Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт информационных технологий и радиоэлектроники

УТВЕРЖДАЮ:

Директор института

Галкин А.А.

01 Julioned 2023 F

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика

(наименование дисциплины)

направление подготовки / специальность

10.03.01 «Информационная безопасность»

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Безопасность автоматизированных систем (по отраслям или в сфере профессиональной деятельности)

(направленность (профиль) подготовки))

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Физика» является сформировать научное мировоззрение у студентов. Развить способность выявлять естественнонаучную сущность проблем. Научить применять соответствующий физико-математический аппарат для формализации возникших задач, их анализа и выработки решения. Это невозможно без знания фундаментальных законов физики и без представления о моделях изучаемых в физике.

Задачи изучения курса:

- заложить фундамент знаний, которые студенты используют при изучении технических дисциплин (физические процессы в информационной безопасности, техническая защита информации, вычислительная техника)
- дать возможность будущему специалисту усваивать новые достижения науки и использовать их в повседневной практике. Такая цель может быть достигнута только при глубоком изучении законов физики.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика» относится к обязательным дисциплина Блока Б1 (код Б1.О.20) учебного плана. Курс физики является неотъемлемой частью подготовки специалиста по направлению «Информационная безопасность» в вузе. Это связано с тем, что в подавляющем большинстве применений законов природы на практике при выполнении экспериментов на действующих объектах по заданным методикам и обработкой результатов с применением современных информационных технологий физика играет важную, а иногда и центральную роль.

Для успешного освоения курса общей физики необходимы, в первую очередь, знания и умения их применять по дисциплинам: математика, информатика.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты обучения по дисциплине, в		Наименование
компетенции	соответствии с индикатором	оценочного средства	
(код, содержание	Индикатор достижения	Результаты обучения по	
компетенции)	компетенции	дисциплине	
	(код, содержание индикатора		
ОПК-4 Способен	ОПК-4.1.1	Знает основополагающие	Тестовые вопросы
применять		принципы механики;	
необходимые	ОПК-4.1.2	Знает основополагающие	
физические		принципы термодинамики	
законы и модели	и молекулярной физики;		
для решения задач	ОПК-4.1.3	ОПК-4.1.3 Знает основные	
профессионально		положения электричества	
й деятельности		и магнетизма; основные	
		положения колебаний и	
		оптики;	
	ОПК-4.1.4	Знает основополагающие	
		принципы квантовой	
		физики;	
	ОПК-4.2.1	Умеет решать базовые	
		прикладные физические	
		задачи;	
	ОПК-4.2.2	Умеет делать выводы и	

		формулировать их в виде отчета о проделанной исследовательской работе;	
ОПК-11 Способен	ОПК-11.1.1	Знает теоретические	Тестовые вопросы
проводить		основы теории	
эксперименты по		погрешностей;	
заданной	ОПК-11.1.2	Знает методы и принципы	
методике и		постановки	
обработку их		экспериментов в физике;	
результатов	ОПК-11.2.1	Умеет проводить	
		физический эксперимент,	
		обрабатывать его	
		результаты;	
	ОПК-11.3.1	Владеет методикой	
		постановки и проведения	
		физического	
		эксперимента;	
	ОПК-11.3.2	Владеет методикой	
		анализа и обработки	
		результатов физического	
		эксперимента;	

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 8 зачетных единиц, 244 часа

Тематический план форма обучения – очная

	форма обучения – очная								
			Неделя семестра	Контактная работа обучающихся с педагогическим работником			Я	Формы текущего контроля успеваемости,	
№ п/п	Наименование тем и/или разделов/тем дисциплины	Семестр		Лекции	Практические занятия	Лабораторные работы	в форме практической подготовки	Самостоятельная работа	форма промежуточной аттестации (по семестрам)
1	Введение. Предмет физики. Кинематика	1	1-2	3	3	3		3	
2	Динамика поступательного движения	1	3-4	3	3	3		3	
3	Вращательное движение твердого тела	1	5-6	3	3	3		3	Рейтинг- контроль №1
4	Законы сохранения. Элементы механики жидкостей и газов. Элементы специальной теории относительности	1	7-8	3	3	3		3	

Итого по дисциплине		2	88	72	72	72	72	Зачет Зачет
Наличие в дисциплине КП/КР		Н	ет					
Всего за 2 семестр:		1	44	36	36	36	36	Зачет
12	Основы физики элементарных частиц	2	18	3	3	3	3	Рейтинг- контроль №3
11	твердого тела Основы физики атомного ядра	2	17	3	3	3	3	
10	Основные понятия физики	2	16	3	3	3	3	
9	оптики и атомной физики Элементы квантовой механики	2	14 15	3	3	3	3	
8	Основные понятия квантовой							
6 7	Дифракция света. Поляризация света. Дисперсия света.	2	11-12	3	3	3	3	Рейтинг- контроль №2
5	Распространение света через границу двух сред. Интерференция света.	2	9-10	3	3	3	3	
4	Система Ур-ний Максвелла Электромагнитные волны.	2	7-8	3	3	3	3	
3	Механические волны.	2	5-6	3	3	3	3	Рейтинг- контроль №1
2	Механические колебания. Электромагнитные колебания.	2	3-4	3	3	3	3	
1	Магнитное поле в вакууме и веществе. Эл. маг. индукция.	2	1-2	3	3	3	3	
	Всего за 1 семестр:		44	36		36	36	Зачет
11	Электрическое поле диэлектриков и проводников. Постоянный электрический ток.	1	18	3	3	3	3	Рейтинг- контроль №3
10	Элементы теории поля Напряженность электростатического поля в вакууме. Потенциал электростатического поля в вакууме.	1	17	3	3	3	3	
9	Первое начало термодинамики. Второе начало термодинамики.	1	16	3	3	3	3	
8	Элементы физической кинетики	1	15	3	3	3	3	
7	Реальные газы	1	13- 14	6	6	6	6	
6	Элементы классической статистики.	1	11- 12	3	3	3	3	Рейтинг- контроль №2
5	Молекулярно-кинетическая теория идеального газа.	1	9- 10	3	3	3	3	

Содержание лекционных занятий по дисциплине

Раздел 1. Механика

Тема 1. Методы физического исследования.

