Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт информационных технологий и радиоэлектроники

УТВЕРЖДАЮ: пректор института

Институт

рормационных в Талкин А.А.

9 т в 2021 г. **ж** радио

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Проектирование микроэлектронных устройств и антенн

направление подготовки / специальность

11.03.01 Радиотехника

направленность (профиль) подготовки

Электронные цифровые устройства и системы

г. Владимир

Год 2021

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины Проектирование микроэлектронных устройств и антенн является изучение принципов работы пассивных и активных МЭУ СВЧ, микрополосковых антенн, освоение методов их расчета, в том числе, с помощью современных средств вычислительной техники, приобретение практических навыков экспериментального исследования МЭУ СВЧ и антенн с использованием современной измерительной аппаратуры.

Задачи: подготовка в области проектирования МЭУ СВЧ и антенн для профессиональной деятельности специалиста: научно-исследовательской, проектной.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Проектирование микроэлектронных устройств и антенн относится к части, формируемой участниками образовательных отношений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты о	Наименование	
компетенции	соответствии с индикатором достижения компетенции		оценочного средства
(код, содержание	Индикатор достижения	Результаты обучения по	
компетенции)	компетенции	дисциплине	
	(код, содержание индикатора		
УК-1. Способен	УК-1.1. Знает принципы	Знает математические	Индивидуальная ра-
осуществлять	сбора и обобщения инфор-	методы и приемы авто-	бота на практичес-
поиск, критичес-	мации.	матизации операций	ких занятиях.
кий анализ и	УК-1.2. Умеет соотнести	при разработке и изго-	Контрольные рабо-
синтез нформа-	разнородные явления и	товлении радиоэлектро-	ты.
ции, применять	систематизировать их в	нных устройств.	Курсовая работа.
системный под-	рамках избранных видов	Умеет применять мате-	
ход для реше-	профессиональной	матические методы и	
ния поставлен-	деятельности.	приемы автоматизации	
ных задач	УК-1.3. Владеет навыками	операций при разрабо-	
	научного поиска и практи-	тке и изготовлении ра-	
	ческой работы с информа-	диоэлектронных уст-	
	ционными источниками;	ройств.	
	методами принятия	Владеет математически-	
	решений	ми методами и приема-	
	ми автоматизации опе-		
		раций при разработке и	
		изготовлении радиоэле-	
		ктронных устройств.	
ПК-1. Способен	ПК-1.1. Знает способы	Знает методы поиска,	Контрольные рабо-
осуществлять те-	тестирования сложных	обработки и анализа ин-	ты.
хническое обс-	функциональных узлов	формации об элемент-	Курсовая работа.
луживание ради-	радиоэлектронной	ной базе, схемотехниче-	
оэлектронной	аппаратуры.	ских решениях, конст-	

	ПИ 1 2 М		
аппаратуры.	ПК-1.2. Умеет использо-	рукции МЭУ и антенн	
	вать измерительное	из различных источни-	
	оборудованте для	ков и баз данных, в том	
	регулирования сложных	числе, используя интер-	
	функциональных узлов	нет-ресурс.	
	радиоэлектронной	Умеет применять мето-	
	аппаратуры.	ды поиска, обработки и	
	ПК-1.3. Владеет	анализа информации	
	навыками регулировки	для получения данных	
	сложных	об элементной базе, схе-	
	функциональных узлов	мотехнических решени-	
	радиоэлектронной	ях и конструкции МЭУ	
	аппаратуры.	и антенн из различных	
		источников и баз дан-	
		ных, в том числе, испо-	
		льзуя интернет-ресурс.	
		Владеет методами по-	
		иска, обработки и ана-	
		лиза информации об	
		элементной базе, схемо-	
		технических решениях,	
		конструкции МЭУ и ан-	
		тенн из различных исто-	
		чников и баз данных, в	
		том числе, используя	
		интернет-ресурс.	
ПК-2. Способен	ПК-2.1. Знает принципы	Знает методы расчета и	Контрольные рабо-
выполнять рас-	конструирования отдель-	проектирования МЭУ и	ты. Курсовая рабо-
чет и проектиро-	ных деталей, узлов и ус-	антенн радиотехничес-	та.
вание деталей,	тройств радиотехничес-	ких систем в соответст-	
узлов и устрой-	ких систем.	вии с техническим зада-	
ств радиотехни-	ПК-2.2. Умеет проводить	нием, в том числе, с ис-	
ческих систем в	-		
соотвеиствии с	оценочные расчеты характеристик деталей, узлов	пользованием средств	
	1	автоматизированного	
техническим за-	и устройств радиотехни-	проектирования.	
данием с испо-	ческих систем.	Умеет применять мето-	
льзованием	ПК-2.3. Владеет навыка-	ды расчета и проектиро-	
средств автома-	ми подготовки принци-	вания МЭУ и антенн ра-	
тизированного	пиальных и монтажных	диотехнических систем	
проектирования.	электрических схем.	в соответствии с техни-	
		ческим заданием, в том	
		числе, с использованием	
		средств втоматизирова-	
		нного проектирования.	
		Владеет методами рас-	

