Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

УТВЕРЖДАЮ

Проректор 16 УМ

А.А. Панфилов

2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПРИКЛАДНАЯ МАТЕМАТИКА В СИСТЕМАХ ТЕЛЕКОММУНИКАЦИЙ

(наименование дисциплины)

Направление подготовки: 11.03.02 – Инфокоммуникационные технологии и системы связи

Профиль/программа подготовки

Уровень высшего образования: бакалавриат

Форма обучения: очная

Семестр	Трудоемкость зач. ед,/ час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	Форма промежу- точного кон- троля (экз./зачет)
. 1	5/180	18	36	-	126	Зачет/КР
Итого	5/180	18	36	-	126	Зачет/КР

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины "<u>Прикладная математика в системах телекоммуникаций"</u> являются:

- 1. Приобретение знания, умения и навыков, обеспечивающих достижение целей основной образовательной программы по направлению «Инфокоммуникационные технологии и системы связи»
- 2. Подготовку в области радиотехники и инфотелекоммуникаций для решения задач создания новой и совершенствования существующей передающей радиотехники и технологии.
 - 3. Ознакомления с современной методологией научно-технического творчества.
- 4. Подготовка для использования радиотехнических знаний при решении практических задач по разработке и эксплуатации систем, устройств и комплексов радиотехнического профиля.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Прикладная математика в системах телекоммуникаций» относится к вариативной части. Дисциплины по выбору (Б1.В.ДВ.8).

Взаимосвязь с другими дисциплинами

Дисциплина «Прикладная математика в системах телекоммуникаций» непосредственно связана с дисциплинами гуманитарного, естественнонаучного и математического цикла («Высшая математика»). Знания полученные при изучении курса необходимы при изучении следующих дисциплин: «Электродинамика», «Теория поля», «Устройство СВЧ» и др.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины «Прикладная математика в системах телекоммуникаций» обучающийся должен обладать следующими **профессиональными компетенциями (ОК и ПК):**

- способностью к самоорганизации и самообразованию (ОК-7);
- способностью применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств электросвязи и информатики (ПК 17);

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

Знать: осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий (ОПК-6).

Уметь: работать в коллективе толерантно воспринимая социальные и культурные различия (ОК-6). Выявлять естественную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующих

физико-математический аппарат (ОПК-2). Выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ (ПК-1).

Владеть: навыками работы с компьютером, методами информационных технологий, соблюдать основные требования информационной безопасности (ОПК-9).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

Таблица 2

											Таблица 2.
				l	-		-	ты, вкл ⁄ю рабо		Объем	Формы те- кущего
							ентов	-	J	учеб-	контроля
			~	И		-		в часах)	ной ра-	успеваемо-
№ п/п	Раздел (тема) дисциплины	Семестр	Семестр Неделя семестра	Лекции	Практические занятия	Лабораторные работы	работыКонтрольные	CPC	KII / KP	боты, с при- менени- ем ин- терак- тивных методов (в часах / %)	сти (по неде- лям семе- стра), форма про- межуточ- ной аттестации (по семе- страм)
1.	Цели дисциплины и задачи Введение. Значение и место курса. Основные понятия и термины. Историческая справка.	1	1	1	2			2		1/33	
2.	Основы векторной алге- бры. Сложение и вычита- ние векторов. Умножение на скаляр. Разложение векторов. Скалярное, век- торное и смешанное произведение векторов. Распределение скоростей при вращении твердого тела.	1	2,3	2	6			12		4/50	
3.	Дифференцирование вектора. Скалярное поле и его градиент. Свойства градиента.	1	4,5	2	2			12		4/100	
4.	Векторное поле. Векторные линии. Поток векторного поля. Дивергенция. Теорема Остроградского-Гаусса.	1	6,7	2	4			12		4/66	Рейтинг контроль №1
5.	Линейный интеграл и циркуляция вектора. Вихры векторного поля. Свойства вихря. Теорема Стокса.	1	8,9	2	2			12		4/100	