Роль физики в развитии техники и влияние техники на развитие физики.

Тема 2. Связь физики с другими науками.

Успехи современной физики.

Тема 3. Механическое движение как простейшая форма движения материи.

Система отсчета. Принцип относительности Галилея. Преобразование Галилея. Радиусвектор.

Тема 4. Материальная точка (частица). Траектория.

Радиус кривизны траектории. Линейная скорость и линейное ускорение. Поступательное движение твердого тела.

Тема 5. Тангенциальное и нормальное ускорение.

Связь между линейными и угловыми кинематическими величинами.

Тема 6. Законы Ньютона.

Первый закон Ньютона и понятие инерциальной системы отсчета. Второй закон Ньютона и понятие силы, массы и импульса. Уравнение движения.

Тема 7. Неинерциальные системы отсчета.

Абсолютные и относительные скорость и ускорение. Силы инерции.

Тема 8. Система материальных точек.

Центр инерции (центр масс). Теорема о движении центра инерции.

Тема 9. Понятие абсолютно твердого тела.

Момент инерции тела.

Тема 10. Момент силы.

Момент импульса. Основной закон динамики вращательного движения. Уравнение вращательного движения твердого тела относительно неподвижной оси.

Тема 11. Теорема Штейнера.

Гироскопический эффект. Свободные оси.

Тема 12. Закон сохранения импульса и третий закон Ньютона.

Закон сохранения момента импульса.

Тема 13. Работа и энергия в механике.

Энергия кинетическая и потенциальная.

Тема 14. Связь между потенциальной энергией и силой.

Понятие силового поля.

Тема 15. Закон сохранения механической энергии.

Консервативные и неконсервативные силы. Консервативная и диссипативная системы.

Тема 16. Задачи механики жидкостей и газов.

Уравнение Эйлера. Уравнение неразрывности. Уравнение Бернулли.

Тема 17. Система уравнений газодинамики.

Циркуляция скорости. Потенциальное и вихревое движения. Теорема Жуковского.

Тема 18. Ламинарный и турбулентный режимы течения.

Принцип относительности Эйнштейна. Роль скорости света. Постулат постоянства скорости света. Преобразования Лоренца.

Тема 19. Пространство и время в специальной теории относительности.

Инварианты преобразования.

Тема 20. Лоренцово сокращение длины и замедление времени.

Релятивистский импульс. Взаимосвязь массы и энергии. Столкновение и распад частиц. Дефект масс. Энергия связи. Соотношение между полной энергией и импульсом частиц.

Раздел 2. Основы молекулярной физики и термодинамики

Тема 1. Понятие идеального газа.

Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы

Тема 2. Внутренняя энергия идеального газа.

Число степеней свободы. Закон равнораспределения энергии.

Тема 3. Давление газа с точки зрения молекулярно-кинетической теории.

Основное уравнение молекулярно-кинетической теории идеального газа.

Тема 4. Уравнение состояния идеального газа (уравнение Клапейрона - Менделеева).

Динамические и статистические закономерности в физике. Статистический метод исследования системы. Понятие о функции распределения.

Тема 5. Фазовое пространство.

Фазовая точка, фазовая ячейка. Статистическое усреднение.

Тема 6. Распределение Максвелла.

Средние скорости молекул.

Тема 7. Распределение Больцмана.

Барометрическая формула.

Тема 8. Статистика Максвелла-Больцмана.

Распределение Гиббса.

Тема 9. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов.

Тема 10. Метастабильное состояние.

Критическое состояние.

Тема 11. Внутренняя энергия реального газа.

Эффект Джоуля-Томсона. Сжижение газов и получение низких температур.

Тема 12. Характеристика жидкого состояния.

Ближний порядок.

Тема 13. Поверхностное натяжение.

Силы, возникающие на кривой поверхности жидкости. Формула Лапласа. Смачивание и капиллярные явления.

Тема 14. Упругая и пластическая деформация твердых тел.

Закон Гука. Кристаллическая решетка. Дальний порядок. Монокристаллы и поликристаллы.

Тема 15. Фазы вещества.

Испарение и конденсация. Плавание и кристаллизация. Фазовые переходы первого и второго рода.

Тема 16. Понятие столкновения.

Упругое и неупругое столкновение.

Тема 17. Прицельное расстояние.

Эффективное сечение рассеяния. Средняя длина свободного пробега.

Тема 18. Явление переноса - диффузия.

Явление переноса - теплопроводность. Явление переноса - вязкость.

Тема 19. Основные термодинамические понятия: внутренняя энергия, работа, теплота.

Уравнение первого начала термодинамики.

Тема 20. Зависимость теплоемкости идеального газа от вида процесса.

Работа, совершаемая газом при изопроцессах.

Тема 21. Адиабатический процесс.

Обратимые и необратимые процессы. Круговой процесс (цикл). Цикл Карно и его КПД для идеального газа.

Тема 22. Принцип действия теплового двигателя и холодильной машины.

Энтропия. Закон возрастания энтропии. Статистический вес (термодинамическая вероятность). Статистическое толкование второго начала термодинамики.

Раздел 3. Электричество и магнетизм.

Тема 1. Закон Кулона.

Напряженность электростатического поля. Понятие электростатического поля. Концепции близко- и дальнодействия. Принцип суперпозиции электрических полей.

Тема 2. Поток напряженности.

Теорема Гаусса для электростатического поля в вакууме.

Тема 3. Применение теоремы Гаусса для расчета полей.

Работа сил электростатического поля. Циркуляция напряженности электростатического поля.

Тема 4. Потенциал.

Разность потенциалов. Связь между потенциалом и напряженностью электростатического поля.

Тема 5. Свободные и связанные заряды в веществе.

Типы диэлектриков. Ионная, электронная и ориентационная поляризация.

Тема 6. Поляризованность.

Диэлектрическая восприимчивость вещества и ее зависимость от температуры.

Тема 7. Теорема Гаусса для электрического поля в диэлектрике.

Электрическое смещение. Диэлектрическая проницаемость среды. Напряженность электрического поля в диэлектрике.

Тема 8. Граничные условия для электрического поля на границе раздела "диэлектрик – диэлектрик".

