Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математические основы кибернетики

Направление	10.03.01 «Информационная безопасность»
Профиль\напр	авление подготовки « <u>Комплексная защита объектов информатизации»</u>
Уровень высш	его образования бакалавриат
Форма обучен	канго ки

Семестр	Трудоем- кость зач. ед./час.	Лек- ций, час.	Практич. занятий, час.	Лаборат. работ, час.	CPC, час.	Форма промежуточного контроля (экз./зачет)
3	3/108	18		36	54	Зачет
4	6/216	18		36	117	Экзамен (45ч)
5	4/144	18		36	54	Экзамен (36ч)
Итого	8/288	54		108	225	Зачет, Экзамен (81ч)

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

<u>**Целями освоения дисциплины</u>** «Математические основы кибернетики» являются обеспечение профессиональной подготовки студентов в соответствии с требованиями ФГОС ВО и учебного плана направления 10.03.01 «Информационная безопасность», формирование у студентов обобщенного представления о понятийном аппарате в области кибернетики; классификации направлений кибернетики; об общих закономерностях получения, хранения, передачи и преобразования информации в сложных управляющих системах, которые являются объектом исследования кибернетики; разделах математики, использующихся в кибернетике.</u>

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО БАКАЛАВРИАТА

Данная дисциплина относится к дисциплинам по выбору вариативной части Блока Б1 (код Б1.Б.09). В учебном плане предусмотрены виды учебной деятельности, обеспечивающие синтез теоретических лекций и лабораторных работ, ориентированных на освоение студентами математических основ кибернетики, а также методов и способов их применения в профессиональной деятельности. Курс тесно взаимосвязан с другими дисциплинами данного цикла.

Дисциплина изучается на 2 и 3 курсе, в связи с чем требования к «входным» знаниям, умениям и готовностям обучающегося определяются требованиями к уровню подготовки, достигнутому в процессе изучения информатики, отдельных разделов математики в школе.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- В результате освоения дисциплины студент должен обладать следующими общепрофессиональными компетенциями:
- ОПК-2 способностью применять соответствующий математический аппарат для решения профессиональных задач;
- профессиональными компетенциями:
- Π K-11 способностью проводить эксперименты по заданной методике, обработку, оценку погрешности и достоверности их результатов.
- В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:
- 1) Знать: исторический процесс зарождения кибернетики; роль Норберта Винера для кибернетики; советских ученых, которые внесли значительный вклад в становление кибернетики; методы и цели кибернетики; основные понятия теории моделирования систем; суть методики имитационного моделирования; способы представления булевых функций; дизъюнктивные и конъюнктивные нормальные формы ФАЛ. (ОПК-2; ПК-11).
- 2) Уметь: формулировать и формально представлять для изучаемой управляющей системы (УС) задачу минимизации дизьюнктивных нормальных форм (ДНФ), строить таблицу истинности ФАЛ; применять основные законы логики высказываний; решать логические задачи; выполнять эквивалентные преобразования булевых формул ;; синтезировать комбинационную схему функции заданной в виде в базисах Буля, Шеффера и Пирса; строить релейно-контактных схем; выполнять минимизацию ФАЛ с помощью карт Карно (ОПК-2; ПК-11).
- 3) Владеть: методами вычисления значения задаваемых функций, методикой представления произвольной функции алгебры логики посредством параллельно-последовательной релейной контактной схемы, процедурами приведения ФАЛ к совершенной ДНФ, методикой синтеза комбинационной схемы, методами минимизация ФАЛ с помощью карт Карно (ОПК-2; ПК-11).

У обучаемых в процессе изучения дисциплины должны вырабатываться дополнительные компетенции, с учетом требований работодателей:

- Умение использовать современные пакеты программ автоматизации математических расчетов.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ Общая трудоемкость дисциплины составляет 13 зачетных единиц, 468 часов.