6.	Оператор Гамильтона. Дифференциальные операторы второго порядка.	1	10	1	4	12	1/20	
7.	Потенциальное векторное поле. Уравнения Лапласа и Пуассона.	1	11	1	2	8	1/33	Рейтинг контроль №2
8.	Криволинейные координаты. Коэффициенты Ламе. Выражения для векторных операторов в криволинейных координатах. Сферические и цилиндрические координаты.	1	12,13	2	6	12	8/100	
9.	Уравнения Максвелла и использование векторного анализа при их решении.	1	14	1	2	10	1/33	
10.	Понятие матриц. Действия с матрицами. Единичная и обратная матрицы. Симметричные, ортогональные, унитарные матрицы.	1	15,16	2	4	12	4/66	
11.	Разложения матриц в произведение треугольных матриц. Матричные многочлены. Характеристические числа и собственные векторы матриц. Диагональная форма матриц. Жорданова и другие формы матриц.	1	17	1	2	10	1/33	Рейтинг контроль №3
12.	Билинейные и квадратичные формы. Эрмитовы формы. Преобразования квадратичных и эрмитовых форм.	1	18	1		12	1/100	
Итог	1 семестра			18	36	126	34/64	Зачет

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

При проведении практических занятий основными задачами являются:

- 1. Закрепление теоретического курса.
- 2. Приобретение практических навыков.

Темы практических занятий

$N_{\underline{0}}$	TEMA	Кол-во часов
1.	Скаляр и вектора.	2
	Основные понятия.	
2.	Проекции вектора на оси в декартовой системе	2
	координат.	
	Умножение на скаляр.	
	Сложение и вычитание векторов.	
3.	Изображение скалярных и векторных полей.	2
4.	Скалярное произведение векторов.	2
	Векторное произведение векторов.	
	Смешанное произведение векторов.	
5.	Поток вектора. Теорема Гаусса-Остроградского.	2
6.	Дивергенция вектора.	2
7.	Циркуляция вектора по контору.	2
	Теорема Стокса.	
8.	Ротор вектора.	2
9.	Градиент скалярного поля.	2
10.	Дифференциальные операторы второго порядка.	2
	Оператор Лапласа.	
11.	Тождества векторного анализа.	2
12.	Криволинейные координаты.	2
13.	Коэффициенты Ламе.	2
14.	Векторные операторы в циклической и сферической си-	2
	стемах координат.	
15.	Матрицы. Основные понятия.	2
	Формы матриц.	
16.	Порядок и ранг матриц. Определители.	2
	Вычисление определителей.	
17.	Сложение и умножение матриц.	2
18.	Обратные матрицы. Способы вычисления.	2
	Bcero	36

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

5.1. Активные и интерактивные формы обучения

С целью формирования и развития профессиональных навыков студентов в учебном процессе используются активные и интерактивные формы проведения занятий в сочетании с внеаудиторной работой: (практические работы, контрольные аудиторные работы, индивидуальные домашние работы). Объем занятий, проводимых в интерактивных формах, составляет 34 часа или 64%.

5.2. Самостоятельная работа студентов

Самостоятельная (внеаудиторная) работа студентов включает закрепление теоретического материала при подготовке к практическим работам, а также при выполнении индивидуальной домашней работы. Основа самостоятельной работы — изучение литературы по рекомендованным источникам и конспекту лекций.

5.3. Мультимедийные технологии обучения

Все лекционные занятия проводятся в виде презентаций в мультимедийной аудитории с использованием компьютерного проектора и представлением от 10 до 20 слайдов по каждой лекции. Студентам предоставляется компьютерный курс лекций.

5.4. Лекции приглашенных специалистов

В рамках учебного курса «Прикладная математика в системах телекоммуникаций» предусмотрены встречи с представителями российских и зарубежных компаний, выступления и лекции специалистов, в частности:

- Доктора физико-математических наук, профессора РАНХиГС (г.Владимир) В.Г. Рау
- Доктора технических наук, профессора, зав. Кафедрой МЭИ (г.Москва) В.Г. Карташева

5.5. Рейтинговая система обучения

Рейтинг-контроль проводится три раза за семестр. Он предполагает оценку суммарных баллов по следующим составляющим: активность на контрольных занятиях; качество выполнения домашних рейтинговых заданий и практических работ.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРО-МЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1. Вопросы для рейтинг–контроля на 3 семестр Рейтинг–контроль №1.