Распределение зарядов в проводнике. Электростатическое поле внутри и снаружи проводника. Граничные условия на границе " проводник – вакуум".

Тема 9. Электроемкость уединенного проводника, системы проводников и конденсатора.

Энергия заряженных уединенного проводника, системы проводников и конденсатора. Энергия электростатического поля. Объемная плотность энергии электростатического поля.

Тема 10. Характеристики электрического тока и условия его существования.

Разность потенциалов, электродвижущая сила, напряжение.

Тема 11. Классическая электронная теория электропроводности металлов и ее недостаточность.

Вывод законов Ома и Джоуля – Ленца из электронных представлений.

Тема 12. Ионизация молекул и рекомбинация ионов.

Работа ионизации. Ударная ионизация.

Тема 13. Несамостоятельный и самостоятельный газовые разряды.

Понятие о плазме. Способы создания плазмы. Квазинейтральность плазмы. Дебаевский радиус экранирования. Плазменная частота.

Тема 14. Низкотемпературная плазма. МГД- преобразование энергии.

Высокотемпературная плазма. Перспектива осуществления управляемого термоядерного синтеза.

Тема 15. Закон Ампера.

Магнитная индукция. Закон Био и Савара. Понятие магнитного поля. Принцип суперпозиции магнитных полей.

Тема 16. Магнитное поле прямолинейного и круговых токов.

Циркуляция вектора магнитной индукции. Закон полного тока. Магнитное поле длинного соленоида и тороида.

Тема 17. Магнитное взаимодействие токов и единица силы тока – ампер.

Инвариантность электрического заряда. Вихревое поле движущегося заряда. Магнетизм как релятивистский эффект.

Тема 18. Движение заряженных частиц в электрических и магнитных полях.

Эффект Холла. Принцип действия ускорителей заряженных частиц.

Тема 19. Понятие магнитного момента атома.

Микро- и макротоки. Молекулярные токи. Магнитная восприимчивость вещества и ее зависимость от температуры.

Тема 20. Закон полного тока для магнитного поля в веществе.

Напряженность магнитного поля. Магнитная проницаемость среды. Индукция магнитного поля в веществе.

Тема 21. Граничные условия для магнитного поля на границе раздела двух сред.

Типы магнетиков. Кривая намагничивания. Точка Кюри. Домены.

Тема 22. Опыт Фарадея.

Магнитный поток. ЭДС индукции. Основной закон электромагнитной индукции. Правило Ленца.

Тема 23. Самоиндукция и взаимоиндукция.

Индуктивность и взаимная индуктивность. Токи размыкания и замыкания.

Тема 24. Энергия магнитного поля.

Объемная плотность энергии магнитного поля.

Раздел 4. Колебания и волны

Тема 1. Свободные и вынужденные колебания.

Гармонические механические колебания и их характеристики.

Тема 2. Энергия гармонических механических колебаний.

Понятие о гармоническом осцилляторе.

Тема 3. Сложение одинаково направленных гармонических колебаний.

Биения.

Тема 4. Сложение взаимно перпендикулярных гармонических колебаний.

Фигуры Лиссажу.

Тема 5. Затухающие механические колебания.

Частота, коэффициент затухания, логарифмический декремент затухания механических колебаний.

Тема 6. Вынужденные механические колебания.

Амплитуда и фаза при вынужденных механических колебаниях.

Тема 7. Механический резонанс.

Резонансные кривые. Соотношения между фазами вынуждающей силы и скорости при механическом резонансе.

Тема 8. Механизм образования механических волн в упругой среде.

Продольные и поперечные волны. Волновое уравнение и его решение. Гармонические волны и их характеристики.

Тема 9. Фазовая скорость и дисперсия волн.

Волновой пакет и групповая скорость.

Тема 10. Понятие о когерентности.

Интерференция волн. Стоячие волны.

Тема 11. Колебательный контур.

Гармонические электромагнитные колебания и их характеристики.

Тема 12. Затухающие электромагнитные колебания.

Частота, коэффициент затухания, логарифмический декремент затухания электромагнитных колебаний. Добротность колебательного контура.

Тема 13. Вынужденные электромагнитные колебания.

Амплитуда и фаза вынужденных электромагнитных колебаний.

Tema 14. Фарадеевская и максвелловская трактовки явления электромагнитной индукции.

Ток смещения.

Тема 15. Электромагнитное поле.

Система уравнений Максвелла.

Тема 16. Волновое уравнение для электромагнитного поля и его решение.

Скорость распространения электромагнитных волн в средах.

Тема 17. Основные свойства электромагнитных волн.

Энергия и поток энергии электромагнитных волн. Вектор Пойнтинга. Импульс электромагнитного поля.

Раздел 5. Оптика

Тема 1. Электромагнитная природа света.

Принцип Гюйгенса. Закон отражения и преломления. Абсолютный и относительный показатели преломления. Полное внутреннее отражение. Световоды.

Тема 2. Когерентность и монохроматичность световых волн.

Время и длина когерентности.

Тема 3. Оптическая длина пути.

Оптическая разность хода. Расчет интерференционной картины от двух когерентных источников.

Тема 4. Полосы равной толщины и равного наклона.

Излучение Вавилова - Черенкова.

Тема 5. Многолучевая интерференция.

Понятие о голографии.

Тема 6. Принцип Гюйгенса - Френеля.

Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске.

Тема 7. Дифракция Фраунгофера от бесконечно длинной прямой щели.

Дифракция Фраунгофера на одномерной дифракционной решетке.

Тема 8. Естественный и поляризованный свет.

Поляризация при отражении и преломлении. Закон Брюстера.

Тема 9. Поляризация при двойном лучепреломлении.

Обыкновенный и необыкновенный лучи. Оптическая ось кристалла. Поляризационные призмы. Закон Малюса.

Тема 10. Оптическая активность вещества.

Эффект Фарадея.

Тема 11. Затруднения в электромагнитной теории Максвелла.

Нормальная и аномальная дисперсии. Методы наблюдения дисперсии.

Тема 12. Электронная теория дисперсии света.

Поглощение света. Цвета тел и спектр поглощения.

