Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Стодетовых»

(ВлГУ)

УТВЕРЖДАЮ

Проректор

по учебно-медодической работе

А.А.Панфилов

« 16 »

 2015_{Γ} .

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

Направление подготовки

08.03.01 «СТРОИТЕЛЬСТВО»

Профили подготовки

промышленное и гражданское строительство,

проектирование зданий, автомобильные дороги, теплогазоснабжение и вентиляция,

водоснабжение и водоотведение

Уровень высшего образования

бакалавриат

Форма обучения

очная

Семестр	Трудоем- кость зач. ед. /час.	Лек- ции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	Форма промежуточного контроля (экз./зачет)		
3	4/144	18	36		54	экзамен (36)		
Итого	4/144	18	36	_	54	экзамен (36)		

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Техническая механика» является частью модуля «Механика», представляет собой начальную ступень изучения дисциплины «Сопротивление материалов». Эта особенность обусловливает основную цель дисциплины техническая механика — подготовить будущего специалиста к решению различных задач, прежде всего задач сопротивления материалов и строительной механики.

Цели освоения дисциплины «Техническая механика»:

- изучение общих закономерностей работы базовых элементов конструкций при различных видах статического нагружения;
- изучение инженерных методов расчета элементов конструкций на прочность и жесткость.

Задачи дисциплины:

- изучение основных методов расчета элементов конструкций под действием различных статических нагрузок;
- формирование четких понятий и представлений о работе исследуемого реального объекта на основе составленной модели (расчетной схемы);
- формирование устойчивых навыков по применению изученных методов к расчету элементов конструкций на прочность и жесткость, к оптимальному проектированию исследуемых объектов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Техническая механика» относится к дисциплинам базовой части учебного плана подготовки бакалавров по направлению 08.03.01 «Строительство» и является основой для изучения дисциплины «Сопротивление материалов», а также профильных дисциплин, содержащих расчеты элементов конструкций.

Для успешного изучения технической механики студент должен:

знать фундаментальные основы высшей математики; фундаментальные понятия, законы и теории классической физики; современные средства вычислительной техники.

уметь самостоятельно использовать математический аппарат, встречающийся в литературе по строительным наукам; применять полученные ранее знания теоретической механики при изучении дисциплины «Техническая механика».

владеть навыками и основными методами оформления результатов расчета; работать на персональном компьютере, уметь пользоваться офисными приложениями; изучения современной научной литературы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Техническая механика» направлен на развитие мышления, расширение научного кругозора будущего специалиста, развитие и формирование общекультурных и профессиональных компетенций.

Выпускник, освоивший программу бакалавриата, должен обладать следующими общекультурными компетенциями:

- способностью к самоорганизации и самообразованию (ОК-7).

Выпускник, освоивший программу бакалавриата, должен обладать следующими обще-профессиональными компетенциями:

- способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования (ОПК -1);
- способностью выявить естественную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физико-математический аппарат (ОПК -2).

Выпускник, освоивший программу бакалавриата, должен обладать следующими общепрофессиональными компетенциями:

- знанием нормативной базы в области инженерных изысканий, принципов проектирования зданий, сооружений, инженерных систем и оборудования, планировки и застройки населенных мест (ПК-1);
- способностью участвовать в проектировании и изыскании объектов профессиональной деятельности (ПК-4).

В результате освоения дисциплины «Техническая механика» студент должен:

Знать основные положения, гипотезы технической механики (сопротивления материалов), методы и практические приемы расчета отдельных (базовых) элементов конструкций при различных нагрузках (прежде всего – силовых); прочностные характеристики и свойства современных конструкционных материалов (ОК-7, ОПК-1, ОПК-2).

Уметь грамотно составлять расчетные схемы исследуемых элементов конструкций; определять аналитически и экспериментально внутренние усилия, напряжения, деформации и перемещения; решать проектные задачи из условий прочности и жесткости (ОК-7, ОПК-1, ОПК-2, ПК-1, ПК-4).