- 1. Отличие скаляра от вектора.
- 2. Умножение скаляра на скаляр.
- 3. Умножение вектора на скаляр.
- 4. Нахождение проекции вектора на соответствующую координатную ось.
- 5. Скалярное произведение векторов.
- 6. Векторное произведение векторов.
- 7. Нахождение производной от векторной функции по скалярному аргументу.
- 8. Градиент.
- 9. Направление градиента и эквипотенциальных поверхностей.
- 10. Градиент суммы функций.
- 11. Векторные линии.
- 12. Поток векторного поля.

Рейтинг-контроль №2.

- 1. Дивергенция от векторной функции.
- 2. Теорема Гаусса-Остроградского.
- 3. Циркуляция вектора.
- 4. Ротор (вихрь) векторного поля.
- 5. Ротор от результата, образующегося в результате вычисления градиента.
- 6. Ротор от результата, образующегося в результате вычисления дивергенции.
- 7. Градиент от результата, образующегося в результате вычисления ротора.
- 8. Дивергенция от результата, образующегося в результате вычисления ротора.
- 9. Соленоидальное поле.
- 10. Теорема Стокса.
- 11. Оператор Гамильтона.
- 12. Потенциальное векторное поле.

Рейтинг-контроль №3.

- 1. Криволинейные координаты.
- 2. Коэффициенты Ламе.
- 3. Координатные поверхности в сферической системе координат.
- 4. Координатные поверхности в цилиндрической системе координат.
- 5. Координатные линии в сферической системе координат.
- 6. Координатные линии в цилиндрической системе координат.
- 7. Сложение матриц.
- 8. Умножение матриц.
- 9. Единичная матрица.
- 10.Собственные вектора матрицы.

6.2. Вопросы к зачету

2 Дин 1 Про 2 Вып 1 Ме: 2 Сво 1 Ска 2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	сательная, ее единичный вектор и уравнение.
1 Про 2 Вып 1 Мех 2 Сво 1 Ска 2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	оизводная вектора по скалярному аргументу. вод формулы дивергенции в координатной форме. ханическое значение производной вектора. ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. тор.
1 Mex 2 Cво 1 Ска 2 Teo 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	вод формулы дивергенции в координатной форме. ханическое значение производной вектора. ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор.
1 Mex 2 Cво 1 Ска 2 Teo 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	вод формулы дивергенции в координатной форме. ханическое значение производной вектора. ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор.
1 Mex 2 Cво 1 Ска 2 Teo 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	вод формулы дивергенции в координатной форме. ханическое значение производной вектора. ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор.
1 Mex 2 Cво 1 Cка 2 Teo 1 Bek 2 Bek 1 Сме 2 Цир 1 Пло 2 Por 1 Kac	ханическое значение производной вектора. ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор.
2 Сво 1 Ска 2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. сор. сательная, ее единичный вектор и уравнение.
2 Сво 1 Ска 2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	ойства дивергенции. алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. сор. сательная, ее единичный вектор и уравнение.
1 Ска 2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	алярное произведение векторов и его свойства. орема Гаусса — Остроградского (с выводом). сторное произведение и его свойства. сторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. сор.
2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. сор. сательная, ее единичный вектор и уравнение.
2 Тео 1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	орема Гаусса — Остроградского (с выводом). кторное произведение и его свойства. кторные трубки. ещанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. сор. сательная, ее единичный вектор и уравнение.
1 Век 2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	кторное произведение и его свойства. кторные трубки. ешанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	ешанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
2 Век 1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	ешанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
1 Сме 2 Цир 1 Пло 2 Рот 1 Кас	ешанное произведение и др. формулы векторного анализа. ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
2 Цир 1 Пло 2 Рот 1 Кас	ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
2 Цир 1 Пло 2 Рот 1 Кас	ркуляция вектора. ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
1 Пло 2 Рот 1 Кас	ощадь, как вектор. гор. сательная, ее единичный вектор и уравнение.
2 Por 1 Kac	сательная, ее единичный вектор и уравнение.
2 Por 1 Kac	сательная, ее единичный вектор и уравнение.
1 Kac	сательная, ее единичный вектор и уравнение.
	* **
	* **
2 Вы	DOT MODELLITY TO TO TO TO TO TO THE CONTRACT TO
= 200	вод формулы ротора через проекции.
	рмаль, главная нормаль и нормальная плоскость.
2 Сво	рйства ротора.
	ивизна.
2 Teo	орема Стокса (с доказательством).
	рямляющая плоскость.
2 Сле	едствия из теоремы Стокса.
1 Con	прикасающаяся плоскость.
2 Опе	ератор Гамильтона.
1 Бин	нормаль.
2 CBC	ойства оператора Гамильтона.
1 Kpy	учение.
	генциальное векторное поле. Уравнение Пуассона.
	· · · · · · · · · · · · · · · · · · ·
1 Tpe	еугольник Френе.
	иволинейные координаты. Коэффициенты Ламе. Общий вид векторных функций
	риволинейных координатах
1 Pa3.	ложение векторов скорости и ускорения на касательную и
	омальную составляющие.
	ерические координаты и векторные функции в них.
	ори тоские координаты и векториме функции в них.
1 Пов	верхности уровня и градиент скалярного поля.
	линдрические координаты и векторные функции в них.
<u>г</u> ЦИЛ	линдри техне координаты и векториме функции в пил.