Содержание лабораторных занятий по дисциплине

Раздел 1. Механика

Тема 1. Динамика поступательного движения

Работа с установкой, расчет характеристик

Тема 2. Вращательное движение твердого тела.

Работа с установкой, расчет характеристик

Раздел 2. Молекулярная физика.

Тема 1. Теория идеального газа.

Работа со смесями и сплавами. Анализ полученных значений.

Тема 2. Элементы физической кинетики

Работа со смесями и сплавами. Анализ полученных значений.

Тема 3. Первое и второе начало термодинамики

Работа со смесями и сплавами. Анализ полученных значений.

Раздел 3. Электричество

Тема 1. Диэлектрики и проводники

Расчет диэлектрической проницаемости тел различной физической природы.

Тема 2. Уравнения Максвелла.

Составление и решение уравнений исходя из полученных значений на установке.

Раздел 4. Колебания и волны.

Тема 1. Колебания различных видов.

Измерить на установке и нарисовать различные колебания. Найти все характеристики волн.

Тема 2. Когерентность.

Работа с установкой, расчет характеристик

Тема 3. Электромагнитные колебания

Работа с установкой, расчет характеристик

Раздел 5. Оптика

Тема 1. Дисперсия света.

Работа с установкой. Расчет характеристик.

Тема 2. Оптическая активность вещества.

Расчет активности веществ различной физической природы.

Тема 3. Теория Максвелла.

Проведение опытов, которые наглядно дают подтверждение теории Максвелла. Обнаружение затруднений.

Содержание практических занятий по дисциплине

Раздел 1. Механика

Тема 1. Динамика поступательного движения

Решение задач по данной теме.

- 1) Собственная функция, описывающая основное состояние электрона в атоме водорода, имеет вид $\Phi(r)$ =Се-r/a, где (боровский радиус). Определить расстояние r, на котором вероятность нахождения электрона максимальна.
- 2) Атом водорода находится в основном состоянии. Собственная волновая функция, описывающая состояние электрона в атоме, имеет вид ψ (r)=Ce-r/a, где С некоторая постоянная. Найти из условия нормировки постоянную С.
- 3) Электрон находится в потенциальном ящике шириной 1. В каких точках в интервале (0 < x < 1)плотность вероятности нахождения электрона на первом и втором энергетических уровнях одинакова? Вычислить плотность вероятности для этих точек. Решение пояснить графически.

Тема 2. Вращательное движение твердого тела.

Решение задач по данной теме.

- 1) Собственная функция, описывающая состояние частицы в потенциальном ящике, имеет вид Используя условия нормировки, определить постоянную С
- 2) Частица в потенциальном ящике находится в основном состоянии. Какова вероятность W нахождения частицы: 1) в средней трети ящика; 2) в крайней трети ящика?
- 3) Вычислить радиус первой орбиты атома водорода (боровский радиус) и скорость электрона на этой орбите

Раздел 2. Молекулярная физика.

Тема 1. Теория идеального газа.

Решение задач по данной теме.

- 1) Определить длину волны L, соответствующую третьей спектральной линии в серии Бальмера
- 2) Вычислить по теории Бора радиус r2 второй стационарной орбиты и скорость v2 электрона на этой орбите для атома водорода

Тема 2. Элементы физической кинетики

Решение задач по данной теме.

- 1) Вычислите радиусы второй и третьей орбит в атоме водорода по теории Бора.
- 2) Найти наименьшую λmin и наибольшую λmax длины волн спектральных линий водорода в видимой области спектра.

Тема 3. Первое и второе начало термодинамики

Решение задач по данной теме.

- 1) Поток энергии Фе, излучаемый из смотрового окошка плавильной печи, равен 34 Вт. Определить температуру Т печи, если площадь отверстия S = 6 см2.
- 2) Диаметр вольфрамовой спирали в электрической лампочке d=0,3 мм, длина спирали l=5 см. При включении лампочки в сеть напряжением U=127 В через лампочку течет ток I=0,31 А. Найти температуру Т спирали. Считать, что по установлении равновесия все выделяющееся в нити тепло теряется в результате излучения. Отношение энергетических светимостей вольфрама и абсолютно черного тела для данной температуры k=0,31.
- 3) Температура верхних слоев Солнца равна 5,3 кК. Считая Солнце черным телом, определить длину волны Lm, которой соответствует максимальная спектральная плотность энергетической светимости

Раздел 3. Электричество

Тема 1. Диэлектрики и проводники

Решение задач по данной теме.

- 1) На какую длину волны приходится максимум спектральной плотности энергетической светимости абсолютно черного тела, имеющего температуру 37° С.
- 2) Изолированная металлическая пластинка освещается светом с длиной волны 450 нм. Работа выхода электронов из металла 2 эВ. До какого потенциала зарядится пластинка при непрерывном действии света?
- 3) Германиевый образец нагревают от 0 до 17 °С. Принимая ширину запрещенной зоны кремния 0.72 эВ, определить, во сколько раз возрастет его удельная проводимость.

Тема 2. Уравнения Максвелла.

Решение задач по данной теме.

- 1) В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния
- 2) В чистый германий введена небольшая примесь мышьяка. Пользуясь Периодической системой элементов Д. И. Менделеева, определить и объяснить тип проводимости примесного германия

Раздел 4. Колебания и волны.

Тема 1. Колебания различных видов.

Решение задач по данной теме.

- 1) Пользуясь периодической системой элементов Д.И. Менделеева, определите число протонов и число нейтронов в ядрах атомов фтора, аргона, брома, цезия и золота
- 2) Вычислить момент импульса орбитального движения электрона, находящегося в томе: s-состоянии, p-состоянии.

Тема 2. Когерентность.

Решение задач по данной теме.

- 1) Определить длину волны λ , соответствующую третьей спектральной линии в серии Бальмера.
- 2) Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы длина волны де Бройля λ была равна 0,1 нм?

Тема 3. Электромагнитные колебания

Решение задач по данной теме.

1) Частица находится в потенциальной яме. Найти отношение разности соседних энергетических уровней $\Delta E=En+1-En$ к энергии En частицы в трех случаях: 1) n=3; 2) n=10; 3) n \rightarrow infinity. Пояснить полученные результаты.

Раздел 5. Оптика

Тема 1. Дисперсия света.