Владеть навыками определения напряженно-деформированного состояния элементов конструкций при различных воздействиях аналитически и с помощью современной вычислительной техники на основе готовых программ расчета; выбора конструкционного материала и геометрических размеров и форм, обеспечивающих современные требования надежности и экономичности конструкций (ОК-7, ОПК-1, ОПК-2, ПК-1, ПК-4).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

№ п/п	писниппин		Неделя семестра	Вид	ы учебн остоятел тов и	ной рабо выную р трудое (в часах	Объем учеб- ной работы с при- мене-	Формы текущего контроля успеваемости (по неделям		
				Лекции	Практические занятия	Лабораторные работы	Контрольные работы	CPC	нием интерактив- ных мето- дов (в ча- сах/%)	семест- ра), форма промежу- точной аттеста- ции (по се- местрам)
1	2	3	4	5	6	7	8	9	10	11
1	Основные положения. Виды простого деформиро- вания	3								
1.1	Содержание дисциплины. Основные допущения. Схематизация элементов и нагрузок. Внешние воздействия. Простые виды деформации.	3	1	2				1	2/100	
1.2	Расчетная схема. Определение опорных реакций по расчетной схеме.	3	1		2			1		
1.3	Виды простого деформирования: осевое (центральное) растяжение и сжатие. Методика построения эпюр при статическом нагружении. Построение эпюры продольной силы.	3	2		2			2		
1.4	Внутренние силы. Метод сечений. Внутренние силовые факторы (ВСФ). Понятия деформации, перемещения, напряжения.	3	3	2				2	2/100	
1.5	Кручение. ВСФ. Построение эпюры крутящего момента.	3	3		2			2		

1	2	3	4	5	6	7	8	9	10	11
1.6	Прямой поперечный плос-	3	4		2			2		
	кий изгиб. ВСФ. Построе-									
	ние эпюр ВСФ.									
1.7	Построение эпюр ВСФ при	3	5		2			1	2/100	
	изгибе. Анализ эпюр в зави-									
	симости от нагрузки.									
2	Геометрические характе-	3								
	ристики плоских сечений									
2.1	Статические моменты пло-	3	5	2				1		
	щади поперечных сечений.							_		
	Определение центра тяже-									
	сти. Моменты инерции.									
	Главные оси и главные мо-									
	менты инерции. Стандарт-									
	ные сечения.									
2.2	Геометрические характери-	3	6		2			2		Рейтинг-
2.2	стики простых сечений.									кон-
	Главные оси сложных сим-									троль
	метричных сечений.									троль № 1
2.3	Геометрические характери-	3	7		2			2		J\2 1
2.3	стики сложных сечений.	3	,		2			2		
	Несимметричные сечения.									
3	Осевое (центральное) рас-	3								
)		3								
	тяжение и сжатие стерж- ней									
3.1	Дифференциальные зави-	3	7	2				2	2/100	
3.1	ζ ифференциальные зави- симости между N и q .	3	/	2				2	2/100	
	• •									
	Напряжения и деформации. Закон Гука. Механические									
	=									
	характеристики материалов.									
2.2	Drywyddawyd agany	3	8		2			2		
3.2	Вычисление осевых пере-	3	8							
	мещений и расчет на жест-									
2.2	КОСТЬ.	2	0	2				2	2/100	
3.3	Расчет на прочность. Ос-	3	9	2				2	2/100	
	новные виды расчета на									
	прочность. Расчеты по пре-									
2 1	дельным состояниям.		_		_					
3.4	Расчеты на прочность при	3	9		2			2		
	осевом растяжении и сжа-									
	тии.									

