Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

Институт информационных технологий и радиоэлектроники

УТВЕРЖДАЮ:

Директор института

Галкин А.А.

31 3 / 08 2021

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Глубокое обучение

направление подготовки

09.03.01 Информатика и вычислительная техника

(код и наименование направления подготовки (специальности)

направленность (профиль) подготовки

Высокопроизводительные и распределенные вычисления

(направленность (профиль) подготовки))

г. Владимир

Год 2021

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины "*Глубокое обучение*" является формирование у студентов базовых знаний в области искусственного интеллекта, позволяющих решать задачи в области проектирования и эксплуатации средств вычислительной техники.

Задачи: формирование навыков выбора средств искусственного интеллекта для решения конкретной задачи;

- формирование способностей к выбору архитектуры системы по техническому заданию;
- формирование навыков программирования в различных средах программирования;
- знание работы функциональных узлов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина "Глубокое обучение" относится к части, формируемой участниками образовательных отношений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты о	Наименование	
компетенции	соответствии с индикатором	оценочного средства	
(код, содержание	Индикатор достижения	Результаты обучения по	-
компетенции)	компетенции	дисциплине	
	(код, содержание индикатора		
ПК-2	ПК-2.1 Знает	Знать этапы	
Способен	математические модели на	проектирования	Отчет по
осуществлять	различных уровнях	нейронных сетей	практической
концептуальное,	представления	Уметь работать с	подготовке
функциональное и	ПК-2.2 Умеет	чертежами электронных	
логическое	интерпретировать	схем, как на уровне	
проектирование	результаты проектирования в	разработки, так и на	
систем среднего и	САПР, готовить задания для	уровне чтения.	
крупного	работы с современными	Владеть средствами	
масштаба и	САПР	автоматизированного	
сложности	ПК-2.3 Владеет способами	проектирования средств	
	математического описания	вычислительной техники	
	вычислительных узлов	и систем управления	
ПК-3 Способен	ПК-3.1 Знает основные	Знать основные принципы	Практико-
разрабатывать	концепции системного	построения и иерархию	ориентированное
компоненты	программирования; структуры	подсистем.	задание
системных	данных, принципы построения	Уметь разрабатывать	
программных	трансляторов, основные этапы	математические модели	
продуктов	и фазы процесса компиляции ПК-3.2 Умеет осваивать	компонент	
	метолики использования	микроэлектронных	
	программных средств для	устройств и систем с	
	решения практических задач;	последующей их	
	обосновывать принимаемые	интеграцией в САПР.	
	проектные решения,	Владеть навыками	
	осуществлять постановку и	разработки программного	
	выполнять эксперименты по	обеспечения САПР	
проверке их корректности и		микроэлектронных	
	эффективности; разрабатывать	1	

	компоненты системных программных продуктов ПК-3.3 Владеет современными инструментальными средствами и технологиями программирования	устройств и систем.	T.
ПК-4 Способен организовать выполнение научно-исследовательских работ по закрепленной тематике. Способен организовать проведение работ по выполнению научно-исследовательских и опытно-конструкторских работ	ПК-4.1 Знает инструментарий математического анализа дискретных объектов и систем ПК-4.2 Умеет анализировать и формализовать полученные на практике или при исследованиях результаты и делать на их основе обоснованные выводы ПК-4.3 Владеет навыками применения методов решения теоретических задач в области схемотехники цифровых устройств	Знать инструментарий математического анализа дискретных объектов и систем Уметь анализировать и формализовать полученные на практике или при исследованиях результаты и делать на их основе обоснованные выводы Владеть навыками применения методов решения теоретических задач в области схемотехники цифровых устройств	Тестовые вопросы Практико- ориентированное задание