№ п/п Раздел (тема) дисциплины Виды учебной работы, самостоятельную работу студентов и трудоемкость (в часах) Виды учебной работы, самостоятельную работу студентов и трудоемкость (в часах) Объем учебной работы, контр успеваем (по недо семести интеракти вных методов (в часах / м) 1. Введение. Понятийный аппарат. Классификация направлений кибернетики 3 1-2 2 4 6 2/33% 2. Место кибернетики в системе наук. Системый подход. Системный подход. Системный подход. Системный подход. Система 3 3-4 2 4 6 2/33%	его оля мости глям гра), на жу- ой ми (по
1. Введение. Понятийный аппарат. Классификация направлений кибернетики в системе наук. Система.	ра), 1a жу- ой ии (no
аппарат. Классификация направлений кибернетики 3 1-2 2 4 6 2/33% 2. Место кибернетики в системе наук. Система. 3 3,4 2 4 6 2/33%	
системе наук. Система.	
управления	
3. Основные понятия моделирования 3 5-6 2 4 6 2/33% Рейти контрол	
4. Классификация уровней моделирования, видов математических моделей 3 7-8 2 4 6 2/33%	
5. Математические основы логики. Булевы функции и их представления. 3 9-10 2 4 6 2/33%	
6. Булевы функции и логика высказываний 3 11-12 2 4 6 2/33% Рейти контрол	
7. Релейные контактные схемы 3 13-14 2 4 6 2/33%	
8. Нормальные формы ФАЛ. Эквивалентные преобразования. 3 15-16 2 4 6 2/33%	
9. Основные эквивалентности (тождества). Минимизация ФАЛ с помощью карт Карно. 3 17-18 2 4 6 2/33% Рейти контрол	
Всего по 3 семестру: 18 36 54 18/33% Заче	Т
10 Исторический процесс зарождения кибернетики. 4 1-2 2 4 13 2/33%	
11 Философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления.	
12 Достоинство имитационного моделирования как метода исследования сложных систем. 4 5-6 2 4 13 2/33% Рейти контрол	
13 Отличие аналитических и имитационных моделей. Статические и динамические модели объекта. 4 7-8 2 4 13 2/33%	
14 Аналитический способ представления логических 4 9-10 2 4 13 2/33% функций.	
15 Высказывание в алгебре логики. Сложные высказывания. Примеры сложных высказываний. 4 11-12 2 4 13 2/33% Рейти контрол	
16 Задача анализа релейно- контактных схем. Задача 4 13-14 2 4 13 13 2/33%	

	Раздел (тема) дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Объем учебной работы, с применени	Формы текущего контроля успеваемости (по неделям	
№ п/п				Лекции	Практические занятия	Лабораторные работы	Контрольные работы,	CPC	KII / KP	ем интеракти вных методов (в часах / %)	семестра), форма промежу- точной аттестации (по семестрам)
	синтеза релейно-контактных схем.										
17	Принцип эквивалентности булевых формул.	4	15-16	2		4		13		2/33%	
	Соглашения об упрощенной записи формул. Дизъюнктивные и конъюнктивные нормальные формы.	4	17-18	2		4		13		2/33%	Рейтинг- контроль №3
	Всего по 4 семестру:			18		36		117		18/33%	Экзамен (45ч)
I	Предмет кибернетики. Методы и цели кибернетики	5	1-2	2		4		6		2/33%	
	Гипы систем автоматического управления. Примеры систем автоматического управления.	5	3-4	2		4		6		2/33%	
1	Сущность системного подхода к моделированию систем на ЭВМ.	5	5-6	2		4		6		2/33%	Рейтинг- контроль №1
	Метод Блейка.	5	7-8	2		4		6		2/33%	
I	Анализ и синтез комбинационных схем.	5	9-10	2		4		6		2/33%	
	Комбинационная схема с п входами как цифровой автомат	5	11-12	2		4		6		2/33%	Рейтинг- контроль №2
	Реализация функций алгебры погики. Понятие базиса.	5	13-14	2		4		6		2/33%	
	Погические элементы И, ИЛИ, НЕ. Пример реализации рункций И, ИЛИ, НЕ на релейно-контактных элементах.	5	15-16	2		4		6		2/33%	
	Построение релейно- контактных схем.	5	17-18	2		4		6		2/33%	Рейтинг- контроль №3
	Всего по 5 семестру:			18		36		54		18/33%	Экзамен (36ч)
	итого:			54		108		225		54/33%	Зачет, Экзамен(45ч), Экзамен(36ч)

Содержание дисциплины «Математические основы кибернетики»

Раздел 1. Исторический процесс зарождения кибернетики. Роль древнегреческого философа Платона и французского ученого-физика А. М. Ампера . Советские ученые, которые внесли значительный вклад в становление кибернетики. Предмет кибернетики. Методы и цели кибернетики

Раздел 2. Место кибернетики в системе наук. Философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления. Система управления. Типы систем автоматического управления. Примеры систем автоматического управления.

Раздел 3. Основные понятия теории моделирования систем: модель, гипотеза, аналогия, эксперимент и т.п. В каком соотношении находятся понятия «цель моделирования» и

«адекватность модели». Достоинство имитационного моделирования как метода исследования сложных систем. Сущность системного подхода к моделированию систем на ЭВМ.