		чета и проектирования	1
		МЭУ и антенн радиоте-	
		хнических систем в соо-	
		тветствии с техничес-	
		ким заданием, в том чи-	
		сле, с использованием	
		средств автоматизиро-	
		ванного проектирова-	
HIC 2 C	HIC 2.1. D	ния.	ПС
ПК-3. Способен	ПК-3.1. Знает принципы	Знает способы реализа-	Лабораторные рабо-
реализовать про-	работы, устройство, тех-	ции программ экспери-	ты с физическим и
граммы экспери-	нические возможности	ментальных исследова-	виртуальным обору-
ментальных ис-	контрольно-измеритель-	ний МЭУ и антенн, тех-	дованием.
следований,	ного и диагностического	нические средства и	
включая выбор	оборудования.	средства обработки ре-	
технических	ПК-3.2. Умеет использо-	зультатов.	
средств и обра-	вать оборудование для	Умеет реализовать про-	
ботку результа-	диагностирования и уст-	граммы эксперимента-	
TOB.	ранения неисправностей,	льных исследований	
	возникших при эксплуа -	МЭУ и антенн с испо-	
	тации сложных функцио-	льзованием современ-	
	нальных узлов радиоэле-	ных технических сред-	
	ктронной аппаратуры.	ств и средств обработки	
	ПК-3.3. Владеет навыка-	результатов.	
	ми устранения неисправ-	Владеет способами реа-	
	ностей, приводящих к во-	лизации программ экс-	
	зникновению неработо-	периментальных иссле-	
	способного состояния	дований МЭУ и антенн,	
	сложных функциональ-	включая технические	
	ных узлов радиоэлектро-	средства и средства об-	
	нной аппаратуры.	работки результатов.	
	<u> </u>	<u> </u>	<u> </u>

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

Тематический план форма обучения – очная

		гр	я	Контактная работа	T H	Формы
№	Наименование тем и/или	Sec	Ten SCT	обучающихся	иос	текущего
п/п	разделов/тем дисциплины	eM	Нед Зме	с педагогическим	Žaл ят(контроля
		\circ	E Ce	работником	0	успеваемости,

				Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки ²		форма промежуточной аттестации (по семестрам)
1	Планарные линии передачи СВЧ	6	1	1	1		1	6	
2	Элементы и узлы интегральных схем СВЧ	6	2	1	1		1	6	
3		6	3	1	1	4	1	6	
	Интегральные устройства	6	4	1	1	4	1	6	
	СВЧ	6	5	1	1	4	1	6	
4	Автоматизация проектирования линейных устройств СВЧ	6	6	1	1		1	6	Рейтинг- контроль 1
5		6	7	1	1		1	6	
	Проектирование транзистор-	6	8	1	1	4	1	6	
	ных усилителей СВЧ	6	9	1	1	4	1	6	
6		6	10	1	1		1	6	
	Проектирование диодных	6	11	1	1	4	1	6	
	преобразователей частоты		12	1	1	4	1	6	Рейтинг- контроль 2
7		6	13	1	1		1	6	1
	Проектирование диодных	6	14	1	1		1	6	
	генераторов СВЧ	6	15	1	1		1	6	
8	Микрополосковые антенные	6	16	1	1		1	6	
У	устройства	6	17	1	1	4	1	6	
		6	18	1	1	4	1	6	Рейтинг- контроль 3
Всего за 6 семестр:				18	18	36		108	Экзамен (36)
Нали	Наличие в дисциплине КП/КР				+				
Итого по дисциплине				18	18	36		108	Экзамен (36)

Содержание лекционных занятий по дисциплине

Раздел 1. Планарные линии передачи СВЧ.

Тема 1. Диэлектрические и металлические материалы для планарных линий передачи.

Подложки планарных линий передачи. Металлы, используемые в планарных линиях передачи. Поглощающие материалы.

Тема 2. Полосковая линия.

Конфигурация полосковой линии. Структура поля. Волновое сопротивление. Ширина полоскового проводника для заданного волнового сопротивления. Суммарные потери полосковой линии. Максимальная рабочая частота.

Тема 3. Микрополосковая линия.

Конфигурация микрополосковой линии. Квази-Т-волна. Эффективная диэлектрическая проницаемость. Потери в микрополосковой линии. Зависимость параметров микрополосковой линии от частоты. Собственная добротность микрополосковой линии. Максимальная мощность.

Тема 4. Копланарная линия.

Конфигурация копланарной линии. Особенность применения. Основной тип волны. Волновое сопротивление. Эффективная диэлектрическая проницаемость. Потери в копланарной линии. Тема 5. Щелевая линия.

Конфигурация щелевой линии. Особенность применения. Основной тип волны. Волновое сопротивление. Эффективная диэлектрическая проницаемость. Потери в щелевой линии. Тема 6. Связанные полосковые линии.

Конфигурация связанных полосковых линий. Четные и нечетные виды возбуждения. Волно- вое сопротивление для четной и нечетной мод. Волновое сопротивление связанных полосковых линий. Суммарные потери в симметричной полосковой линии.

Тема 7. Связанные микрополосковые линии.

Конфигурация связанных микрополосковых линий. Особенности применения. Эффективная диэлектрическая проницаемость для четного и нечетного видов возбуждения. Волновое сопротивление для четной и нечетной мод. Волновое сопротивление связанных микрополоско- вых линий. Дисперсионные свойства. Суммарные потери в симметричной микрополосковой линии. Раздел 2. Элементы и узлы интегральных схем СВЧ.

Тема 1. Индуктивности, емкости, резисторы, согласованные нагрузки.