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов

Тематический план форма обучения — очная

			19	Контактная работа обучающихся с педагогическим работником			Я	Формы текущего контроля успеваемости, форма промежуточной аттестации (по семестрам)	
№ п/п	Наименование тем и/или разделов/тем дисциплины	Семестр	Неделя семестра	Лекции	занятия работы ической ки				
1	Введение в машинное обучение. Метрические алгоритмы, оценка качества моделей	8	1-3	3		3	2	7,5	
2	Линейные модели	8	4-6	3		3	2	7,5	Рейтинг контроль 1
3	Деревья и ансамбли моделей	8	7-9	3		3	2	7,5	•
4	Работа с признаками. Ограничения машинного обучения	8	10- 12	3		3	2	7,5	Рейтинг контроль 2
5	Введение в глубокое обучение	8	13- 15	3		3	2	7,5	
6	Обучение без учителя	8	16- 18	3		3	2	7,5	Рейтинг контроль 3
Всего за 8 семестр:				18		18		45	Экзамен (27)
Наличие в дисциплине КП/КР									Нет
Итого по дисциплине				18		18		45	Экзамен (27)

Тематический план

Содержание лекционных занятий по дисциплине

Введение в машинное обучение. Метрические алгоритмы, оценка качества моделей Линейные модели Деревья и ансамбли моделей Работа с признаками. Ограничения машинного обучения Введение в глубокое обучение Обучение без учителя

Содержание лабораторных занятий по дисциплине

Лаб. № 1.

Тема: ввод, обработка и визуализация наборов данных с использованием библиотек Pandas, numpy, matplotlib, seaborn. Пример набора данных «car-Moldova» для прогнозирования цены машин.

Лаб. №2.

Тема: создания модели НС для прогнозирования цены машин «car-Moldova» на базе библиотеки Keras, определить тренировочный и тестовый наборы, метод оптимизации параметров модели, Функции потери и функции качества. Изменить количество слоёв и нейронов и сравнить результаты. Как влияет количество нейронов на переобучение модели?

Лаб.№3.

- 1- Создать модель НС для бинарной классификации « датасет Титаник».
- 2- Создать модель НС для классификации и распознавания рукописных цифр « dataset mnist» Для этого использовать библиотеку keras и библиотеку matplotlib для графического отражения результатов.

Лаб.№4.

- 1- Создание сверточной модели НС для распознавания изображения «datasets cifar10» Для этого использовать библиотеку keras и библиотеку matplotlib для графического отображения результатов.
- 2- Создать самостоятельно набор данных и модель НС для прогнозирования курса доллара.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

5.1. Текущий контроль успеваемости

Рейтинг контроль №1 Список контрольных вопросов

- 1- Что такое Искусственный интеллект? Постановка задачи Машиного обучения с учителем и области применения?
- 2- Основные типы данных (признаков) в Машином обучении.
- 3- Обработка и анализа наборов данных с помощью "pandas".
- 4- Визуализация data Frame с помощью matplotlib и seaborn.
- 5- Стандартизация и нормализация признаков.
- 6- Способы кодирования категориальных признаков.

Рейтинг контроль №2 Список контрольных вопросов

- 1- Метод линейной регрессии.
- 2- Линейная регрессия Метод наименьших квадратов с одним параметром.
- 3- Линейная регрессия Метод наименьших квадратов более одного параметра.
- 4- Аналитическое решения линейной регрессии.
- 5- Линейная регрессия алгоритм Градиентного Спуска
- 6- Способы Регуляризации Линейной регрессии (ridge regularization)
- 7- Способы Регуляризации Линейной регрессии (loss regularization)
- 8- Оценка качества моделей регрессии.
- 9- Задача классификации в машинном обучении, типы классов.
- 10- Оценка качества моделей классификации.

Рейтинг контроль №3 Список контрольных вопросов

- 1- Модель логической регрессии (функция сегмойда).
- 2- Функция потерь при логической регрессии.
- 3- Метод градиентного спуска при логической регрессии.

O

- 4- Способы Регуляризации Логической регрессии (ridge regularization)
- 5- Способы Регуляризации логической регрессии (loss regularization)
- 6- Логистическая Регрессия, Мульти классовая классификация метод один против всех(one against all).
- 7- Логистическая Регрессия, Мульти классовая классификация метод один против одного (one against one).