Решение задач по данной теме.

- 1) Атом водорода находится в основном состоянии. Вычислить: 1) Вероятность W1 того, что электрон находится внутри области, ограниченной сферой радиуса, равного боровскому радиусу а; 2) Вероятность W2 того, что электрон находится вне этой области; 3) Отношение вероятностей W2/W1. Волновую функцию считать известной. $\psi(r)=1\sqrt{\pi}a3e-ra$
- 2) Пользуясь теорией Бора, определить числовые значения постоянной Ридберга. Тема 2. Оптическая активность вещества.

Решение задач по данной теме.

- 1) При какой скорости v электрона его дебройлевская длина волны будет равна: а) 500 нм; б) 0,1 нм;
- 2) Электрон в атоме водорода описвается в основном состоянии волновой функцией $\psi(r)=Ae-ra$. Определить отношение вероятностей W1/W2 пребывания электрона в сферических слоях толщиной $\Delta r=0.01a$ и радиусами r=0.5a и r=0.5a

Тема 3. Теория Максвелла.

Решение задач по данной теме.

- 1) Электрону в потенциальной яме шириной l отвечает волновое число $k=\pi nl$ Используя связь энергии E электрона с волновым числом k, получить выражение для собственных знчений энергии En.
- 2) Монохроматическое излучение с длиной волны λ =500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой F=10нH. Определить число N1фотонов, ежесекундно падающих на эту поверхность.
- 3) Определить длину волны ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектроно θмах, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

1 семестр

Рейтинг-контроль №1

- 1. Механическое движение как простейшая форма движения материи. Система отсчета. Принцип относительности Галилея. Преобразования Галилея. Радиус-вектор.
- 2. Материальная точка (частица). Траектория. Радиус кривизны траектории. Линейная скорость и линейное ускорение. Поступательное движение твердого тела.
- 3. Тангенциальное и нормальное ускорения. Связь между линейными и угловыми кинематическими величинами.
- 4. Первый закон Ньютона и понятие инерциальной системы отсчета. Второй закон Ньютона и понятие силы, массы и импульса. Уравнение движения. Третий закон Ньютона и пределы его применимости.
- 5. Неинерциальные системы отсчета. Абсолютные и относительные скорости и ускорение. Силы инерции.
- 6. Система материальных точек. Центр инерции (центр масс). Теорема о движении

центра инерции.

- 7. Понятие абсолютно твердого тела. Момент инерции тела.
- 8. Теорема Штейнера.
- 9. Момент силы. Момент импульса. Уравнение моментов. Уравнение вращательного движения твердого тела относительно неподвижной оси.
- 10. Гироскопический эффект. Свободные оси.
- 11. Закон сохранения импульса и третий закон Ньютона.
- 12. Закон сохранения момента импульса.
- 13. Работа и энергия в механике. Энергия кинетическая и потенциальная.
- 14. Понятие силового поля. Связь между потенциальной энергией и силой.
- 15. Закон сохранения механической энергии.
- 16. Консервативные и неконсервативные силы. Консервативная и диссипативная системы.
- 17. Задачи механики жилкостей и газов.
- 18. Уравнение неразрывности. Уравнение Бернулли.

Рейтинг-контроль №2

- 1. Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.
- 2. Внутренняя энергия идеального газа. Число степеней свободы. Закон равнораспределения энергии.
- 3. Давление газа с точки зрения молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории.
- 4. Уравнение состояния идеального газа (уравнение Клапейрона Менделеева).
- 5. Динамические и статистические закономерности в физике. Статистический метод исследования системы. Понятие о функции распределения.
- 6. Фазовое пространство. Фазовая точка, фазовая ячейка. Статистическое усреднение.
- 7. Распределение Максвелла. Средние скорости молекул.
- 8. Барометрическая формула. Распределение Больцмана.
- 9. Распределение Максвелла Больцмана.

Рейтинг-контроль №3

- 10. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.
- 11. Метастабильное состояние. Критическое состояние.
- 12. Внутренняя энергия реального газа.
- 13. Характеристика жидкого состояния. Ближний порядок.
- 14. Поверхностное натяжение. Силы, возникающие на кривой поверхности жидкости. Формула Лапласа. Смачивание и капиллярные явления.
- 15. Понятие столкновения. Упругое и неупругое столкновения.
- 16. Прицельное расстояние. Эффективное сечение рассеяния. Средняя длина свободного пробега.
- 17. Основные термодинамические понятия: внутренняя энергия, работа, теплота. Уравнение первого начала термодинамики.
- 18. Зависимость теплоемкости идеального газа от вида процесса. Работа, совершаемая газом при изопроцессах.
- 19. Адиабатический процесс.
- 20. Обратимые и необратимые процессы. Круговой процесс (цикл).
- 21. Цикл Карно и его КПД для идеального газа.
- 22. Принцип действия теплового двигателя и холодильной машины.
- 23. Энтропия. Закон возрастания энтропии.

2 семестр

Рейтинг-контроль №1

- 1. Закон Кулона. Напряженность электростатического поля. Понятие электростатического поля. Принцип суперпозиции электрических полей.
- 2. Поток напряженности. Теорема Гаусса для электростатического поля в вакууме.
- 3. Применение теоремы Гаусса для расчета полей.
- 4. Работа сил электростатического поля. Циркуляция напряженности электростатического поля.
- 5. Потенциал. Разность потенциалов. Связь между потенциалом и напряженностью электростатического поля.
- 6. Свободные и связанные заряды в веществе. Типы диэлектриков. Ионная, электронная и ориентационная поляризации.
- 7. Электроемкость уединенного проводника, системы проводников и конденсатора.
- 8. Энергия заряженных уединенного проводника, системы проводников и конденсатора. Энергия электрического поля. Объемная плотность энергии электрического поля.
- 9. Характеристики электрического поля и условия его существования. Разность потенциалов, электродвижущая сила, напряжение.
- 10. Закон Ампера. Магнитная индукция. Закон Био Савара. Понятие магнитного поля. Принцип суперпозиции магнитных полей. Магнитный момент.
- 11. Магнитное поле прямолинейного и кругового токов.
- 12. Движение заряженных частиц в электрических и магнитных полях.
- 13. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость среды. Индукция магнитного поля в веществе.
- 14. Опыт Фарадея. Магнитный поток. ЭДС индукции. Основной закон электромагнитной индукции. Правило Ленца.
- 15. Самоиндукция и взаимоиндукция. Индуктивность и взаимная индуктивность. Токи размыкания и замыкания.