1	Свойства градиента.
2	Основные виды матриц и действий над ними.
1	Векторные линии.
2	Свойства матриц
1	Поток векторного поля
2	Собственные векторы и собственные числа матриц. Разложения матриц.

6.3. Тесты для контроля СРС по дисциплине

TECT 1

1.Скаляр от вектора отличается:

- Направлением
- Тем, что не имеет направления*
- Постоянной длиной
- Математической операцией, с помощью которой он получен

2. Умножение скаляра на скаляр – это:

- Скалярное произведение
- Векторное произведение
- Арифметическое произведение*

3.Умножение вектора на скаляр – это:

- Скалярное произведение
- Векторное произведение
- Арифметическое произведение*

4. Чтобы найти проекцию вектора на соответствующую координатную ось, необходимо:

- Вектор умножить скалярно на соответствующий орт*
- Вектор умножить векторно на соответствующий орт
- Вектор сложить с соответствующим ортом
- Вектор повернуть до совпадения с соответствующим ортом

5. Скалярное произведение векторов порождает:

- Скаляр*
- Вектор
- Один из ортов

6. Векторное произведение векторов порождает:

- Скаляр
- Вектор*
- Один из ортов

7. Для нахождения производной от векторной функции по скалярному аргументу нужно:

- Найти производные от его проекций*
- Использовать скалярное произведение
- Найти производную от модуля векторной функции
- Предварительно проверить, существует ли интеграл от этой векторной функции

8. Градиент – это характеристика:

- Дифференцируемости векторной функции
- Характеристика скорости изменения скалярной функции*
- Характеристика, относящаяся к свойствам векторной функции
- Проекция векторной функции на выбранную координатную ось

9. Направление градиента и эквипотенциальных поверхностей:

- Никак не связаны
- Направлены под определенным углом, в конкретном случае зависящим от вида функции, от которой находится градиент
- Всегда взаимно перпендикулярны*
- Всегда взаимно параллельны

10. Градиент суммы функций равен:

- Произведению градиентов от этих функций
- Принимает неопределенное значений
- Может быть найден только для некоторых видов функций
- Равен сумме градиентов от этих функций*
- Равен произведению одной из этих функций на градиент от другой

11. Векторные линии – это:

- Линии, в каждой точке которых направление векторной функции совпадает с направлением касательной *
- Линии, перпендикулярные направлению градиента в данной точке
- Линии, пересекающиеся в рассматриваемой точке
- Линии, которые могут быть получены только применением операции градиента

12. Поток векторного поля – это:

- Совокупность значений векторного поля в рассматриваемом объеме
- Скорость изменения по времени значений векторного поля
- Интеграл по рассматриваемой поверхности*
- Максимальная скорость изменения векторного поля вдоль векторной линии

TECT 2

1. Дивергенция от векторной функции – это:

- Производная от градиента
- Характеристика скорости производства векторного поля*
- Понятие относится не к векторным, а к скалярным функциям
- Характеристика кривизны векторных силовых линий