1	2	3	4	5	6	7	8	9	10	11
4	Напряженное состояние в	3								
	точке тела									
4.1	Напряжения на наклонных	3	10		2			2		
	площадках при осевом рас-									
	тяжении и сжатии.									
4.2	Напряженное состояние в	3	11	2				3	2/100	
	точке тела. Виды напряжен-									
	ного состояния. Линейное,									
	плоское и объемное напря-									
	женные состояния. Главные									
	напряжения. Понятия о тео-									
	риях прочности и пластич-									
	ности.									
4.3	Анализ напряженного со-	3	11		2			2		
	стояния.									
4.4	Статически неопределимые	3	12		2			2		Рейтинг-
	задачи при осевом растяже-									кон-
	нии и сжатии.									троль
										№ 2
5	Прямой поперечный	3								
	плоский изгиб									
5.1	Основные положения тех-	3	13	2				3	2/100	
	нической теории изгиба.									
	Дифференциальные зависи-									
	мости при изгибе. Опреде-									
	ление нормальных и каса-									
	тельных напряжений. Фор-									
	мула Журавского.		10		_			2		
5.2	Определение опасного се-	3	13		2			2		
	чения балки при изгибе.	_						_		
5.3	Расчет на прочность по	3	14		2			2		
	нормальным напряжениям									
	при изгибе балок. Построе-									
	ние эпюр нормальных									
- A	напряжений.	2	1.5					4	0/100	
5.4	Перемещения при изгибе.	3	15	2				4	2/100	
	Дифференциальное уравне-									
	ние изогнутой оси балки.									
	Метод начальных парамет-									
	ров. Расчет на жесткость.									
5.5	Построение эпюр касатель-		15		2			1		
	ных напряжений.									

1	2	3	4	5	6	7	8	9	10	11
5.6	Определение перемещений	3	16		2		2	1		
	методом непосредственного									
	интегрирования дифферен-									
	циального уравнения изо-									
	гнутой оси балки.									
6	Сдвиг и кручение	3								
6.1	Основные расчетные пред-	3	17	2				2	2/100	
	посылки и формулы. Чи-									
	стый сдвиг. Закон Гука при									
	сдвиге. Кручение стержня									
	кругового сечения.									
6.2	Практические расчеты на	3	17		2			4		
	сдвиг (срез).									
6.3	Касательные напряжения	3	18		2			2		Рейтинг-
	при кручении. Угловые де-									кон-
	формации и перемещения.									троль
	Расчет на прочность и жест-									№ 3
	кость при кручении.									
	Всего			18	36			54	18/33	36
										экзамен

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Ориентация на тактические образовательные технологии, являющиеся конкретным способом достижения целей образования в рамках намеченных целей дисциплины. Предусмотрено 100%-ное чтение лекций с использованием средств мультимедиа. При чтении лекций по темам 3.3 (2 часа) и 4.2 (2 часа) используется метод проблемного изложения. На всех практических занятиях рассматривается разбор конкретных ситуаций; работа в команде (совместная деятельность групп студентов под руководством лидера при обсуждении решения задач).

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1. Рейтинг-контроль знаний студентов

Рейтинг-контроль проводится в сроки, установленные графиком учебного процесса.

Вопросы рейтинг-контроля

Рейтинг-контроль № 1. «Основные понятия и допущения. Простые виды деформирования. Построение эпюр»

- 1. Техническая механика как дисциплина определение.
- 2. Основные допущения о свойствах материала.
- 3. Основные допущения о характере нагрузок.
- 4. Основные объекты исследования (модели формы).
- 5. Классификация нагрузок (модели нагружения).
- 6. Расчетная схема.
- 7. Внутренние усилия. Внутренние силовые факторы.
- 8. Простые виды деформирования. Краткая характеристика каждого с указанием ВСФ.
- 9. Осевое (центральное) растяжение и сжатие. Построение эпюры продольной силы.
- 10. Кручение. Построение эпюры крутящего момента.
- 11. Прямой поперечный изгиб. Построение эпюры изгибающего момента и эпюры поперечной силы.

Рейтинг-контроль № 2. «Геометрические характеристики плоских сечений»

- 1. Геометрические характеристики плоских поперечных сечений: перечислить, записать формулы; указать единицы измерения.
- 2. Статический момент площади. Свойства статического момента.
- 3. Центр тяжести поперечного сечения. Формулы нахождения координат центра тяжести.
- 4. Положение центра тяжести в симметричном и несимметричном сечениях.
- 5. Осевые моменты инерции; полярный момент инерции.
- 6. Центробежный момент инерции.
- 7. Главные центральные оси. Главные моменты инерции.
- 8. Нахождение главных центральных осей симметричного сечения.
- 9. Нахождение главных центральных осей несимметричного сечения.
- 10. Стандартные поперечные сечения.