- Раздел 4. Примеры видов моделей систем. Отличие аналитических и имитационных моделей. Статические и динамические модели объекта. Классификация математических моделей в зависимости от оператора модели. Классификация математических моделей в зависимости от параметров модели. Классификация математических моделей в зависимости от целей моделирования. Классификация математических моделей в зависимости от методов реализации
- **Раздел** 5. Булевы функции от п переменных. Геометрическое представление булевых функций. Табличное представление булевых функций. Аналитический способ представления логических функций.
- **Раздел** 6 Высказывание в алгебре логики. Логика высказываний. Примеры элементарных высказываний. Сложные высказывания. Примеры сложных высказываний
- **Раздел** 7. Методика представления произвольной функции алгебры логики посредством параллельно-последовательной релейной контактной схемы. Задача анализа релейно-контактных схем. Задача синтеза релейно-контактных схем.
- **Раздел** 8. Принцип эквивалентности булевых формул. Основные эквивалентности (тождества). Соглашения об упрощенной записи формул. Дизъюнктивные и конъюнктивные нормальные формы. Определение ДНФ и КНФ. Совершенные ДНФ и КНФ. Процедура приведения ФАЛ к совершенной ДНФ. Сокращенные ДНФ. Метод Блейка.
- **Раздел** 9 Комбинационная схема с п входами как цифровой автомат. Реализация функций алгебры логики. Понятие базиса. Логические элементы И, ИЛИ, НЕ. Пример реализации функций И, ИЛИ, НЕ на релейно-контактных элементах. Построение релейно-контактных схем. Минимизация ФАЛ с помощью карт Карно.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Изучение дисциплины предполагает не только запоминание и понимание, но и анализ, синтез, рефлексию, формирует универсальные умения и навыки, являющиеся основой становления специалиста по направлению 10.03.01 «Информационная безопасность».

Для реализации компетентностного подхода предлагается интегрировать в учебный процесс интерактивные образовательные технологии, включая информационные и коммуникационные технологии (ИКТ), при осуществлении различных видов учебной работы:

- учебную дискуссию;
- электронные средства обучения (слайд-лекции, электронные тренажеры, компьютерные тесты);
- дистанционные (сетевые) технологии.

Как традиционные, так и лекции инновационного характера могут сопровождаться компьютерными слайдами или слайд-лекциями. Основное требование к слайд-лекции — применение динамических эффектов (анимированных объектов), функциональным назначением которых является наглядно-образное представление информации, сложной для понимания и осмысления студентами, а также интенсификация и диверсификация учебного процесса.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью ОПОП направления 10.03.01 «Информационная безопасность», особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом, в учебном процессе, они составляют не менее 30 процентов аудиторных занятий.

Занятия лекционного типа для соответствующих групп студентов согласно требованиям стандарта высшего образования не могут составлять более 55 процентов аудиторных занятий. Программа дисциплины соответствует данным требованиям.

Таким образом, применение интерактивных образовательных технологий придает инновационный характер практически всем видам учебных занятий, включая лекционные. При этом делается акцент на развитие самостоятельного, продуктивного мышления, основанного на диалогических дидактических приемах, субъектной позиции обучающегося в образовательном процессе. Тем самым создаются условия для реализации компетентностного подхода при изучении данной дисциплины.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для текущего контроля успеваемости предлагается использование рейтинговой системы оценки, которая носит интегрированный характер и учитывает успешность студента в различных видах учебной деятельности, степень сформированности у студента общекультурных и профессиональных компетенций.

Примерный перечень заданий для текущих контрольных мероприятий:

Вопросы рейтинг-контроля №1 семестр 3:

- 1. Охарактеризуйте исторический процесс зарождения кибернетики.
- 2. В чем заключается роль древнегреческого философа Платона для кибернетики?
- 3. В чем заключается роль французского ученого-физика А. М. Ампера для кибернетики?
- 4. Охарактеризуйте появление кибернетики как самостоятельного научного направления.
- 5. В чем заключается роль Норберта Винера для кибернетики?
- 6. Почему существует необходимость замещения человека автоматом?
- 7. Почему существует целесообразность замещения человека автоматом?
- 8. Развитие кибернетики.
- 9. Назовите советских ученых, которые внесли значительный вклад в становление кибернетики.

- 10. В чем заключается роль И.А.Вышнеградского в становлении кибернетики
- 11. В чем заключается роль А.М. Ляпунова в становлении кибернетики
- 12. В чем заключается роль И.М. Сеченова и И.П. Павлова в становлении кибернетики
- 13. В чем заключается роль Чарльза Беббиджа в становлении кибернетики
- 14. В чем заключается роль Алана Тьюринга в становлении кибернетики

Вопросы рейтинг-контроля №2 семестр 3:

- 1. В чем заключается роль Джона фон Неймана в становлении кибернетики
- 2. В чем заключается роль академик А. Н. Колмогорова в становлении кибернетики
- 3. В чем заключается роль академик Л. В. Канторовича в становлении кибернетики
- 4. В чем заключается роль академик А. И. Берга в становлении кибернетики
- 5. В чем заключается роль академик В. М. Глушкова в становлении кибернетики
- 6. В чем заключается роль академик В. А. Котельникова в становлении кибернетики
- 7. В чем заключается роль член-корреспондент АН СССР А. А. Ляпунова в становлении кибернетики
- 8. В чем заключается роль академик А. А. Харкевича в становлении кибернетики
- 9. Предмет кибернетики
- 10. Методы и цели кибернетики
- 11. Место кибернетики в системе наук.
- 12. Философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления.
- 13. Дайте определение системы управления.
- 14. Что такое техническая структура управления?
- 15. Чем занимается теория управления?

