих современное состояние науки и техники; фундаментальных принципов, лежащих в основе современных научно-технических достижений; формирование способностей использовать современные технические средства при решении задач профессиональной деятельности; формирование готовности к обоснованию принятых технических решений с учётом экономических и экологических последствий их применения.

Задачи дисциплины:

- изучение понятий и принципов физической теории и эксперимента;
- развитие навыков составления физических моделей и решения нелинейных уравнений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Квантовая механика и статистическая физика» относится к дисциплинам обязательной части учебного плана.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции	Планируемые результаты обучения по дисципл достижения компет		Наименование оценочного
(код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора	Результаты обучения по дисциплине	средства
ОПК-1 Способен применять естественнонауч ные и общеинженерны е знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектирование м, конструирование м и технологиями производства лазерной техники	ОПК-1.1. Знает основные законы естественных наук, методы математического анализа и моделирования, основные законы и методы общеинженерных дисциплин, основные принципы разработки и производства элементов и устройств лазерной техники, основную номенклатуру лазерной техники, особенности ее конструкции, технологии производства, а также условия и методы их эксплуатации. ОПК-1.2. Умеет применять естественнонаучные и инженерные знания для проектирования, конструирования и производства лазерной техники. ОПК-1.3. Владеет методами расчетов и проектирования, а также компьютерными системами, используемыми при моделировании и проектировании лазерных установок, комплексов, систем и лазерных технологий.	правовые основы охраны объектов исследования; виды и формы охранных документов, их характеристики; особенности охраны объектов интеллектуальной собственности в области лазерной техники и лазерных технологий; современные проблемы и специфику исследований и разработок в области лазерной техники, оптических материалов и лазерных технологий; отечественные и международные стандарты по качеству и особенности их применения в области лазерной техники и лазерных технологий; современную научную картину мира. Умеет: применять актуальную нормативную документацию в области профессиональной деятельности; выбирать и использовать адекватные поставленной	Тестовые вопросы Ситуационны е задачи Практико-ориентирован ное задание

задаче методы её решения, в том числе нетрадиционные и использующие междисциплинарные знания: • работать с записями по качеству; • выявлять естественнонаучную сущность проблемы. Владеет: • навыки оценки патентоспособности вновь созданных технических и художественноконструкторских решений; • навыки систематизации и анализа отобранной документации в области научных исследований и защиты интеллектуальной собственности; • навыки выработки стратегии и оценки достижимости решения задач исследований и разработок в области лазерной техники, оптических материалов и технологий с учётом правовых ограничений и соблюдения стандартов по качеству; навыки формулирования целей и задач исследований и разработок с учётом сложившихся норм и традиций научного познания мира. ПК-1 Способен ПК-1.1. Знает принципы генерации Знает: Тестовые анализировать излучения лазерами, элементную базу • типовую структуру вопросы задачи по лазерной техники, основные типы и описания научного Ситуационны проектированию характеристики оптических систем е задачи исследования на этапе его типовых систем, лазерных оптико-электронных приборов планирования; Практикоприборов, узлов и оборудования, принципы ориентирован • примеры постановки задач и деталей конструирования лазерных оптиконое залание научных исследований в лазерной электронных приборов, их узлов и области лазерной техники и техники, элементов, опасные и вредные лазерных технологий и в лазерных эксплуатационные факторы, их смежных областях. предельно-допустимые уровни оптико-Умеет: воздействия на человека, технику и электронных • работать с источниками приборов и окружающую среду при эксплуатации информации о программах систем лазерных систем и технологий. финансовой поддержки ПК-1.2. Умеет определять параметры и научных исследований; характеристики элементов лазерных • определять актуальность систем и технологий для заданных планируемых научных условий и режимов эксплуатации, исследований на основе анализировать взаимодействие лазерного анализа источников научноизлучения с материалами и средами, технической информации в применять информационные ресурсы и области лазерной техники и технологии, представлять информацию в лазерных технологий. систематизированном виде, работать с Владеет (навыки): научно-технической литературой и • навыки составления

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ Трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов

Тематический план форма обучения – очная

		And Divi	auoy	TCHIM	4 - 04H	an			
№ Наименование тем и/или ра п/п дисциплины	Наименование тем и/или разделов/тем дисциплины		ра	Контактная работа обучающихся с педагогическим работником				18.8	Формы текущего
		Неделя семестра	Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки	Самостоятельная работа	контроля успеваемости, форма промежуточной аттестации (по семестрам)	
I.	Математический аппарат квантовой механики	6	1	2	2	-	-	10	
2	Основные положения квантовой механики и статистической физики.	6	2-8	12	12	•	-	22	рейтинг- контроль №1
3	Центральное поле.	6	9- 12	10	10	-	-	18	рейтинг- контроль №2
4	Теория возмущений.	6	13- 18	12	12	-	•	22	рейтинг- контроль №3
Bcer	о за 6 семестр:	-	-	36	36	-	-	72	Экзамен 36 ч.

Наличие в дисциплине КП/КР		-	-	-	8	-	-	-
Итого по дисциплине	S#3	-	36	36	=		72	Экзамен 36 ч.

Содержание лекционных занятий по дисциплине

Раздел 1. Математический аппарат квантовой механики.

Распределение Бозе-Эйнштейна и Ферми-Дирака. Принцип Паули и образование зон в кристаллах. Классификация твердых тел. Понятие состояния и суперпозиции состояний в квантовой теории. Уравнение Шредингера. Стандартные условия на волновую функцию. Смысл волновой функции.

Раздел 2. Основные положения квантовой механики и статистической физики.

Правила работы с операторами. Свойства линейных операторов. Средние значения. Представление операторов в матричной форме. Соотношение неопределенностей Гейзенберга. Операторы физических величин. Правила коммутации. Собственные ф-ции операторов координаты и импульса. Собственные ф-ции оператора углового момента. Производная от оператора. Зависимость от времени матричных элементов

Раздел 3. Центральное поле.

Энергетический спектр. Орбитали. Понятие электронного облака. Сферически симметричная потенциальная яма. Движение в кулоновском поле. Дискретный спектр. Волновые функции. Сплошной спектр.

Раздел 4. Теория возмущений.

Невырожденный случай. Случай близких уровней. Случай вырождения. Аномальный эффект Зеемана. Эффект Пашена-Бака. Линейный и квадратичный эффект Штарка. Нестационарная теория возмущений (теория квантовых переходов). Постоянное возмущение. Возмущение, периодически зависящее OT времени. Соотношение неопределённостей энергия-время. Вероятность перехода В единицу квантовой системы, модель взаимодействующей с термостатом, двухуровневый атом. Феноменологическое уравнение для матрицы плотности. Продольное и поперечное времена релаксации. Спектр поглощения. Спектр поглощения. Понятие об однородной и неоднородной ширинах уровней.

Содержание практических занятий по дисциплине

Раздел 1. Математический аппарат квантовой механики.

Тема 1. Правила работы с операторами (2ч.)

Раздел 2. Основные положения квантовой механики и статистической физики.

Тема 2. Решение уравнений Шредингера для частицы в различных силовых полях (6 ч).

Раздел 3. Центральное поле.

Тема 3. Правила квантования (4ч.).

Раздел 3. Центральное поле.

Тема 4. Формализм матрицы плотности (6ч.).

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Вопросы для рейтинг-контролей

Рейтинг-контроль № 1

- 1. Свойства гильбертова пространства.
- 2. Оператор в гильбертовом пространстве.

- 3. Понятие состояния квантово-механической системы, чистые и смешанные состояния.
- 4. Вычисление средних значений физических величин.
- 5. Правила работы с операторами.
- 6. Свойства линейных операторов.
- 7. Соотношение неопределенностей Гейзенберга.
- 8. Выражение операторов координаты и импульса в координатном и импульсном представлениях.