Рейтинг-контроль №2

- 1. Свободные и вынужденные колебания. Гармонические механические колебания и их характеристики.
- 2. Энергия гармонических механических колебаний. Понятие о гармоническом и ангармоническом осцилляторе.
- 3. Сложение одинаково направленных гармонических колебаний. Биения.
- 4. Сложение взаимно перпендикулярных гармонических колебаний. Фигуры Лиссажу.
- 5. Затухающие механические колебания. Частота, коэффициент затухания, логарифмический декремент затухания механических колебаний.
- 6. Вынужденные механические колебания. Амплитуда и фаза при вынужденных механических колебаниях.
- 7. Механический резонанс. Резонансные кривые. Соотношения между фазами вынуждающей силы и скорости при механическом резонансе.
- 8. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Волновое уравнение и его решение. Гармонические волны и их характеристики.
- 9. Фазовая скорость и дисперсия волн. Волновой пакет и групповая скорость.
- 10. Понятие о когерентности. Интерференция волн. Стоячие волны.
- 11. Колебательный контур. Гармонические электромагнитные колебания и их характеристики.
- 12. Затухающие электромагнитные колебания. Частота, коэффициент затухания, логарифмический декремент затухания электромагнитных колебаний. Добротность

колебательного контура.

- 13. Вынужденные электромагнитные колебания. Амплитуда и фаза вынужденных электромагнитных колебаний.
- 14. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Ток смещения.
- 15. Система уравнений Максвелла. Электромагнитное поле.
- 16. Волновое уравнение для электромагнитного поля и его решение. Скорость распространения электромагнитных волн в средах.
- 17. Основные свойства электромагнитных волн. Энергия и поток энергии электромагнитных волн. Вектор Пойнтинга. Импульс электромагнитного поля.

Рейтинг-контроль №3

- 1. Электромагнитная природа света. Принцип Гюйгенса. Законы отражения и преломления. Абсолютный и относительный показатели преломления. Полное внутреннее отражение. Световоды.
- 2. Когерентность и монохроматичность световых волн. Временная когерентность. Время и длина когерентности.
- 3. Оптическая длина пути. Оптическая разность хода. Расчет интерференционной картины от двух когерентных источников.
- 4. Полосы равной толщины и равного наклона.
- 5. Пространственная когерентность. Радиус когерентности.
- 6. Принцип Гюйгенса Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске.
- 7. Дифракция Фраунгофера от бесконечно длинной прямой щели.
- 8. Дифракция Фраунгофера на одномерной дифракционной решетке.

5.2. Промежуточная аттестация по итогам освоения дисциплины

Примерный перечень вопросов к зачету 1 семестр

- 1. Механическое движение как простейшая форма движения материи. Система отсчета. Принцип относительности Галилея. Преобразования Галилея. Радиус-вектор.
- 2. Материальная точка (частица). Траектория. Радиус кривизны траектории. Линейная скорость и линейное ускорение. Поступательное движение твердого тела.
- 3. Тангенциальное и нормальное ускорения. Связь между линейными и угловыми кинематическими величинами.
- 4. Первый закон Ньютона и понятие инерциальной системы отсчета. Второй закон Ньютона и понятие силы, массы и импульса. Уравнение движения. Третий закон Ньютона и пределы его применимости.
- 5. Неинерциальные системы отсчета. Абсолютные и относительные скорости и ускорение. Силы инерции.
- 6. Система материальных точек. Центр инерции (центр масс). Теорема о движении центра инерции.
- 7. Понятие абсолютно твердого тела. Момент инерции тела.
- 8. Теорема Штейнера.
- 9. Момент силы. Момент импульса. Уравнение моментов. Уравнение вращательного движения твердого тела относительно неподвижной оси.
- 10. Закон сохранения импульса и третий закон Ньютона.
- 11. Закон сохранения момента импульса.
- 12. Работа и энергия в механике. Энергия кинетическая и потенциальная.
- 13. Уравнение неразрывности. Уравнение Бернулли.
- 14. Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.

- 15. Внутренняя энергия идеального газа. Число степеней свободы. Закон равнораспределения энергии.
- 16. Давление газа с точки зрения молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории.
- 17. Уравнение состояния идеального газа (уравнение Клапейрона Менделеева).
- 18. Динамические и статистические закономерности в физике. Статистический метод исследования системы. Понятие о функции распределения.
- 19. Распределение Максвелла. Средние скорости молекул.
- 20. Барометрическая формула. Распределение Больцмана.
- 21. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

Основные термодинамические понятия: внутренняя энергия, работа, теплота. Уравнение первого начала термодинамики.

- 22. Зависимость теплоемкости идеального газа от вида процесса. Работа, совершаемая газом при изопроцессах.
- 23. Адиабатический процесс.
- 24. Обратимые и необратимые процессы. Круговой процесс (цикл).
- 25. Цикл Карно и его КПД для идеального газа.
- 26. Принцип действия теплового двигателя и холодильной машины.
- 27. Закон Кулона. Напряженность электростатического поля. Понятие электростатического поля. Принцип суперпозиции электрических полей.
- 28. Поток напряженности. Теорема Гаусса для электростатического поля в вакууме.
- 29. Применение теоремы Гаусса для расчета полей.
- 30. Работа сил электростатического поля. Циркуляция напряженности электростатического поля.
- 31. Потенциал. Разность потенциалов. Связь между потенциалом и напряженностью электростатического поля.
- 32. Свободные и связанные заряды в веществе. Типы диэлектриков. Ионная, электронная и ориентационная поляризации.
- 33. Поляризованность. Диэлектрическая восприимчивость вещества и ее зависимость от температуры.
- 34. Теорема Гаусса для электрического поля в диэлектрике. Электрическое смещение. Диэлектрическая проницаемость среды. Напряженность электрического поля в диэлектрике.
- 35. Распределение зарядов в проводнике. Электростатическое поле внутри и снаружи проводника. Электростатическая защита.
- 36. Электроемкость уединенного проводника, системы проводников и конденсатора.
- 37. Энергия заряженных уединенного проводника, системы проводников и конденсатора. Энергия электрического поля. Объемная плотность энергии электрического поля.
- 38. Характеристики электрического поля и условия его существования. Разность потенциалов, электродвижущая сила, напряжение.
- 39. Классическая электронная теория электропроводимости металлов и ее недостаточность.
- 40. Закон Ампера. Магнитная индукция. Закон Био Савара. Понятие магнитного поля. Принцип суперпозиции магнитных полей. Магнитный момент.
- 41. Магнитное поле прямолинейного и кругового токов.
- 42. Циркуляция вектора магнитной индукции. Закон полного тока. Магнитное поле длинного соленоида и тороида.
- 43. Магнитное взаимодействие токов и единица силы тока ампер.
- 44. Движение заряженных частиц в электрических и магнитных полях.
- 45. Опыт Фарадея. Магнитный поток. ЭДС индукции. Основной закон электромагнитной индукции. Правило Ленца.