Вопросы рейтинг-контроля №3 семестр 3:

- 1. Назовите типы систем автоматического управления.
- 2. Приведите классификацию систем автоматического управления по цели управления.
- 3. Дайте определение системы автоматического регулирования.
- 4. Дайте определение системы экстремального регулирования.
- 5. Дайте определение адаптивной системы автоматического управления.
- 6. Охарактеризуйте замкнутые САУ.
- 7. Охарактеризуйте разомкнутые САУ.
- 8. Какие характеристики САУ вы знаете?
- 9. Приведите примеры систем автоматического управления.
- 10. Приведите основные понятия теории моделирования систем: модель, гипотеза, аналогия, эксперимент и т.п.
- 11. В каком соотношении находятся понятия «цель моделирования» и «адекватность модели»?
- 12. В чем заключается достоинство имитационного моделирования как метода исследования сложных систем?
- 13. В чем сущность системного подхода к моделированию систем на ЭВМ?
- 14. Какие существуют классификационные признаки видов моделирования систем?

Перечень вопросов к зачету 3 семестр (промежуточной аттестации по итогам освоения дисциплины):

- 1. Охарактеризуйте исторический процесс зарождения кибернетики.
- 2. В чем заключается роль древнегреческого философа Платона для кибернетики?
- 3. В чем заключается роль французского ученого-физика А. М. Ампера для кибернетики?
- 4. Охарактеризуйте появление кибернетики как самостоятельного научного направления.
- 5. В чем заключается роль Норберта Винера для кибернетики?
- 6. Почему существует необходимость замещения человека автоматом?
- 7. Почему существует целесообразность замещения человека автоматом?

- 8. Развитие кибернетики.
- 9. Назовите советских ученых, которые внесли значительный вклад в становление кибернетики.
- 10. В чем заключается роль И.А.Вышнеградского в становлении кибернетики
- 11. В чем заключается роль А.М. Ляпунова в становлении кибернетики
- 12. В чем заключается роль И.М. Сеченова и И.П. Павлова в становлении кибернетики
- 13. В чем заключается роль Чарльза Беббиджа в становлении кибернетики
- 14. В чем заключается роль Алана Тьюринга в становлении кибернетики
- 15. В чем заключается роль Джона фон Неймана в становлении кибернетики
- 16. В чем заключается роль академик А. Н. Колмогорова в становлении кибернетики
- 17. В чем заключается роль академик Л. В. Канторовича в становлении кибернетики
- 18. В чем заключается роль академик А. И. Берга в становлении кибернетики
- 19. В чем заключается роль академик В. М. Глушкова в становлении кибернетики
- 20. В чем заключается роль академик В. А. Котельникова в становлении кибернетики
- 21. В чем заключается роль член-корреспондент АН СССР А. А. Ляпунова в становлении кибернетики
- 22. В чем заключается роль академик А. А. Харкевича в становлении кибернетики
- 23. Предмет кибернетики
- 24. Методы и цели кибернетики
- 25. Место кибернетики в системе наук.
- 26. Философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления.
- 27. Дайте определение системы управления.
- 28. Что такое техническая структура управления?
- 29. Чем занимается теория управления?
- 30. Назовите типы систем автоматического управления.
- 31. Приведите классификацию систем автоматического управления по цели управления.
- 32. Дайте определение системы автоматического регулирования.
- 33. Дайте определение системы экстремального регулирования.
- 34. Дайте определение адаптивной системы автоматического управления.
- 35. Охарактеризуйте замкнутые САУ.
- 36. Охарактеризуйте разомкнутые САУ.
- 37. Какие характеристики САУ вы знаете?
- 38. Приведите примеры систем автоматического управления.
- 39. Приведите основные понятия теории моделирования систем: модель, гипотеза, аналогия, эксперимент и т.п.
- 40. В каком соотношении находятся понятия «цель моделирования» и «адекватность модели»?
- 41. В чем заключается достоинство имитационного моделирования как метода исследования сложных систем?
- 42. В чем сущность системного подхода к моделированию систем на ЭВМ?
- 43. Какие существуют классификационные признаки видов моделирования систем?

Вопросы рейтинг-контроля №1 семестр 4:

- 1. Приведите примеры видов моделей систем.
- 2. В чем отличие аналитических и имитационных моделей?
- 3. Что называется математической схемой?
- 4. Что называется статической и динамической моделями объекта?
- 5. Какие типовые математические схемы используются при моделирования сложных систем и их элементов?
- 6. Каковы условия и особенности использования при разработке моделей систем различных типовых математических схем?
- 7. В чем суть методики имитационного моделирования?
- 8. Какие требования пользователь предъявляет к имитационной модели?

- 9. Что называется концептуальной моделью системы?
- 10. Какие классификационные признаки применяют к моделям?

Вопросы рейтинг-контроля №2 семестр 4:

- 1. Приведите классификацию математических моделей в зависимости от сложности объекта моделирования.
- 2. Классификация математических моделей в зависимости от оператора модели.
- 3. Классификация математических моделей в зависимости от параметров модели.
- 4. Классификация математических моделей в зависимости от целей моделирования.
- 5. Классификация математических моделей в зависимости от методов реализации
- 6. Булевы функции от п переменных.
- 7. Охарактеризуйте геометрическое представление булевых функций.
- 8. Охарактеризуйте табличное представление булевых функций.