Последовательная и параллельные индуктивности. Спиральная индуктивность. Последовательная и параллельная емкости. Конденсаторы на основе пленочных структур. МОП-конденсаторы. Керамические конденсаторы. Распределенные и сосредоточенные резисторы. Навесные резисторы. Таблеточные резисторы.

Тема 2. Устройства возбуждения, переходы, короткозамыкатели.

Коаксиально-полосковый переход. Прямой кабельный ввод. Волноводно-полосковый пере- ход. Короткозамыкатели микроэлектронных устройств.

Раздел 3. Интегральные устройства СВЧ.

Тема 1. Направленные ответвители и мосты.

Основные параметры направленных ответвителей. Кольцевой направленный ответвитель.

Шлейфный направленный ответвитель. Ответвители на связанных линиях.

Тема 2. Делители и сумматоры мощности.

Делители мощности последовательного и параллельного типов. Кольцевой делитель мощно- сти. Схемы сложения на направленных ответвителях.

Тема 3. Устройства управления фазой и амплитудой.

Управление фазой сигнала в тракте СВЧ. Управление амплитудой сигнала в тракте СВЧ.

Тема 4. Фильтры СВЧ.

Типы фильтров и их характеристики. Фильтр нижних частот. Фильтр верхних частот. Полос- нопропускающий фильтр. Полосно-заграждающий фильтр.

Тема 5. Устройства СВЧ на ферритах.

Ү-циркуляторы классического типа. Циркуляторы с реактивными элементами.

Раздел 4. Автоматизация проектирования устройств СВЧ.

Тема 1. Формализация расчета характеристик линейных радиоэлектронных устройств.

Декомпозиция устройства. Формализация описания библиотечных элементов. Формализация описания соединения элементов. Алгоритм объединения элементов устройства.

Тема 2. Входной язык программы МАКЕТ.

Формат исходных данных. Подготовка исходных данных.

Тема 3. Описание программы МАКЕТ.

Структурная схема программы МАКЕТ. Библиотека элементов. Библиотечные элементы.

Раздел 5. Проектирование транзисторных усилителей СВЧ.

Тема 1. Бесструктурная модель транзистора СВЧ.

Модель транзистора СВЧ. S-параметры транзистора. Реализуемый номинальный коэффициент усиления.

Тема 2. Устойчивость транзисторных усилителей СВЧ.

Структурная схема усилителя СВЧ. Устойчивость усилителя. Безусловная и условная устойчивость усилителя. Коэффициент устойчивости. Область допустимых сопротивлений вход- ной и выходной нагрузок. Окружность устойчивости.

Тема 3. Расчет узкополосных усилителей графоаналитическим методом.

Режим двустороннего согласования. Режим фиксированного усиления в безусловно устой-чивом усилителе. Режим фиксированного усиления в потенциально неустойчивом усилителе.

Коэффициент шума усилителя.

Тема 4. Особенности построения транзисторных усилителей СВЧ.

Схемы включения транзисторов. Узкополосные усилители. Широкополосные усилители.

Практические схемы транзисторных усилителей.

Раздел 6. Проектирование диодных преобразователей частоты.

Тема 1. Преобразователи частоты и смесительные и диоды.

Назначение и принцип работы преобразователей частоты. Эквивалентная схема смеситель- ного диода и его свойства. конструкции смесительных диодов.

Тема 2. Электрические характеристики смесителей.

Эффект прямого и обратного преобразования частоты в диодных смесителях. Эффект вторичного обратного преобразования частоты. Зеркальная частота. Спектральный состав колебаний в преобразователях частоты. Анализ однотактного смесителя. Узкополосный смеситель при короткозамкнутой цепи по зеркальной частоте. Топологические схемы однотактных смесителей. Шумовые свойства диодных преобразователей.

Тема 3. Балансные и двойные балансные смесители.

Принципиальные схемы балансных смесителей. Анализ работы балансного смесителя.

Топологическая схема балансного смесителя. Двойные балансные смесители. Преобразователи частоты с подавлением зеркального канала.

Раздел 7. Проектирование диодных генераторов СВЧ.

Тема 1. Диод Ганна.

Параметры диода Ганна. Принцип работы диода Ганна.

Тема 2. Генераторы на диоде Ганна.

Эквивалентная схема генератора на диоде Ганна. Модель внешней цепи генератора. Режимы работы генераторов на диоде Ганна. Оптимальные параметры диода Ганна.

Тема 3. Проектирование диодных генераторов.

Стационарный режим автоколебаний. Стабильность частоты и минимальный уровень шумов. Низкочастотные колебания в цепи питания диода и способы их устранения. Проектирование

цепи СВЧ генераторов на диоде Ганна.

Тема 4. Конструирование диодных генераторов.

Крепление генераторных диодов. Цепи питания. Топология колебательной системы СВЧ.

Раздел 8. Микрополосковые антенные устройства.

Тема 1. Методы расчета микрополосковых антенн.

Модель прямоугольной микрополосковой антенны. Микрополосковая антенна, возбужда- емая микрополосковой линией. Микрополосковая антенна, возбуждаемая коаксиальной ли- нией.

Апертурно-связанная микрополосковая антенна. Электромагнитно-связанная микро- полосковая антенна. Модель дисковой микрополосковой антенны.

Тема 2. Микрополосковые антенны с увеличенной полосой рабочих частот.