5.2. Промежуточная аттестация по итогам освоения дисциплины Вопросы на экзамен

- 1- Что такое Искусственный интеллект? Постановка задачи Машиного обучения с учителем и области применения?
- 2- Основные типы данных (признаков) в Машином обучении.
- 3- Обработка и анализа наборов данных с помощью "pandas".
- 4- Визуализация data Frame с помощью matplotlib и seaborn.
- 5- Стандартизация и нормализация признаков.
- 6- Способы кодирования категориальных признаков.
- 7- Метод линейной регрессии.
- 8- Линейная регрессия Метод наименьших квадратов с одним параметром.
- 9- Линейная регрессия Метод наименьших квадратов более одного параметра.
- 10- Аналитическое решения линейной регрессии.
- 11- Линейная регрессия алгоритм Градиентного Спуска
- 12- Способы Регуляризации Линейной регрессия (ridge regularization)
- 13- Способы Регуляризации Линейной регрессия (loss regularization)
- 14- Оценка качества моделей регрессии.
- 15- Задача классификации в машинном обучении, типы классов.
- 16- Оценка качество моделей классификации.
- 17- Модель логической регрессии (функция сегмойда).
- 18- Функция потерь при логической регрессии.
- 19- Метод градиентного спуска при логической регрессии.
- 20- Способы Регуляризации Логической регрессии (ridge regularization)
- 21- Способы Регуляризации логической регрессии (loss regularization)
- 22- Логистическая Регрессия, Мульти классовая классификация метод один против всех (one against all).
- 23- Логистическая Регрессия, Мульти классовая классификация метод один против одного (one against one).
- 24- Структура биологического нейрона и искусственного нейрона.
- 25- Сферы применения искусственных нейронных сетей.
- 26- Общая структура пыльно связных искусственных нейронных сетей.
- 27- Примеры искусственного нейрона элементы (НЕ, И, ИЛИ, сумма по моделью два).
- 28- Работа нейронной сети прямого распространения сигнала.
- 29- Основные функции активации применяющих, в ИНС.
- 30- Back propagation алгоритм обучения по методу обратного распространения.
- 31- Нейронная сеть для распознавания рукописных цифр.
- 32- Использование модель "keras" в задачах обучения и классификации в полно связанных ИНС.
- 33- Достоинство и недостатки полно связанных ИНС
- 34- Сверочные HC (convolution layer), фильтры и карты признаков.
- 35- Математическое описание свертки пример получения карт признаков.
- 36- Операция объединения (pooling) в сверочных HC.
- 37- Полная схема сверточной сети.
- 38- Использование модель keras для создания и обучения сверочных НС.

5.3. Самостоятельная работа обучающегося.

Раздел1 Введение в искусственный интеллект.

- Тема 1 Что такое искусственный интеллект?
- Тема 2 Области применения машинного обучения (МО).
- Тема 3 Постановка задачи МО, обучение с учителем, обучение без учителя.
- Тема 4 Задачи: регрессия, классификация, кластеризация.
 Раздел 2 Обработка данных
- Тема 1 Типы данных в МО.
- Тема 2 Обработка и анализ наборов данных с использованием библиотеки pandas и numpy.
- Тема 3 Визуализация данных с использованием библиотеки matplotlib и seaborn.
- Тема 4 Способы кодирования категориальных признаков и нормализации данных.
- Тема 5 Линейная регрессия, метод наименьших квадратов, метод градиентного спуска.
- Тема 6 Оценка качества моделей регрессии.
- Тема 7 Оценка моделей классификации, логическая регрессия, функции принятых решения.
 Раздел 3 Искусственные нейронные сети
- Тема 1 Биологическая нейронная клетка, математическая модель искусственного нейрона (ИН).
- Тема 2 История развития ИН, сферы применения искусственных нейронных сетей (НС).
- Тема 3 Примеры ИН. логические функции (NOT, OR, AND...).
- Тема 4 Полносвязные слои НС, принцип прямого распространения.
- Тема 5 Основные функции активации.
- Тема 6 Алгоритм обучения по методу обратного распространения (Back propagation).
- Тема 7 Основные функции библиотека keras для создания и обучения полносвязных HC.
- Тема 8 Свёрточная нейронная сеть (CNN), фильтры, сверточные признаки, объединение (pooling).
- Tема 9 Основные функции библиотеки keras для создания и обучения сверточных HC.
- Тема 10 Рекуррентные НС, основные структуры, области применения.
- Тема 11 Основные функции библиотеки keras для создания и обучения рекуррентных HC.