Вопросы рейтинг-контроля №3 семестр 4:

- 1. Охарактеризуйте аналитический способ представления логических функций
- 2. Что такое формулы алгебры логики?
- 3. Построить таблицу истинности и определить выполнимость формулы:

$$P \wedge Q \Rightarrow (Q \wedge \overline{P} \Rightarrow R \wedge Q)$$

- 4. Что такое высказывание в алгебре логики?
- 5. Логика высказываний.
- 6. Приведите примеры элементарных высказываний.
- 7. Что такое сложные высказывания?
- 8. Приведите примеры сложных высказываний
- 9. Приведите процедуру вычисления значения задаваемых функций.

Перечень вопросов к экзамену 4 семестр (промежуточной аттестации по итогам освоения дисциплины):

- 1. Приведите примеры видов моделей систем.
- 2. В чем отличие аналитических и имитационных моделей?
- 3. Что называется математической схемой?
- 4. Что называется статической и динамической моделями объекта?
- 5. Какие типовые математические схемы используются при моделирования сложных систем и их элементов?
- 6. Каковы условия и особенности использования при разработке моделей систем различных типовых математических схем?
- 7. В чем суть методики имитационного моделирования?
- 8. Какие требования пользователь предъявляет к имитационной модели?
- 9. Что называется концептуальной моделью системы?
- 10. Какие классификационные признаки применяют к моделям?
- 9. Приведите классификацию математических моделей в зависимости от сложности объекта моделирования.
- 10. Классификация математических моделей в зависимости от оператора модели.
- 11. Классификация математических моделей в зависимости от параметров модели.
- 12. Классификация математических моделей в зависимости от целей моделирования.
- 13. Классификация математических моделей в зависимости от методов реализации
- 14. Булевы функции от п переменных.
- 15. Охарактеризуйте геометрическое представление булевых функций.
- 16. Охарактеризуйте табличное представление булевых функций.
- 17. Охарактеризуйте аналитический способ представления логических функций
- 18. Что такое формулы алгебры логики?
- 19. Построить таблицу истинности и определить выполнимость формулы:

$$P \wedge Q \Rightarrow (Q \wedge \overline{P} \Rightarrow R \wedge Q)$$

20. Что такое высказывание в алгебре логики?

- 21. Логика высказываний.
- 22. Приведите примеры элементарных высказываний.
- 23. Что такое сложные высказывания?
- 24. Приведите примеры сложных высказываний
- 25. Приведите процедуру вычисления значения задаваемых функций.

Вопросы рейтинг-контроля №1 семестр 5:

- 1. Приведите методику представления произвольной функции алгебры логики посредством параллельно-последовательной релейной контактной схемы.
- 2. Охарактеризуйте задачу анализа релейно-контактных схем.
- 3. Охарактеризуйте задачу синтеза релейно-контактных схем.
- 4. Упростить релейно-контактную схему:
- 5. Поясните принцип эквивалентности булевых формул.
- 6. Приведите основные эквивалентности (тождества).
- 7. На чем основаны эквивалентные преобразования булевых формул?
- 8. Приведите соглашения об упрощенной записи формул.
- 9. Дизъюнктивные и конъюнктивные нормальные формы.

Вопросы рейтинг-контроля №2 семестр 5:

- 1. Определение ДНФ и КНФ.
- 2. Совершенные ДНФ и КНФ.
- 3. Процедура приведения ФАЛ к совершенной ДНФ.
- 4. Сокращенные ДНФ.
- 5. Метод Блейка.
- 6. Укажите, какое логическое выражение равносильно выражению $A \lor \neg (\neg B \lor \neg C)$:
- 7. Варианты ответа: 1) $\neg A \lor B \lor \neg C$ 2) $A \lor B \lor C$ 3) $A \lor \neg B \lor \neg C$ 4) $A \lor (B \land C)$
- 8. Применяя равносильные преобразования привести булеву функцию $f = (\bar{x} \to \bar{y}) \to (yz \to \bar{z}z)$ к минимальной ДНФ.
- 9. Доказать полноту (или неполноту) приведенной системы булевых функций $f_1 = x_1 \wedge x_2$, $f_2 = 0$, $f_3 = x_1 \sim x_2$.

Вопросы рейтинг-контроля №3 семестр 5:

- 1. Охарактеризуйте комбинационную схему с п входами как цифровой автомат.
- 2. Реализация функций алгебры логики.
- 3. Понятие базиса.
- 4. Логические элементы И, ИЛИ, НЕ.
- 5. Пример реализации функций И, ИЛИ, НЕ на релейно-контактных элементах.
- 6. Построение релейно-контактных схем.
- 7. Минимизация ФАЛ с помощью карт Карно.
- 8. Синтезировать комбинационную схему функции заданной в виде $F(x_1,x_2,x_3,x_4)=(0,4,7,10,14)$, в базисах Буля, Шеффера и Пирса.