Микрополосковая антенна с пассивными излучателями. Частотно-независимые и логопериодические антенны. Микрополосковые антенны с пластинами сложной формы. Антенны с согласующими цепями. Вибраторные и щелевые микрополосковые антенны. Антенны с круговой поляризацией.

Тема 3. Диэлектрические резонаторные антенны.

Диэлектрические резонаторные антенны. Цилиндрические диэлектрические резонаторные антенны. Широкополосные диэлектрические резонаторные антенны.

Тема 4. Микрополосковые антенны с элементами из нетрадиционных материалов.

Антенны из высокотемпературных сверхпроводящих материалов. Микрополосковые антенн- ны на подложках из ферритовых и киральных материалов. Антенны на подложках из электромагнитных полосно-запирающих материалов.

Тема 5. Печатные антенные решетки.

Плоские фазированные антенные решетки. Многолучевые антенные решетки. Антенные решетки с частотным сканированием.

Содержание лабораторных занятий по дисциплине.

Раздел 3. Интегральные устройства СВЧ.

Тема 1. Направленные ответвители и мосты.

Основные параметры направленных ответвителей. Кольцевой направленный ответвитель.

Шлейфный направленный ответвитель. Ответвители на связанных линиях.

Тема 2. Делители и сумматоры мощности.

Делители мощности последовательного и параллельного типов. Кольцевой делитель мощно- сти.

Схемы сложения на направленных ответвителях.

Тема 3. Устройства управления фазой и амплитудой.

Управление фазой сигнала в тракте СВЧ. Управление амплитудой сигнала в тракте СВЧ.

Тема 4. Фильтры СВЧ.

Типы фильтров и их характеристики. Фильтр нижних частот. Фильтр верхних частот. Полос- нопропускающий фильтр. Полосно-заграждающий фильтр.

Раздел 5. Проектирование транзисторных усилителей СВЧ.

Тема 3. Расчет узкополосных усилителей графоаналитическим методом.

Режим двустороннего согласования. Режим фиксированного усиления в безусловно устой- чивом усилителе. Режим фиксированного усиления в потенциально неустойчивом усилителе. Коэффициент шума усилителя.

Тема 4. Особенности построения транзисторных усилителей СВЧ.

Схемы включения транзисторов. Узкополосные усилители. Широкополосные усилители.

Практические схемы транзисторных усилителей.

Раздел 6. Проектирование диодных преобразователей частоты.

Тема 2. Электрические характеристики смесителей.

Эффект прямого и обратного преобразования частоты в диодных смесителях. Эффект вторичного обратного преобразования частоты. Зеркальная частота. Спектральный состав колебаний в преобразователях частоты. Анализ однотактного смесителя. Узкополосный смеситель при короткозамкнутой цепи по зеркальной частоте. Топологические схемы однотактных смесителей. Шумовые свойства диодных преобразователей.

Тема 3. Балансные и двойные балансные смесители.

Принципиальные схемы балансных смесителей. Анализ работы балансного смесителя.

Топологическая схема балансного смесителя. Преобразователи частоты с подавлением зеркального канала.

Раздел 8. Микрополосковые антенные устройства.

Тема 1. Методы расчета микрополосковых антенн.

Модель прямоугольной микрополосковой антенны. Микрополосковая антенна, возбужда- емая микрополосковой линией. Микрополосковая антенна, возбуждаемая коаксиальной ли- нией.

Модель дисковой микрополосковой антенны.

Тема 5. Печатные антенные решетки.

Многолучевые антенные решетки.

Содержание практических занятий по дисциплине

Раздел 3. Интегральные устройства СВЧ.

Тема 1. Направленные ответвители и мосты.

Основные параметры направленных ответвителей. Кольцевой направленный ответвитель.

Шлейфный направленный ответвитель. Ответвители на связанных линиях.

Тема 2. Делители и сумматоры мощности.

Делители мощности последовательного и параллельного типов. Кольцевой делитель мощно- сти.

Схемы сложения на направленных ответвителях.

Тема 3. Устройства управления фазой и амплитудой.

Управление фазой сигнала в тракте СВЧ. Управление амплитудой сигнала в тракте СВЧ.

Тема 4. Фильтры СВЧ.

Типы фильтров и их характеристики. Фильтр нижних частот. Фильтр верхних частот. Полос- нопропускающий фильтр. Полосно-заграждающий фильтр.

Раздел 5. Проектирование транзисторных усилителей СВЧ.

Тема 3. Расчет узкополосных усилителей графоаналитическим методом.

Режим двустороннего согласования. Режим фиксированного усиления в безусловно устой-чивом усилителе. Режим фиксированного усиления в потенциально неустойчивом усилителе.

Коэффициент шума усилителя.

Тема 4. Особенности построения транзисторных усилителей СВЧ.

Схемы включения транзисторов. Узкополосные усилители. Широкополосные усилители.

Практические схемы транзисторных усилителей.

Раздел 6. Проектирование диодных преобразователей частоты.

Тема 2. Электрические характеристики смесителей.

Эффект прямого и обратного преобразования частоты в диодных смесителях. Эффект вторичного обратного преобразования частоты. Зеркальная частота. Спектральный состав колебаний в преобразователях частоты. Анализ однотактного смесителя. Узкополосный смеситель при короткозамкнутой цепи по зеркальной частоте. Топологические схемы однотактных смесителей. Шумовые свойства диодных преобразователей.