2.Теорема Гаусса-Остроградского устанавливает связь между:

- градиентом и дивергенциейц полей
- потоком векторного поля и градиентом
- интегралом по объему от градиента и потоком векторного поля через поверхность, ограничивающую объем
- интегралом по объему от дивергенции и потоком векторного поля через поверхность, ограничивающую объем *
- интегралом по объему от дивергенции и интенсивностью силовых линий в этом объеме

3. Циркуляция вектора – это:

- линейный интеграл по заданной траектории произвольного вида
- линейный интеграл по замкнутой траектории*
- перемещение по векторной линии в соответствии с направлением вектора
- производная от векторной функции, рассматриваемая на заданном участке криволинейной траектории

4.Ротор (вихрь) векторного поля – это:

- центр замкнутой векторной линии
- математическая операция, определяющая факт замкнутости векторной линии
- площадь, ограниченная замкнутой векторной силовой линией
- математическая операция, обратная операции вычисления дивергенции
- математическая операция, обратная операции вычисления градиента
- математическая операция, определяемая предельным отношением циркуляции по контуру к площади контура*

5.Ротор от результата, образующегося в результате вычисления градиента, равен:

- нулю*
- единице
- бесконечности
- дивергенции
- самому градиенту

- нельзя последовательно применять эти операции

6.Ротор от результата, образующегося в результате вычисления дивергенции, равен:

- нулю
- единице
- бесконечности
- самой дивергенции
- градиенту
- нельзя последовательно применять эти операции*

7. Градиент от результата, образующегося в результате вычисления ротора, равен:

- нулю
- единице
- бесконечности
- дивергенции
- самому градиенту
- нельзя последовательно применять эти операции*

8. Дивергенция от результата, образующегося в результате вычисления ротора, равен:

- нулю*
- единице
- бесконечности
- исходной векторной функции
- градиенту
- нельзя последовательно применять эти операции

9. Соленоидальное поле – это поле:

- образующееся в результате вычисления градиента
- образующееся в результате вычисления дивергенции
- образующееся в результате вычисления ротора*
- электромагнитное поле, не относящееся к векторному анализу

10. Теорема Стокса связывает между собой:

- интеграл от ротора по поверхности и циркуляцию по контуру, ограничивающему поверхность*
- интеграл от ротора по поверхности и интеграл по контуру, ограничивающему поверхность
- значения ротора на контуре, ограничивающем поверхность и значения дивергенции на этой поверхности
- значения ротора на контуре, ограничивающем поверхность и значения градиента на этой поверхности
- позволяет получить дивергенцию и градиент на основе операции ротора

11. Оператор Гамильтона – это дифференциальный оператор:

- первого порядка*
- второго порядка
- третьего порядка
- четвертого порядка
- оператор не является дифференциальным
- понятие порядка к этому оператору не применяется

12.Потенциальное векторное поле:

- образуется с помощью операции градиента над скалярным полем*
- потенциально возможный вариант векторного поля
- получается в результате дважды последовательно примененной операции ротора
- относится не к векторному анализу, а к физике, показывая пространственное распределение электрического потенциала

TECT 3

1. Криволинейные координаты:

- получаются из прямоугольных координат путем наклона координатных осей
- получаются путем функционального задания новых координат на основе старых координат*
- получаются в результате неправильного применения некоторых векторных функций

- получаются применением функций векторного преобразования над направлением прямоугольных координатных осей

2.Коэффициенты Ламе:

- показывают, во сколько раз каждая из прямоугольных осей отличается от осей в криволинейных системах координат
- показывают смещение траектории в криволинейной системе координат
- служат для обозначения единичных веторов в криволинейных системах координат
- применяются при общем описании векторных функций в криволинейных координатах*

3.В сферической системе координат координатные поверхности представляют собой наборы:

- сферы; конусы; полуплоскости*
- сферы; эллипсоиды; плоскости
- сферы с центрами, смещенными вдоль координатных осей
- сферы; плоскости; усеченные цилиндры

4.В цилиндрической системе координат координатные поверхности представляют собой наборы:

- цилиндры, оси которых расположены вдоль осей прямоугольной системы координат
- цилиндры; сферы; плоскости
- полуплоскости; цилиндры; плоскости*
- диски; цилиндры; плоскости