Перечень вопросов к экзамену 5 семестр (промежуточной аттестации по итогам освоения дисциплины):

- 1. Предмет кибернетики
- 2. Методы и цели кибернетики
- 3. Место кибернетики в системе наук.
- 4. Философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления.
- 5. Дайте определение системы управления.
- 6. Что такое техническая структура управления?
- 7. Назовите типы систем автоматического управления.

- 8. Приведите классификацию систем автоматического управления по цели управления.
- 9. Приведите примеры систем автоматического управления.
- 10. Приведите основные понятия теории моделирования систем: модель, гипотеза, аналогия, эксперимент и т.п.
- 11. В каком соотношении находятся понятия «цель моделирования» и «адекватность модели»?
- 12. Приведите примеры видов моделей систем.
- 13. В чем отличие аналитических и имитационных моделей?
- 14. Что называется математической схемой?
- 15. Что называется статической и динамической моделями объекта?
- 16. Какие типовые математические схемы используются при моделирования сложных систем и их элементов?
- 17. Какие классификационные признаки применяют к моделям?
- 18. Приведите классификацию математических моделей в зависимости от сложности объекта моделирования.
- 19. Что такое высказывание в алгебре логики?
- 20. Логика высказываний.
- 21. Что такое сложные высказывания?
- 22. Приведите примеры сложных высказываний
- 23. Приведите процедуру вычисления значения задаваемых функций.
- 24. Решите логическую задачу.
- 25. Приведите методику представления произвольной функции алгебры логики посредством параллельно-последовательной релейной контактной схемы.
- 26. Охарактеризуйте задачу анализа релейно-контактных схем.
- 27. Охарактеризуйте задачу синтеза релейно-контактных схем.
- 28. Упростить релейно-контактную схему:
- 29. Поясните принцип эквивалентности булевых формул.
- 30. Приведите основные эквивалентности (тождества).
- 31. На чем основаны эквивалентные преобразования булевых формул?
- 32. Приведите соглашения об упрощенной записи формул.
- 33. Дизъюнктивные и конъюнктивные нормальные формы.
- 34. Определение ДНФ и КНФ.
- 35. Совершенные ДНФ и КНФ.
- 36. Процедура приведения ФАЛ к совершенной ДНФ.
- 37. Сокращенные ДНФ.
- 38. Метод Блейка.
- 39. Охарактеризуйте комбинационную схему с п входами как цифровой автомат.
- 40. Реализация функций алгебры логики.
- 41. Понятие базиса.
- 42. Логические элементы И, ИЛИ, НЕ.

Вопросы и задания для самостоятельной работы студентов на 3 семестр:

- 1. В чем заключается роль И.А.Вышнеградского в становлении кибернетики
- 2. В чем заключается роль А.М. Ляпунова в становлении кибернетики
- 3. В чем заключается роль И.М. Сеченова и И.П. Павлова в становлении кибернетики
- 4. В чем заключается роль Чарльза Беббиджа в становлении кибернетики
- 5. В чем заключается роль Алана Тьюринга в становлении кибернетики

- 6. В чем заключается роль Джона фон Неймана в становлении кибернетики
- 7. В чем заключается роль академик А. Н. Колмогорова в становлении кибернетики
- 8. В чем заключается роль академик Л. В. Канторовича в становлении кибернетики
- 9. В чем заключается роль академик А. И. Берга в становлении кибернетики
- 10. В чем заключается роль академик В. М. Глушкова в становлении кибернетики
- 11. В чем заключается роль академик В. А. Котельникова в становлении кибернетики
- 12. В чем заключается роль член-корреспондент АН СССР А. А. Ляпунова в становлении кибернетики
- 13. В чем заключается роль академик А. А. Харкевича в становлении кибернетики
- 14. Чем занимается теория управления?
- 15. Дайте определение системы автоматического регулирования.

Вопросы и задания для самостоятельной работы студентов на 4 семестр:

- 1. Дайте определение системы экстремального регулирования.
- 2. Дайте определение адаптивной системы автоматического управления.
- 3. Охарактеризуйте замкнутые САУ.
- 4. Охарактеризуйте разомкнутые САУ.
- 5. Какие характеристики САУ вы знаете?
- 6. В чем заключается достоинство имитационного моделирования как метода исследования сложных систем?
- 7. В чем сущность системного подхода к моделированию систем на ЭВМ?
- 8. Какие существуют классификационные признаки видов моделирования систем?
- 9. Каковы условия и особенности использования при разработке моделей систем различных типовых математических схем?
- 10. В чем суть методики имитационного моделирования?
- 11. Какие требования пользователь предъявляет к имитационной модели?
- 12. Что называется концептуальной моделью системы?
- 13. Классификация математических моделей в зависимости от оператора модели.
- 14. Классификация математических моделей в зависимости от параметров модели.
- 15. Классификация математических моделей в зависимости от целей моделирования.