Тема 3. Балансные и двойные балансные смесители.

Принципиальные схемы балансных смесителей. Анализ работы балансного смесителя.

Топологическая схема балансного смесителя. Двойные балансные смесители. Преобразователи частоты с подавлением зеркального канала.

Раздел 7. Проектирование диодных генераторов СВЧ.

Тема 2. Генераторы на диоде Ганна.

Эквивалентная схема генератора на диоде Ганна. Модель внешней цепи генератора. Режимы работы генераторов на диоде Ганна. Оптимальные параметры диода Ганна.

Тема 3. Проектирование диодных генераторов.

Стационарный режим автоколебаний. Стабильность частоты и минимальный уровень шумов. Низкочастотные колебания в цепи питания диода и способы их устранения. Проектирование цепи СВЧ генераторов на диоде Ганна.

Тема 4. Конструирование диодных генераторов.

Крепление генераторных диодов. Цепи питания. Топология колебательной системы СВЧ.

Раздел 8. Микрополосковые антенные устройства.

Тема 1. Методы расчета микрополосковых антенн.

Модель прямоугольной микрополосковой антенны. Микрополосковая антенна, возбужда- емая микрополосковой линией. Микрополосковая антенна, возбуждаемая коаксиальной ли- нией. Апертурно-связанная микрополосковая антенна. Электромагнитно-связанная микро- полосковая

Апертурно-связанная микрополосковая антенна. Электромагнитно-связанная микро- полосковая антенна. Модель дисковой микрополосковой антенны.

Тема 2. Микрополосковые антенны с увеличенной полосой рабочих частот.

Микрополосковая антенна с пассивными излучателями. Частотно-независимые и логопериодические антенны. Микрополосковые антенны с пластинами сложной формы. Антенны с согласующими цепями. Вибраторные и щелевые микрополосковые антенны. Антенны с круговой поляризацией.

Тема 3. Диэлектрические резонаторные антенны.

Диэлектрические резонаторные антенны. Цилиндрические диэлектрические резонаторные антенны. Широкополосные диэлектрические резонаторные антенны.

Тема 5. Печатные антенные решетки.

Плоские фазированные антенные решетки. Многолучевые антенные решетки. Антенные решетки с частотным сканированием.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Рейтинг-контроль №1

- Полосковая линия (п.6.1,[1] с. 6-24).
- 2. Микрополосковая линия (п.6.1, [1] с. 24-28).
- 3. Копланарная линии (п.6.1, [1] с. 28-31).
- 4. Щелевая линии (п.б.1, [1] с. 30-31).
- Связанные полосковые лини (п.6.1,[1] с. 32-34).
- 6. Связанные микрополосковые линии (п.6.1, [1] с. 34-35).
- 7. Индуктивности, ёмкости, резисторы, согласованные нагрузки для интегральных схем СВЧ (п.6.1, [1] с. 40-46).
- 8. Резонаторы на микрополосковых, щелевых и диэлектрических структурах (п.6.1, [1] с. 47-53).
- 9. Устройства возбуждения линий передачи, переходы, короткозамыкатели (п.б.1, [1] с. 53-56).
- 10. Направленные ответвители и мосты (п.6.1, [1] с. 57-67).
- 11. Делители и сумматоры мощности (п.6.1, [1] с. 68-75).
- 12. Устройства управления фазой и амплитудой сигнала (п.б.1, [1] с. 76-86).
- 13. Фильтры СВЧ (п.6.1, [1] с. 87-100).
- 14. Общая характеристика Microwave Office (п.6.1, [3] с. 57-67).
- 15. Численные методы расчета в среде Microwave Office (п.6.1, [3] с. 68-75).
- 16. Моделирование СВЧ устройств в среде Microwave Office (п.6.1, [3] с. 76-86).

Рейтинг-контроль №2

- 17. Бесструктурная модель транзистора СВЧ (конспект лекций (КЛ) с. 1-3).
- 18. Устойчивость транзисторных усилителей СВЧ (КЛ с. 1-3).
- 19. Режим двухстороннего согласования в транзисторных усилителях СВЧ (КЛ с. 3-9).
- 20. Режим фиксированного усиления в безусловно устойчивом транзисторном усилителе СВЧ (КЛ с. 11-13).
- 21. Режим фиксированного усиления в потенциально неустойчивом транзисторном усилителе СВЧ (КЛ с. 13-15).
- 22. Согласующие цепи в микрополосковом транзисторном усилителе СВЧ (КЛ с. 15-20).
- **23.** Развязывающие и блокировочные элементы в широкополосном транзисторном усилителе СВЧ (КЛ с. 15-20).
- 24. Общие положения расчета СВЧ диодных преобразователей частоты (КЛ с. 22-25).
- 25. Свойства однотактных СВЧ смесителей (КЛ с. 25-31).
- 26. Сложные схемы СВЧ смесителей (КЛ с. 31-33).
- 27. Преобразование частоты с подавлением зеркального канала (КЛ с. 34-38).
- 28. Гетеродины СВЧ преобразователей частоты (КЛ с. 39-40).