5. В сферической системе координат координатные линии представляют собой наборы:

- лучи; параллели; меридианы*
- лучи; прямые, параллельные одной из координатных осей; окружности
- наборы окружностей, у каждого из которых центры совпадают с одной из координатных осей
- эллипсы с разной степенью сжатия вдоль соответствующей координатной оси

6.В цилиндрической системе координат координатные поверхности представляют собой наборы:

- лучи, перпендикулярные соответствующей координатной оси
- окружности; лучи, перпендикулярные координатной оси; прямые, перпендикулярные координатной плоскости*
- наборы окружностей, расположенные в плоскостях, перпендикулярных координатным осям
- лучи, расположенные на поверхностях взаимно пересекающихся цилиндров

7. При суммировании матриц элементы матрицы – результата суммирования равны:

- сумме элементов в тех же позициях исходных матриц*
- сумме элементов в соответствующих строках исходных матриц
- сумме элементов в соответствующих столбцах исходных матриц
- сумме элементов из позиций одинаковых номеров строки одной матрицы и столбца другой

8. Матрицы можно перемножать одну на другую, если:

- у них совпадает количество строк
- у них совпадает количество столбцов
- у них совпадает количество и столбцов, и строк
- у одной из них совпадает количество строк с количеством столбцов другой *
- у них совпадает количество элементов в главной диагонали

9. Единичная матрица – это такая, у которой:

- все элементы равны единице
- единицы расположены в главной диагонали*
- единицы расположены в любой из строк
- единицы расположены в любом из столбцов
- определитель равен единице

10.Собственные вектора матрицы:

- получаются в результате решения матричного уравнения*
- получаются, если элементы строк матрицы записать, как векторы
- получаются, если элементы столбцов матрицы записать, как векторы
- получаются в результате умножения матрицы на саму себя
- получаются в результате умножения матрицы на сопряженную к ней

6.4 Задание на курсовую работу.

Курсовая работа по курсу выполняется в 1 семестре. Задание курсовой работы детально разбирается во время практических занятий, которые проводятся по графику. Целью выполнения курсовой работы является освоение аппарата векторной и матричной алгебры для использования при изучении следующих курсов: «Электродинамика», «Теория поля», «Устройства СВЧ» и др. Курсовая работа содержит десять заданий.

Задание №1.

- 1. По заданному модулю и углам с осями координат вектора найти проекцию вектора на оси.
- 2. По заданным проекциям в декартовой системе координат определить модуль вектора и углы с осями координат.

Задание №2.

- 1. По заданным проекциям вектора найти проекции вектора как результат умножения исходного вектора на скаляр.
- 2. Найти проекции вектора, представляющего сумму(разность) векторов с умножением на скаляр.

Залание №3.

- 1. По заданным проекциям вектора с указанными зависимостями от осей координат построить векторное поле с помощью силовых линий.
- 2. По заданным значением скалярного поля в точках на плоскости построить линии равных значений скалярной величины.

Залание №4.

- 1. По заданным проекциям двух векторов найти скалярное произведение.
- 2. По заданным проекциям векторов найти векторное произведение.
- 3. По заданным проекциям векторов найти смешанное произведение векторов.

Задание №5.

- 1. По заданным функциональным зависимостям векторного поля в декартовой системе координат найти поток вектора через замкнутую поверхность, ограничивающую объем.
- 2. По заданным функциональным зависимостям проекцией вектора в декартовой трёхмерной системе координат вычислить дивергенцию вектора в точке.

Залание №6.

- 1. По заданным функциональным зависимостям проекций вектора в декартовой двумерной системе координат найти циркуляцию вектора по контору.
- 2. По заданным функциональным зависимостям проекций вектора в декартовой трёхмерной системе координат найти ротор вектора в точке.

Залание №7.

1. По заданной функциональной зависимости скалярного поля на плоскости построить силовые линии вектора градиента скалярного поля.

Задание №8.

1. Доказать заданное преподавателем одно из тождеств векторного анализа.

Залание №9.

- 1. По заданной матрице вычислить определитель и найти матрицу после умножения её на число.
- 2. Найти сумму двух заданных матриц.

Задание №10.