Вопросы и задания для самостоятельной работы студентов на 5 семестр:

- 1. Классификация математических моделей в зависимости от методов реализации
- 2. Построить таблицу истинности и определить выполнимость формулы:

$$P \wedge Q \Rightarrow (Q \wedge \overline{P} \Rightarrow R \wedge Q)$$

- 3. Приведите примеры элементарных высказываний.
- 4. Приведите примеры сложных высказываний
- 5. Решите логическую задачу.
- 6. Упростить релейно-контактную схему:
- 7. Укажите, какое логическое выражение равносильно выражению $A \lor \neg (\neg B \lor \neg C)$: Варианты ответа: 1) $\neg A \lor B \lor \neg C$ 2) $A \lor B \lor C$ 3) $A \lor \neg B \lor \neg C$ 4) $A \lor (B \land C)$
- 8. Применяя равносильные преобразования привести булеву функцию $f = (\bar{x} \to \bar{y}) \to (yz \to \bar{z}z)$ к минимальной ДНФ.
- 9. Доказать полноту (или неполноту) приведенной системы булевых функций $f_1 = x_1 \wedge x_2$, $f_2 = 0$, $f_3 = x_1 \sim x_2$.
- 10. Пример реализации функций И, ИЛИ, НЕ на релейно-контактных элементах.
- 11. Построение релейно-контактных схем.

- 12. Минимизация ФАЛ с помощью карт Карно.
- 13. Синтезировать комбинационную схему функции заданной в виде F(x1,x2,x3,x4)=(0,4,7,10,14), в базисах Буля, Шеффера и Пирса.

Тематика лабораторных работ 3 семестр:

Лабораторная работа № 1 Простейшие вычисления в MATLAB Лабораторная работа № 2 Работа с массивами в MATLAB Лабораторная работа № 3 Работа с библиотеками элементов AnyLogic 6: освоение методов элементов библиотеки презентации

Тематика лабораторных работ 4 семестр:

Лабораторная работа № 1 Синтезировать комбинационную схему функции заданной в виде $F(x_1,x_2,x_3,x_4)=(0,4,7,10,14)$, в базисах Буля, Шеффера и Пирса.

Лабораторная работа № 2 Реализация функций И, ИЛИ, НЕ на релейно-контактных элементах.

Лабораторная работа № 3 Минимизировать ФАЛ с помощью карт Карно.

Тематика лабораторных работ 5 семестр:

Лабораторная работа № 1 Освоение методов элементов библиотеки презентации Лабораторная работа № 2 Разработка моделей на основе диаграмм состояний (стейтчарты) в AnyLogic 6

Лабораторная работа № 3 Синтез комбинационных схем

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Основная литература:

- 1. Имитационное моделирование: Учебное пособие / Н.Б. Кобелев, В.А. Половников, В.В. Девятков; Под общ. ред. д-ра экон. наук Н.Б. Кобелева. М.: КУРС: НИЦ Инфра-М, 2013. 368 с.: ISBN 978-5-905554-17-9, Режим доступа: http://znanium.com/catalog.php?bookinfo=361397
- 2. Автономный искусственный интеллект / Жданов А. А. 4-е изд. (эл.). М. : БИНОМ, 2015. http://www.studentlibrary.ru/book/ISBN9785996325405.html
- **3.** Методы и средства научных исследований: Учебник/А.А.Пижурин, А.А.Пижурин, В.Е.Пятков М.: НИЦ ИНФРА-М, 2015. 264 с.: ISBN 978-5-16-010816-2, Режим доступа: http://znanium.com/catalog.php?bookinfo=502713

б) Дополнительная литература:

- 1. Кобелев, Н. Б. Введение в общую теорию имитационного моделирования. Пособие для разработчиков имитационных моделей и их пользователей / Н. Б. Кобелев. М.: Принт Сервис, 2007. 126 с. Режим доступа: http://znanium.com/catalog.php?bookinfo=435607 VisSim+Mathcad+MATLAB. Визуальное математическое моделирование / В.П. Дьяконов М. : СОЛОН-ПРЕСС, 2008. http://www.studentlibrary.ru/book/ISBN5980031308.html 384 с.
- 2. Математические вопросы кибернетики. Т. 12. Сборник статей / Лупанов О.Б. М. : ФИЗМАТЛИТ, http://www.studentlibrary.ru/book/ISBN9785922104982.html 2011. 304 с.
- 3. Дискретная оптимизация. Модели, методы, алгоритмы решения прикладных задач / Струченков В.И. М. : СОЛОН-ПРЕСС, 2016. http://www.studentlibrary.ru/book/ ISBN 9785913591814.html 192 с.
- 4. Курс методов оптимизации Учеб. Пособие. / Сухарев А. Г., Тимохов А. В., Федоров В. В. 2-е изд., М. : ФИЗМАТЛИТ, 2011. http://www.studentlibrary.ru/book/ ISBN 9785922105590.html 384 с.