Рейтинг-контроль №3

- 29. Генераторные диоды с междолинным электронным переходом: эквивалентная схема и расчет электронного режима и полного сопротивления генераторного диода (КЛ с. 58-59).
- 30. Расчет цепей подавления паразитных НЧ колебаний в диодных генераторах СВЧ (КЛ с. 59-60).
- 31. Конструирование микрополосковых диодных генераторов СВЧ (КЛ с. 60-62).

- 32. Перестройка частоты в диодных генераторах СВЧ (КЛ с. 63-64).
- 33. Методы расчета микрополосковых антенн (КЛ с. 65-71).
- 34. Микрополосковые антенны с увеличенной полосой рабочих частот (КЛ с. 72-79).
- 35. Диэлектрические резонаторные антенны (КЛ с. 80-91).
- 36. Микрополосковые антенны с элементами из нетрадиционных материалов (КЛ с. 80-86).
- 37. Печатные антенные решетки (КЛ с. 86-98).

5.2. Промежуточная аттестация по итогам освоения дисциплины

Вопросы к экзамену.

- 1. Полосковая линия.
- 2. Микрополосковая линия.
- 3. Копланарная линии.
- 4. Шелевая линии.
- 5. Связанные полосковые лини.
- 6. Связанные микрополосковые линии.
- 7. Индуктивности, ёмкости, резисторы, согласованные нагрузки для интегральных схем CBЧ.
- 8. Резонаторы на микрополосковых, щелевых и диэлектрических структурах.
- 9. Устройства возбуждения линий передачи, переходы, короткозамыкатели.
- 10. Направленные ответвители и мосты.
- 11. Делители и сумматоры мощности.
- 12. Устройства управления фазой и амплитудой сигнала.
- 13. Фильтры СВЧ.
- 14. Общая характеристика Microwave Office.
- 15. Численные методы расчета в среде Microwave Office.
- 16. Моделирование СВЧ устройств в среде Microwave Office.
- 17. Бесструктурная модель транзистора СВЧ (конспект лекций.
- 18. Устойчивость транзисторных усилителей СВЧ.
- 19. Режим двухстороннего согласования в транзисторных усилителях СВЧ.
- 20. Режим фиксированного усиления в безусловно устойчивом транзисторном усилителе СВЧ.
- 21. Режим фиксированного усиления в потенциально неустойчивом транзисторном усилителе СВЧ.
- 22. Согласующие цепи в микрополосковом транзисторном усилителе СВЧ.
- 23. Развязывающие и блокировочные элементы в широкополосном транзисторном усилителе СВЧ.
- 24. Общие положения расчета СВЧ диодных преобразователей частоты.
- 25. Свойства однотактных СВЧ смесителей.
- 26. Сложные схемы СВЧ смесителей.
- 27. Преобразование частоты с подавлением зеркального канала.
- 28. Гетеродины СВЧ преобразователей частоты.
- 29. Генераторные диоды с междолинным электронным переходом: эквивалентная схема и расчет электронного режима и полного сопротивления генераторного диода.

- 30. Расчет цепей подавления паразитных НЧ колебаний в диодных генераторах СВЧ.
- 31. Конструирование микрополосковых диодных генераторов СВЧ (КЛ с. 60-62).
- 32. Перестройка частоты в диодных генераторах СВЧ.
- 33. Методы расчета микрополосковых антенн.
- 34. Микрополосковые антенны с увеличенной полосой рабочих частот.
- 35. Диэлектрические резонаторные антенны.
- 36. Микрополосковые антенны с элементами из нетрадиционных материалов.
- 37. Печатные антенные решетки.

5.3. Самостоятельная работа обучающегося.

СРС с лекционными материалами.

- 1. Полосковая линия (п.6.1,[1] с. 6-24).
- 2. Микрополосковая линия (п.6.1, [1] с. 24-28).
- 3. Копланарная линии (п.6.1, [1] с. 28-31).
- 4. Щелевая линии (п.б.1, [1] с. 30-31).
- Связанные полосковые лини (п.6.1,[1] с. 32-34).
- 6. Связанные микрополосковые линии (п.6.1, [1] с. 34-35).
- 7. Индуктивности, ёмкости, резисторы, согласованные нагрузки для интегральных схем СВЧ (п.6.1, [1] с. 40-46).
- 8. Резонаторы на микрополосковых, щелевых и диэлектрических структурах (п.6.1, [1] с. 47-53).
- 9. Устройства возбуждения линий передачи, переходы, короткозамыкатели (п.6.1, [1] с. 53-56).
- 10. Направленные ответвители и мосты (п.б.1, [1] с. 57-67).
- 11. Делители и сумматоры мощности (п.6.1, [1] с. 68-75).
- 12. Устройства управления фазой и амплитудой сигнала (п.6.1, [1] с. 76-86).
- 13. Фильтры СВЧ (п.6.1, [1] с. 87-100).
- 14. Общая характеристика Microwave Office (п.6.1, [3] с. 57-67).
- 15. Численные методы расчета в среде Microwave Office (п.6.1, [3] с. 68-75).
- 16. Моделирование СВЧ устройств в среде Microwave Office (п.7а, [3] с. 76-86).
- 17. Бесструктурная модель транзистора СВЧ (конспект лекций (КЛ) с. 1-3).
- 18. Устойчивость транзисторных усилителей СВЧ (КЛ с. 1-3).
- 19. Режим двухстороннего согласования в транзисторных усилителях СВЧ (КЛ с. 3-9).
- 20. Режим фиксированного усиления в безусловно устойчивом транзисторном усилителе СВЧ (КЛ с. 11-13).
- 21. Режим фиксированного усиления в потенциально неустойчивом транзисторном усилителе СВЧ (КЛ с. 13-15).
- 22. Согласующие цепи в микрополосковом транзисторном усилителе СВЧ (КЛ с. 15-20).
- 23. Развязывающие и блокировочные элементы в широкополосном транзисторном усилителе СВЧ (КЛ с. 15-20).
- 24. Общие положения расчета СВЧ диодных преобразователей частоты (КЛ с. 22-25).
- 25. Свойства однотактных СВЧ смесителей (КЛ с. 25-31).
- 26. Сложные схемы СВЧ смесителей (КЛ с. 31-33).