Фонд оценочных материалов (Φ OM) для проведения аттестации уровня сформированности компетенций обучающихся по дисциплине оформляется отдельным документом.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Книгообеспеченность

Наименование литературы: автор, название, вид издания, издательство	Год издания	КНИГООБЕСПЕЧЕННОСТЬ			
7, 7,		Наличие в электронном каталоге ЭБС			
Основная литература					
1. Баюк, Д. А. Практическое применение методов	2020	https://www.studentlibrary.ru/book/ISBN978			
кластеризации, классификации и аппроксимации на		<u>5001720867.html</u>			
основе нейронных сетей / Д. А. Баюк, О. А. Баюк, Д.					
В. Берзин - Москва : Прометей, 2020 448 с ISBN					
978-5-00172-086-7					
2. Антонио, Джулли Библиотека Keras - инструмент	2018	https://www.studentlibrary.ru/book/ISBN978			
глубокого обучения. Реализация нейронных сетей с		5970605738.html			
помощью библиотек Theano и TensorFlow / Антонио					
Джулли, Суджит Пал, пер. с англ. Слинкин А. А					
Москва: ДМК Пресс, 2018 294 с ISBN 978-5-97060-					
573-8					
3. Боровская, Е. В. Основы искусственного интеллекта	2020	https://www.studentlibrary.ru/book/ISBN978			
: учебное пособие / Боровская Е. В., Давыдова Н. А		5001019084.html			
4-е изд Москва : Лаборатория знаний, 2020 130 с.					
Систем. требования: Adobe Reader XI; экран 10".					
(Педагогическое образование) - ISBN 978-5-00101-908-					
4					
Дополнительная литература					

1. Ясницкий, Л. Н. Интеллектуальные системы : учебник / Ясницкий Л. Н 2-е изд Москва : Лаборатория знаний, 2020 224 с. Систем. требования: Adobe Reader XI; экран 10". (Учебник для высшей школы) - ISBN 978-5-00101-897-1	2020	https://www.studentlibrary.ru/book/I SBN9785001018971.html
2. Барский, А. Б. Введение в нейронные сети / Барский А. Б Москва: Национальный Открытый Университет "ИНТУИТ", 2016 Текст: электронный // ЭБС "Консультант студента"	2016	https://www.studentlibrary.ru/book/in tuit_060.html

6.2. Периодические издания

Журналы (https://elibrary.ru/):

- 1. Вестник компьютерных и информационных технологий
- 2. Вычислительные технологии
- 3. Известия вузов: электроника
- 4. Радиотехнические и телекоммуникационные системы

6.3. Интернет-ресурсы

- 1. Центр дистанционного образования ВлГУ https://cs.cdo.vlsu.ru/.
- 2. Электронная библиотека www.citforum.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы. Лабораторные работы проводятся в аудиториях 401-2, 412-2 и 416-2.

Рабочую программу составил доцент каф. ВТиСУ Шарафеддин М.А.Р.

Рецензент (представитель работодателя) Генеральный директор ООО "Диаграмма" Протягов И.В.
Программа рассмотрена и одобрена на заседании кафедры ВТ и СУ
Протокол № 1 от 31 августа 2021 года
Протокол № 1 от 31 августа 2021 года Заведующий кафедрой Ланцов В.Н.
Рабочая программа рассмотрена и одобрена
на заседании учебно-методической комиссии направления 09.03.01 информатика и
вычислительная техника
Протокол № 1 от 31 августа 2021 года
Председатель комиссии Ланцов В.Н. зав. каф. ВТиСУ
· · · · · · · · · · · · · · · · · · ·

ЛИСТ ПЕРЕУТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Рабочая программа одобрена на 20 <u>22</u>	_/20_23	_ учебный года	
Протокол заседания кафедры №	от 29-0	<i>8.</i> 22 года	
Заведующий кафедрой У Куликов К.В.			
	0		
Рабочая программа одобрена на 20	_ / 20	_ учебный года	
Протокол заседания кафедры №	_ от	года	
Заведующий кафедрой			
Рабочая программа одобрена на 20	_ / 20	_ учебный года	
Протокол заседания кафедры №	OT	года	
Заведующий кафедрой			