в) Периодические издания:

- 1. Журнал «Вопросы защиты информации». Режим доступа: http://i-vimi.ru/editions/detail.php?SECTION_ID=155/;
- 2. Журнал "Information Security/Информационная безопасность". Режим доступа: http://www.itsec.ru/insec-about.php.
- 3. Ежемесячный теоретический и прикладной научно-технический журнал «Информационные технологии». Режим доступа http://novtex.ru/IT/.

г) Программное обеспечение и Интернет-ресурсы:

- 1. Внутривузовские издания ВлГУ. Режим доступа: http://e.lib.vlsu.ru/
- 2. ИНТУИТ. Национальный открытый университет. Режим доступа: http://www.intuit.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

ауд. 408-2, Лекционная аудитория, количество студенческих мест -50, площадь $60\,$ м2, оснащение: мультимедийное оборудование (интерактивная доска Hitachi FX-77WD, проектор BenQ MX $503\,$ DLP $2700\,$ ANSI XGA), ноутбук Lenovo Idea Pad B5045

аул. 427а-2. лаборатория сетевых технологий. количество студенческих мест – 14. плошаль 36 м2, оснащение: компьютерный класс с 8 рабочими станциями Core 2 Duo E8400 с выходом в Internet, 3 маршрутизатора Cisco 2800 Series, 6 маршрутизаторов Cisco 2621, 6 коммутаторов Cisco Catalyst 2960 Series, 3 коммутатора Cisco Catalyst 2950 Series, коммутатор Cisco Catalyst Express 500 Series, проектор BenQ MP 620 P, экран настенный рулонный. Лицензионное программное обеспечение: операционная система Windows 7 Профессиональная, офисный приложений Microsoft Office Профессиональный плюс 2007, бесплатно пакет распространяемое программное обеспечение: линейка интегрированных сред разработки Visual Studio Express 2012, программный продукт виртуализации Oracle VM VirtualBox 5.0.4, симулятор сети передачи данных Cisco Packet Tracer 7.0, интегрированная среда разработки программного обеспечения IntelliJ IDEA Community Edition 15.0.3.

ауд. 4276-2, УНЦ «Комплексная защита объектов информатизации», количество студенческих мест – 15, площадь 52 м2, оснащение: компьютерный класс с 7 рабочими станциями Alliance Optima P4 с выходом в Internet, коммутатор D-Link DGS-1100-16 мультимедийный комплект (проектор Toshiba TLP X200, экран настенный рулонный), прибор ST-031Р «Пиранья-Р» многофункциональный поисковый, прибор «Улан-2» поисковый, виброакустический генератор шума «Соната AB 1М», имитатор работы средств нелегального съема информации, работающих по радиоканалу «Шиповник», анализатор спектра «GoodWill GSP-827», индикатор поля «SEL SP-75 Black Hunter», устройство блокирования работы систем «Мозайка-3», устройство защиты телефонных связи переговоров прослушивания «Прокруст 2000», диктофон Edic MINI Hunter, локатор «Родник-2К» нелинейный, комплекс проведения акустических и виброакустических измерений «Спрут мини-А», видеорегистратор цифровой Best DVR-405, генератор Шума «Гном-3», учебноисследовательский комплекс «Сверхширокополосные беспроводные сенсорные сети» (Nano Xaos), сканирующий приемник «Icom IC-R1500», анализатор сетей Wi-Fi Fluke AirCheck с активной антенной. Лицензионное программное обеспечение: Windows 8 Профессиональная, офисный пакет приложений Microsoft Office Профессиональный плюс 2010, бесплатно распространяемое программное обеспечение: линейка интегрированных сред разработки Visual Studio Express 2012, инструмент имитационного моделирования AnyLogic 7.2.0 Personal Learning Edition, интегрированная среда разработки программного обеспечения IntelliJ IDEA Community Edition 14.1.4.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению $\underline{10.03.01}$
"Информационная безопасность ", направленность «Комплексная защита объектов
информатизации»
Рабочую программу составил зав. кафедрой ИЗИ д.т.н., Монахов М.Ю.
(ФИО, подпись)
Рецензент (представитель работодателя) <u>к.т.н. Вертилевский Н.В. РАЦ ООО «ИнфоЦентр»</u> Заместитель руководителя. (место работы, должность, ФИО, подпись)
Программа рассмотрена и одобрена на заседании кафедры ИЗИ
Протокол №
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии
по направлению 10.03.01 "Информационная безопасность ", направленность «Комплексная
защита объектов информатизации»
Протокол № от
лист переутверждения
РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)
Рабочая программа одобрена на учебный год
Протокол заседания кафедры № от года
Заведующий кафедрой _д.т.н., профессор/М.Ю. Монахов/
(ФИО, подпись)
ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)
Рабочая программа одобрена на учебный год
Протокол заседания кафедры № от года
Заведующий кафедрой д.т.н., профессор /М.Ю. Монахов/
(ФИО, подпись)