- 27. Преобразование частоты с подавлением зеркального канала (КЛ с. 34-38).
- 28. Гетеродины СВЧ преобразователей частоты (КЛ с. 39-40).
- 29. Генераторные диоды с междолинным электронным переходом: эквивалентная схема и расчет электронного режима и полного сопротивления генераторного диода (КЛ с. 58-59).
- 30. Расчет цепей подавления паразитных НЧ колебаний в диодных генераторах СВЧ (КЛ с. 59-60).
- 31. Конструирование микрополосковых диодных генераторов СВЧ (КЛ с. 60-62).
- 32. Перестройка частоты в диодных генераторах СВЧ (КЛ с. 63-64).
- 33. Методы расчета микрополосковых антенн (КЛ с. 65-71).
- 34. Микрополосковые антенны с увеличенной полосой рабочих частот (КЛ с. 72-79).
- 35. Диэлектрические резонаторные антенны (КЛ с. 80-91).
- 36. Микрополосковые антенны с элементами из нетрадиционных материалов (КЛ с. 80-86).
- 37. Печатные антенные решетки (КЛ с. 86-98).

Темы курсовой работы

Вариант 1

Рассчитать транзисторный усилитель СВЧ в интегральном исполнении. Тип используемого транзистора 3П326-А. Рабочий диапазон частот 1-3 ГГц. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 2

Рассчитать транзисторный усилитель СВЧ в интегральном исполнении. Тип используемого транзистора 3П326-А. Рабочий диапазон частот 2-4 ГГц. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 3

Рассчитать транзисторный усилитель СВЧ в интегральном исполнении. Тип используемого транзистора 3П326-А. Рабочий диапазон частот 3-5 ГГц. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 4

Рассчитать транзисторный усилитель СВЧ в интегральном исполнении. Тип используемого транзистора 3П326-А. Рабочий диапазон частот 4-6 ГГц. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.7а, [1],[3]).

Вариант 5

Рассчитать транзисторный усилитель СВЧ в интегральном исполнении. Тип используемого транзистора 3П326-А. Рабочий диапазон частот 5-7 ГГц. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 6

Рассчитать балансный диодный смеситель частоты в интегральном исполнении. Используемый режим — широкополосный. Частота сигнала $f_c = 12$ ГГц; промежуточная частота $f_{\Pi P} = 1.5$ ГГц; КСВ по входу и выходу < 1.5; полоса пропускания > 20%; сопротивление источника сигнала и нагрузки 50 Om; потери преобразования $L_{\pi} < 6$ дБ. Смеситель должен обеспечивать максимальное подавление комбинационных составляющих при мощности гетеродина $P_r < 10$ мВт. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 7

Рассчитать балансный диодный смеситель частоты в интегральном исполнении. Используемый режим – узкополосный. Частота сигнала $f_c = 12$ ГГц; промежуточная частота $f_{\Pi P} = 1.5$ ГГц; КСВ по входу и выходу < 1.5; полоса пропускания > 10%; сопротивление источника сигнала и нагрузки 50 Ом; потери преобразования $L_{\pi} < 6$ дБ. Смеситель должен обеспечивать максимальное подавление комбинационных составляющих при мощности гетеродина $P_r < 1$ мВт. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 8

Рассчитать балансный диодный смеситель частоты в интегральном исполнении. Используемый режим — широкополосный. Частота сигнала $f_c = 5$ ГГц; промежуточная частота $f_{\Pi P} = 100$ МГц; КСВ по входу и выходу < 1.5; полоса пропускания > 20%; сопротивление источника сигнала и нагрузки 50 Om; потери преобразования $L_{\pi} < 6$ дБ. Смеситель должен обеспечивать максимальное подавление комбинационных составляющих при мощности гетеродина $P_r < 3$ мВт. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 9

Рассчитать балансный диодный смеситель в интегральном исполнении. Используемый режим — узкополосный. Частота сигнала $f_c = 5$ ГГц; промежуточная частота $f_{\Pi P} = 100$ МГц; КСВ по входу и выходу < 1.5; полоса пропускания > 10%; сопротивление источника сигнала и нагрузки 50 Om; потери преобразования $L_{\pi} < 3$ дБ. Смеситель должен обеспечивать максимальное подавление комбинационных составляющих при мощности гетеродина $P_r < 1$ мВт. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; h = 1 мм; t = 0.05 мм), (п.6.1, [1],[3]).