- 46. Самоиндукция и взаимоиндукция. Индуктивность и взаимная индуктивность. Токи размыкания и замыкания.
- 47. Энергия магнитного поля. Объемная плотность энергии магнитного поля.
- 48. Свободные и вынужденные колебания. Гармонические механические колебания и их характеристики.
- 49. Энергия гармонических механических колебаний. Понятие о гармоническом и ангармоническом осцилляторе.
- 50. Сложение одинаково направленных гармонических колебаний. Биения.
- 51. Сложение взаимно перпендикулярных гармонических колебаний. Фигуры Лиссажу.
- 52. Затухающие механические колебания. Частота, коэффициент затухания, логарифмический декремент затухания механических колебаний.
- 53. Вынужденные механические колебания. Амплитуда и фаза при вынужденных механических колебаниях.
- 54. Механический резонанс. Резонансные кривые. Соотношения между фазами вынуждающей силы и скорости при механическом резонансе.
- 55. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Волновое уравнение и его решение. Гармонические волны и их характеристики.
- 56. Колебательный контур. Гармонические электромагнитные колебания и их характеристики.
- 57. Затухающие электромагнитные колебания. Частота, коэффициент затухания, логарифмический декремент затухания электромагнитных колебаний. Добротность колебательного контура.
- 58. Вынужденные электромагнитные колебания. Амплитуда и фаза вынужденных электромагнитных колебаний.
- 59. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Ток смещения.
- 60. Система уравнений Максвелла. Электромагнитное поле.
- 61. Электромагнитная природа света. Принцип Гюйгенса. Законы отражения и преломления. Абсолютный и относительный показатели преломления. Полное внутреннее отражение. Световоды.
- 62. Когерентность и монохроматичность световых волн. Временная когерентность. Время и длина когерентности.
- 63. Оптическая длина пути. Оптическая разность хода. Расчет интерференционной картины от двух когерентных источников.
- 64. Полосы равной толщины и равного наклона.
- 65. Дифракция Фраунгофера на одномерной дифракционной решетке.
- 66. Естественный и поляризованный свет. Поляризация при отражении и преломлении. Закон Брюстера.
- 67. Поляризация при двойном лучепреломлении. Обыкновенный и необыкновенный лучи. Оптическая ось кристалла. Поляризационные призмы. Закон Малюса.

Примерный перечень вопросов к зачету 2 семестр

- 1. Тепловое излучение и его характеристики. Законы теплового излучения.
- 2. Формулы Рэлея-Джинса и Планка для теплового излучения. Спектр излучения абсолютно чёрного тела.
- 3. Внешний фотоэффект и его законы. Уравнение Эйнштейна для внешнего фотоэффекта.
- 4. Масса и импульс фотона. Давление света.
- 5. Эффект Комптона и его интерпретация в свете квантовых представлений о природе излучения.

- 6. Модели атома Томсона и Резерфорда и их противоречия. Постулаты Бора. Спектр атома водорода.
 - 7. Боровская теория строения атома. Опыты Франка и Герца.
 - 8. Гипотеза де Бройля. Экспериментальные подтверждения волновых свойств микрочастиц.
 - 9. Принцип и соотношения неопределённостей Гейзенберга.
- 10. Волновая функция и её статистический смысл. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
 - 11. Атом водорода в квантовой механике.
 - 12. Квантовые числа. Правила отбора.
 - 13. Принцип Паули. Распределение электронов по энергетическим уровням атома.
 - 14. Состав, заряд и размер атомного ядра.
 - 15. Дефект массы и энергия связи атомного ядра.
 - 16. Модели атомного ядра. Ядерные силы.
 - 17. Радиоактивное излучение и его виды.
 - 18. Закон радиоактивного распада. Правила смещения.
 - 19. Ядерные реакции и их типы.

5.3. Самостоятельная работа обучающегося.

Примерные вопросы и задания для самостоятельной работы студентов

- 1. Дайте определения основных характеристик теплового излучения. Какое тело называется абсолютно черным?
- 2. Сформулируйте закон Кирхгофа.
- 3. Какой вид имеет распределение энергии в спектре абсолютно черного тела? Нарисуйте кривые распределения в зависимости от длины (или частоты) волны для двух температур $(T_2 > T_1)$.
- 4. Сформулируйте законы Стефана Больцмана и смещения Вина.
- 5. Запишите формулу Рэлея Джинса и поясните суть "ультрафиолетовой катастрофы".
- 6. Запишите формулу Планка и поясните суть его квантовой гипотезы.
- 7. Какое из тел, черное или нечерное, имеет выше температуру, если их яркости одинаковы?
- 8. В чем состоит явление, называемое фотоэффектом.
- 9. Сформулируйте законы фотоэффекта. В чем эти законы противоречат представлениям классической физики?
- 10. Как качественно, следуя волновой картине излучения, объяснить фотоэффект?
- 11. Объясните законы фотоэффекта, исходя из формулы Эйнштейна.
- 12. Что такое красная граница фотоэффекта. Чем определяется числовое значение граничной частоты? Что влияет на положение красной границы фотоэффекта?
- 13. Что такое фотоэлемент и какова его вольтамперная характеристика?
- 14. Почему была отвергнута модель атома Томпсона?
- 15. В чём противоречия предложенной Резерфордом планетарной модели атома?
- 16. В чем сущность теории атома, предложенной Бором? Сформулируйте постулаты Бора. Каковы недостатки теории Бора?
- 17. Спектры атомов. Спектральные серии атома водорода.
- 18. Какие типы соударений возможны между электронами, ускоряемыми электрическим полем, и атомами?
- 19. В чём заключается опыт Франка и Герца, и какие основные выводы можно сделать на основании опыта?
- 20. Какие квантовые числа описывают состояние микрочастицы?
- 21. Чем определяется электронное состояние изолированного атома?
- 22. Объясните процесс образования энергетических зон в твердом теле.
- 23. От чего зависят ширина разрешенной зоны и число уровней в ней?