Рейтинг-контроль № 2

- 1. Выражения для операторов кинетической, потенциальной энергии, оператора Гамильтона частицы в потенциальном поле.
- 2. Оператор эволюции.
- 3. Момент количества движения. Собственные числа операторов квадрата и z-проекции момента количества движения.
- 4. Орбитальный момент количества движения. Матрицы Паули.
- 5. Центральное поле.
- 6. Движение частицы в центральном поле. Энергетический спектр.
- 7. Движение в кулоновском поле.
- 8. Связь квантовой механики с классической механикой
- 9. Теория возмущений.
- 10. Вариационные методы в квантовой механике.

Рейтинг-контроль № 3

- 1. Распределение Бозе-Эйнштейна и Ферми-Дирака
- 2. Принцип Паули и образование зон в кристаллах.
- 3. 3. Классификация твердых тел.
- 4. Понятие состояния и суперпозиции состояний в кв теории.
- 5. Уравнение Шредингера. Стандартные условия на волновую функцию.
- 6. Смысл волновой функции.
- 7. Соотношение неопределенностей Гейзенберга.
- 8. Аномальный эффект Зеемана.
- 9. Линейный и квадратичный эффект Штарка.
- 10. Двухуровневый атом.
- 11. Феноменологическое уравнение для матрицы плотности.
- 12. Продольное и поперечное времена релаксации. Спектр поглощения. Спектр поглощения.
- 13. Понятие об однородной и неоднородной ширинах уровней.

5.2. Промежуточная аттестация по итогам освоения дисциплины экзамен.

Экзаменационные вопросы

- 1. Свойства гильбертова пространства.
- 2. Оператор в гильбертовом пространстве.
- 3. Понятие состояния квантово-механической системы, чистые и смешанные состояния.
- 4. Правила работы с операторами.
- 5. Свойства линейных операторов.
- 6. Вычисление средних значений физических величин.
- 7. Выражение операторов координаты и импульса в координатном и импульсном представлениях.
- 8. Выражения для операторов кинетической, потенциальной энергии, оператора Гамильтона частицы в потенциальном поле.
- 9. Оператор эволюции.

- 10. Момент количества движения. Собственные числа операторов квадрата и z-проекции момента количества движения.
- 11. Орбитальный момент количества движения. Матрицы Паули.
- 12. Центральное поле.
- 13. Движение частицы в центральном поле. Энергетический спектр.
- 14. Движение в кулоновском поле.
- 15. Связь квантовой механики с классической механикой
- 16. Теория возмущений.
- 17. Вариационные методы в квантовой механике.
- 18. Распределение Бозе-Эйнштейна и Ферми-Дирака
- 19. Принцип Паули и образование зон в кристаллах.
- 20. Классификация твердых тел.
- 21. Понятие состояния и суперпозиции состояний в квантовой теории.
- 22. Уравнение Шредингера. Стандартные условия на волновую функцию.
- 23. Смысл волновой функции.
- 24. Соотношение неопределенностей Гейзенберга.
- 25. Аномальный эффект Зеемана.
- 26. Линейный и квадратичный эффект Штарка.
- 27. Двухуровневый атом.
- 28. Феноменологическое уравнение для матрицы плотности.
- 29. Продольное и поперечное времена релаксации. Спектр поглощения. Спектр поглощения.
- 30. Понятие об однородной и неоднородной ширинах уровней.

5.3. Самостоятельная работа обучающегося.

Вопросы к самостоятельной работе студента

- 1. Невырожденный случай. Случай близких уровней.
- 2. Случай вырождения.
- 3. Эффект Пашена-Бака.
- 4. Нестационарная теория возмущений (теория квантовых переходов).
- 5. Соотношение неопределённостей энергия-время. Вероятность перехода в единицу времени.
- 6. Простейшая модель квантовой системы, взаимодействующей с термостатом.
- 7. Спектр поглощения.