Вариант 10

Рассчитать балансный диодный смеситель в интегральном исполнении. Используемый

режим — широкополосный. Частота сигнала $f_c = 7.5 \ \Gamma \Gamma \mu$; промежуточная частота $f_{\Pi P} = 100 \ M \Gamma \mu$; КСВ по входу и выходу < 1.5; полоса пропускания > 20%; сопротивление источника сигнала и нагрузки $50 \ Om$; потери преобразования $L_{\pi} < 6 \ дБ$. Смеситель должен обеспечивать максимальное подавление комбинационных составляющих при мощности гетеродина $P_r < 5 \ MBT$. Интегральная схема должна быть реализован на основе МПЛ ($\varepsilon = 9.6$; $tg\delta = 0.0001$; $h = 1 \ MM$; $t = 0.05 \ MM$),(п.6.1, [1],[3]).

Фонд оценочных материалов (ФОМ) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид	Год	КНИГООБЕСПЕЧЕННОСТЬ				
издания, издательство	издания					
нэдиних, нэдительство	издания	Наличие в электронном каталоге ЭБС				
Основная литература						
1. Веселов Г.И. и др. Микроэлектронные устройства	2015	http://znanium.com/catalog.php?bookinfo=3				
СВЧ: Уч. пособие для радиотехнических специальнос-		67972				
тей вузов \ Под ред. Г.И. Веселова. – М.: Высшая						
школа, 2015, -280 с ISBN 5-06-001170-4.						
2 Романовский М.Н. Интегральные устройства	2012	http://www.lanbook.com/books/element.php?				
радиоэлектроники: учебное пособие / М.Н.		p/1_cid/68&p/1_id=1107				
Романовский. – Изд. Томский государственный						
университет систем управления и радиоэлектроники,						
2012. – 127 c. ISBN 2227-8397.						
3. ФедоренкоИ.А.Применение пакета программ	2012	http://l.lanbook.com/books/element.php?p/1_				
Microwave Office 2009 AWR для проектирования		id=58398				
микрополосковых устройствСВЧ [Электронный ресурс						
]: учебное пособие/Федоренко И.А.,Федор-кова Н.В						
Электрон.текстовые данныеМ.:Изд.МГТУ им.Н.Э.						
Баумана,201260 с ISBN 978-5-98281-329-9.						
Дополнительна	ая литератур	oa				
1 Плавский Л.Г. Интегральные устройства	2013	http://www.iprbooksshop.ru/13874.html				
электроники: учебно-методическое пособие / Л.Г.						
Плавский. Новосибирск: Изд. Новосибирского						
Государствен- ного технического университета, 2013. –						
31 c ISBN 978-5-98281-329-9						
2. Технологическая оптимизация микроэлектронных	2014	http://iprbooksshop.ru/13969				
устройств СВЧ: учебное пособие / А.Г. Гудков, С.А.						
Мешков, М.А. Синельщикова, Е.А. Скороходов. – М.:						
Изд. МГТУ им. Н.Э. Баумана, 2014. – 44 с. ISBN 978-5-						
7038-3928						

6.2. Периодические издания

Антенны, Электросвязь, Радиотехника и электроника, Электродинамика и техника телекоммуникационных систем, Электродинамика и техника СВЧ и КВЧ.

6.3. Интернет-ресурсы

http://znanium.com/catalog.php?bookinfo=367972; http://www.lanbook.com/books/element.php?p/1_cid/68&p/1_id=1107; http://l.lanbook.com/books/element.php?p/1_id=58398 http://www.iprbooksshop.ru/13874.html;

http://iprbooksshop.ru/13969;

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализациии данной дисциплины имеется специальное помещение для проведения занятий лекционного, практического и лабораторного типов, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, для самостоятельной работы. Лекционные и практические занятия, лабораторные работы проводятся в лаборатории Антенн и устройств СВЧ (510-3). Материально-техническое обеспечение дисциплины включает: лабораторные макеты и измерительное оборудование специализированной лаборатории (3 физических лабораторных работ): P2-53 – 5 шт., P4-11 – 2 шт., Г4-111Б, Г4-83, С4-27, ФК2-33; компьютеры со специализированным программным обеспечением МАКЕТ для выполнения виртуальных лабораторных работ (6 виртуальные работы).

виртуальных лабораторных работ (6 виртуальные работы).						
Рабочую программу составил Гаврилов В.М., доцент кафедры РТ и РС Рецензент «Владимирское КБ Радиосвязи», Генеральный директор Богданов А.Е. Программа рассмотрена и одобрена на заседании кафедры РТ и РС Протокол № от						
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ						
Рабочая программа одобрена на 20/ 20 учебный года						
Протокол заседания кафедры № от года						
Заведующий кафедрой						
Рабочая программа одобрена на 20 / 20 учебный года						
Протокол заседания кафедры № от года						

Заведующий кафедрой							
Рабочая прог	грамма одобрена на 20 / 20 уч	небный гола					
-	Протокол заседания кафедры № от года						
Заведующий	кафедрой						
лист регистрации изменений в рабочую программу дисциплины Проектирование микроэлектронных устройств и антенн образовательной программы направления подготовки 11.03.01 Радиотехника, направленность: Электронные цифровые устройства и системы (бакалавр)							
Номер изменения	Внесены изменения в части/разделы рабочей программы	Исполнитель ФИО	Основание (номер и дата протокола				
изменения	рассо тем программы	Ψ110	заседания кафедры)				
1							
2							

ФИО

Заведующий кафедрой _____

Подпись