- 1. Найти произведение двух квадратных матриц.
- 2. Найти матрицу, обратную заданной.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература.

- Квадратичные формы и матрицы / Н.В. Ефимов. М.: ФИЗМАТЛИТ, 2012. 168 с. ISBN 978-5-9221-1049-5
 http://znanium.com/catalog.php?bookinfo=414063
- Смолин, Ю. Н. Алгебра и теория чисел [Электронный ресурс] : учеб. пособие / Ю. Н. Смолин. 4-е изд., стер. М. : ФЛИНТА : Наука, 2012. 464 с. ISBN 978-5-02-034913-1 http://znanium.com/catalog.php?bookinfo=456995
- Математика в примерах и задачах: Учебное пособие/Журбенко Л. Н., Никонова Г. А., Никонова Н. В., Дегтярева О. М. М.: НИЦ ИНФРА-М, 2016. 372 с. http://znanium.com/catalog.php?bookinfo=484735
- Высшая математика: Практикум / И.Г. Лурье, Т.П. Фунтикова. М.: Вузовский учебник: НИЦ ИНФРА-М, 2013. 160 с. http://znanium.com/catalog.php?bookinfo=368074
- Худайберганов, Г. Комплексный анализ в матричных областях[Электронный ресурс] / Г. Худайберганов, А. М. Кытманов, Б. А. Шаимкулов. Красноярск: Сибирский федеральный ун-т, 2011. 290 с.
 - http://znanium.com/catalog.php?bookinfo=441875.

Дополнительная литература.

• Курс аналитической геометрии и линейной алгебры [Электронный ресурс]: Учеб. для вузов. / Беклемишев Д. В. - 12-е изд., испр. - М.: ФИЗМАТЛИТ, 2009.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Материально-техническое обеспечение дисциплины включает:

- кафедральные мультимедийные средства (ауд. 301-3 и 335-3);
- наборы слайдов по всем лекциям (от 10 до 15 слайдов по каждой лекции);

Примечания:

- 1. Общее число подготовленных слайдов более 150.
- 2. Слайды ежегодно редактируются и модернизируются в соответствии с развитием технической и методической базы.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению 11.03.02 – Инфокоммуникационные технологии и системы связи

Рабочую программу составил к.т.н. профессор Садовский Н.В. (ФИО, подпись)
Рецензент:
Генеральный директор ОАО ВКБ «Радиосвязи»
к.т.н. Богданов А.Е.
(место работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании кафедры радиотехники и радиосистем
Протокол № от
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направ-
ления 11.03.02 – Инфокоммуникационные технологии и системы связи
Протокол № <u>10</u> от <u>4.04 19</u> года Председатель комиссии Никитин О.Р.
(ФИО, подпись)

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на _	16/17	_ учебный год
Протокол заседания кафедры № _		. <i>О. Я</i> года
Заведующий кафедрой		_ Никитин О.Р.
Рабочая программа одобрена на _		_ учебный год
Протокол заседания кафедры № _	OT	года
Заведующий кафедрой		_ Никитин О.Р.
Рабочая программа одобрена на _		_ учебный год
Протокол заседания кафедры № _	от	год
Завелующий кафелрой		Никитин О.Р.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт ИИТиР

Кафедра радиотехники и радиосистем

Актуализированная	
рабочая программа	
рассмотрена и одобрен	на
на заседании кафедры	
протокол № от	20г.
Заведующий кафедрой	Í
I	Никитин О.Р.
(полпись ФИО)	

Актуализация рабочей программы дисциплины

ПРИКЛАДНАЯ МАТЕМАТИКА В СИСТЕМАХ ТЕЛЕКОММУНИКАЦИЙ (наименование дисциплины)

Направление подготовки 11.03.02 - Инфокоммуникационные технологии и системы связи

Профиль/программа подготовки

Уровень высшего образования: бакалавр

Форма обучения: очная

Владимир 2016

туры.		
Актуализация выполнена:	(подпись, должность, ФИ	(O)
а) основная литература:		(не более 5 книг)
б) дополнительная литература:		
в) периодические издания:		
в) интернет-ресурсы:		

Рабочая программа учебной дисциплины актуализирована в части рекомендуемой литера-