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕННОСТ Ь Наличие в электронном каталоге ЭБС
Основная литература*		
1. Физика. Современный курс [Электронный ресурс] / Никеров В.А М.: Дашков и К, 2014. – ISBN 978-5-394-02349-1	2014	http://www.studentlibr ary.ru/book/ISBN9785 394023491.html
2. Квантовая физика и нанотехнологии [Электронный ресурс] / Неволин В.К Издание 2-е, испр. и доп М.: Техносфера, 2013. – ISBN 978-5-94836-361-5.	2013	http://www.studentlibr ary.ru/book/ISBN9785 948363615.html
3. Физика макроскопических квантовых систем [Электронный ресурс]: Курс лекций. Семинары / М.Ю. Каган Вып. 2 М.: Издательский дом МЭИ, 2014 (Серия "Высшая школа	2014	http://www.studentlibr ary.ru/book/ISBN9785 383008959.html

физики"). —		
ISBN 978-5-383-00895-9.		
Дополнительная литература		
1. Физика. В 3 кн. Кн. 3. Строение и свойства вещества [Электронный ресурс] / Бутиков Е.И., Кондратьев А.С., Уздин В.М М.: ФИЗМАТЛИТ, 2010. — ISBN 978-5-9221-0109-7.	2010	http://www.studentlibr ary.ru/book/ISBN9785 922101097.html
2. Механика. Задачи и решения [Электронный ресурс] / А. Б. Казанцева - М.: КолосС, 2013 (Учебники и учеб. пособия для высших учебных заведений). – ISBN 5-9532-0317-9.	2013	http://www.studentlibr ary.ru/book/ISBN5953 203179.html
3. Лекции по теории вероятностей и математической статистике [Электронный ресурс]: учебник / Прохоров Ю.В., Пономаренко Л.С 2-е изд., испр. и доп М.: Издательство Московского государственного университета, 2012 (Классический учиверситетский учебник) ISBN 978-5-211-06234-4.	2012	http://www.studentlibr ary.ru/book/ISBN9785 211062344.html

6.2. Периодические издания

- 1. Вестник компьютерных и информационных технологий, ISSN: 1810-7206.
- 2. Computerworld Россия, ISSN: 1560-5213.
- 3. Мир ПК, ISSN: 0235-3520.

6.3. Интернет-ресурсы

- 1. Раздел «MATLAB» на сайте Центра инженерных технологий и моделирования // Режим доступа: https://exponenta.ru/matlab
- 2. PTC Mathcad // Режим доступа: https://www.mathcad.com/ru/
- 3. The LaTeX Project // Режим доступа: https://www.latex-project.org/

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, лабораторных занятий, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Лабораторные занятия проводятся в компьютерном классе (100-3, 1226-3, 5116-3 или аналогичной аудитории в зависимости от сетки расписания).

Перечень используемого лицензионного программного обеспечения:

- 1) MS Word;
- 2) MATLAB;
- 3) Mathcad:

4) LaTeX.
Рабочую программу составил доц. каф. ФиПМ Прохоров А.В
(должность, ФИО, подпись)
Рецензент
Генеральный директор ООО «ВладИнТех» А.В. Осипов
(место работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании кафедры ФиПМ
Протокол №1 от 30.08.2021 года
Заведующий кафедрой С.М. Аракелян
(ФИО, подпись)
Рабочая программа рассмотрена и одобрена
на заседании учебно-методической комиссии направления 12.03.05 Лазерная техника и
лазерные технологии

Протокол №1	от 30.08.2021	года
Председатель	комиссии	

С.М. Аракелян	
С.М. Аракслян	

(ФИО, должность, подпись)

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 20	/ 20	учебный года	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на 20	/20	учебный года	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			
Рабочая программа одобрена на 20	/20	учебный года	
Протокол заседания кафедры №	от	года	
Заведующий кафедрой			

Протокол №1	от $30.08.2021$	года
Председатель	комиссии	

C.M.	Аракелян
O.1111.	1 ipanomini

(ФИО, должность, подпись)

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 20 22 / 2023 учебный года
Протокол заседания кафедры № <u>1</u> от <i>30.08 луд</i> года
Заведующий кафедрой
Рабочая программа одобрена на 20/ 20учебный года
Протокол заседания кафедры № от года
Заведующий кафедрой
Рабочая программа одобрена на 20/ 20 учебный года
Протокол заседания кафедры № от года
Заведующий кафедрой