- 24. Какова зонная структура проводника, полупроводника и изолятора?
- 25. Объясните механизм собственной и примесной проводимости полупроводников.
- 26. Каков физический смысл понятия уровня Ферми?
- 27. Чем объясняется различие температурной зависимости электропроводности у металлов и полупроводников?
- 28. Объясните зависимость положения уровня Ферми и концентрации свободных носителей заряда в полупроводниках от температуры.
- 29. Объясните физические процессы, происходящие при образовании р-п перехода.
- 30. Нарисуйте энергетические зоны в области p-n перехода и объясните, в чем состоит действие внешнего электрического поля на p-n переход.
- 31. Что называется радиоактивностью? Какие процессы относятся к числу радиоактивных?
- 32. На чем основан принцип регистрации и измерения радиоактивного излучения? Какие приборы применяются для этих целей?
- 33. Объясните устройство и принцип действия счетчика Гейгера.
- 34. Опишите процессы, происходящие в газоразрядных счетчиках.
- 35. Перечислите физические процессы, происходящие при взаимодействии β-излучения с веществом.
- 36. В чем заключаются процессы упругого рассеяния электронов ядрами, электронов на электронах?
- 37. Чем обусловлены потери энергии частицы при прохождении через поглощающую среду?
- 38. Что происходит при прохождении электрона через поглотитель?

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид	Год	КНИГООБЕСПЕЧЕННОСТЬ				
издания, издательство	издания	Наличие в электронном каталоге ЭБС				
Основная л	Основная литература					
1. Кузнецов С.И. Курс физики с примерами решения	2014	Библиотека ВлГУ				
задач. Ч1: Механика. Молекулярная физика.						
Термодинамика. СПб.: Издательство «Лань» - 2014-						
464c						
2. Кузнецов С.И. Курс физики с примерами решения	2014	Библиотека ВлГУ				
задач. Ч2: Электричество и магнетизм. Колебания и						
волны. СПб.: Издательство «Лань» - 2014- 416с						
3. Кузнецов С.И. Курс физики с примерами решения	2014	Библиотека ВлГУ				
задач. Ч3: Оптика. Основы атомной физики и						
квантовой механики. Физика атомного ядра и						
элементарных частиц. СПб.: Издательство «Лань» -						
2014- 336c						
Дополнительная литература						
1. Трофимова Т.И, Курс физики. М.: Издательский	2010	Библиотека ВлГУ				
центр «Академия», 2010, - 490 с						
2. Савельев И.В. Курс общей физики. В 5 кн.: кн.5:	2011	Библиотека ВлГУ				
СПб.: Издательство «Лань» - 2011-384с						

6.2. Периодические издания

ЖТФ (Журнал Технической физики). Электронная версия http://journals.ioffe.ru/jtf/

6.3. Интернет-ресурсы

1.Сайты: http://bookza.ru/categories.php?main cat=8664

- 2.Журналы: «Успехи физических наук», «Квант», «Computers in Physics»
- 1. http://genphys.phys.msu.ru
- 2. http://www.e-science.ru/physics

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1.Лекционная поточная аудитория «В», оборудованная ауди-,видео-, мультимедийными средствами.
- 2.Музей лекционных демонстраций ауд. «В», с набором демонстрационных приборов.
- 3.Набор слайдов и видеофильмов. Для реализации дисциплины физика имеются специальные помещения для проведения занятий лекционного типа, занятий практического типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лабораторные работы проводятся в лабораториях механики и молекулярной физики (428, 429), электромагнетизма (425, 426), оптики (422, 424). Перечень используемого лицензионного программного обеспечения: пакет офисных программ Microsoft Office.

Рабочую программу составил доцент когр Си ПФ Гонкин 190 Ф
Рецензент: Заведующий кафедрой цифрового образования и информационной безопасности ГАОУ ДПО Владимирской области «Владимирский институт развития образования имени Л.И. Новиковой» Мишин Д. В.
Программа рассмотрена и одобрена на заседании кафедры Информатики и защиты информации Протокол № 13 от 120523 года Заведующий кафедрой д.т.н., профессор /М.Ю. Монахов/
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 10.03.01 «Информационная безопасность» профиль «Безопасность автоматизированных систем» от 10.523 года Председатель комиссии д.т.н., профессор //М.Ю. Монахов/
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ
Рабочая программа одобрена на 20/20 учебный год
Протокол заседания кафедры № от года
Заведующий кафедрой д.т.н., профессор /М.Ю.Монахов/
Рабочая программа одобрена на 20/ 20 учебный год Протокол заседания кафедры № от года Заведующий кафедрой_д.т.н., профессор/М.Ю.Монахов/
Рабочая программа одобрена на 20/ 20 учебный год
Протокол заседания кафедры № от года
Заведующий кафедрой_д.т.н., профессор/М.Ю.Монахов/
Рабочая программа одобрена на 20/ 20 учебный год Протокол заседания кафедры № от года

/М.Ю.Монахов/_

Заведующий кафедрой д.т.н., профессор

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины Φ изика

образовательной программы направления подготовки 10.03.01. Информационная безопасность

Номер	Внесены изменения в части/разделы	Исполнитель	Основание
изменения	рабочей программы	ФИО	(номер и дата протокола
			заседания кафедры)
1			
2			

Заведующий кафедрой _		/
	Подпись	ФИО