Рейтинг-контроль № 3.

«Расчет на прочность при простых видах деформирования»

- 1. Осевое (центральное) растяжение и сжатие. Вычисление нормальных напряжений. Условие прочности по нормальным напряжениям.
- 2. Виды расчетов на прочность из условия прочности: проверочный расчет.
- 3. Проектная задача: подбор поперечного сечения.
- 4. Задача о грузоподъемности при осевом растяжении и сжатии.
- 5. Прямой поперечный плоский изгиб. Вычисление нормальных напряжений.
- 6. Прямой поперечный плоский изгиб. Формула Журавского для вычисления касательных напряжений.
- 7. Условие прочности по нормальным напряжениям. Пластичный и хрупкий материалы.
- 8. Виды расчетов на прочность при изгибе. Проектная задача.
- 9. Условие прочности по касательным напряжениям.
- 10. Расчет на прочность методом частных коэффициентов.
- 11. Кручение. Вычисление касательных напряжений. Условие прочности.

6.2. Контроль выполнения расчетно-графических работ в заданные сроки

РГР № 1 5-6 неделя РГР № 2 11-12 неделя РГР № 1 17-18 неделя

Расчетно-графические работы

Расчетно-графические работы (РГР) являются формой индивидуальной самостоятельной работы студента и предназначены для формирования устойчивых навыков расчета элементов конструкций на прочность и жесткость при статическом нагружении. Выполнение расчетнографических работ позволит студенту получить практические навыки расчетов на прочность и жесткость при простых видах деформирования.

Темы расчетно-графических работ

РГР № 1. Построение эпюр внутренних силовых факторов при разных видах деформирования.

РГР № 2. Геометрические характеристики плоских поперечных сечений.

РГР № 3. Расчет на прочность и жесткость при осевом растяжении и сжатии и прямом изгибе.

6.3. Самостоятельная работа студентов

Целью самостоятельной работы студентов (СРС) является углубленное изучение основных положений и отдельных тем дисциплины «Техническая механика»; развитие способности студента к самообучению и повышению своего профессионального уровня.

СРС заключается в самостоятельном изучении содержания разделов дисциплины по конспектам лекционных и практических занятий, по учебникам и учебно-методическим пособиям.

СРС позволяет студенту подготовиться к любому виду занятий, к рубежному контролю, к рейтингам, к выполнению расчетно-графических работ и экзамену.

Вопросы самостоятельной работы студентов

- 1. Осевое растяжение и сжатие ступенчатого стержня.
- 2. Учет собственного веса при построении эпюры продольной силы.
- 3. Построение эпюры продольной силы для стержня с переменным сечением.
- 4. Подбор действующей нагрузки по эпюре продольной силы.
- 5. Определение положения центра тяжести сложных фигур различного очертания.
- 6. Особенности вычисления геометрических характеристик фигур различного очертания.
- 7. Построение эпюр ВСФ при изгибе шарнирной балки от действия нагрузки, распределенной по треугольному закону.
- 8. Построение эпюр ВСФ при изгибе консольной балки от действия нагрузки, распределенной по треугольному закону.
- 9. Подбор нагрузки при изгибе балок по заданным видам эпюр ВСФ.
- 10. Построение эпюр ВСФ при изгибе сложных балок.

6.4. Оценочные средства промежуточной аттестации по итогам освоения дисциплины:

а) перечень экзаменационных вопросов.

Вопросы экзамена по дисциплине «Техническая механика»

- 1. Техническая механика: основные понятия. Основные допущения о свойствах материалов и характере деформирования.
- 2. Геометрическая схематизация элементов строительных конструкций (модели формы).
- 3. Внешние воздействия. Классификация нагрузок (модели нагружения).
- 4. Внутренние силы. Метод сечений для определения внутренних силовых факторов (ВСФ).
- 5. Понятия деформации, перемещения, напряжения.
- 6. Основные виды простого деформирования: краткая характеристика с анализом $BC\Phi$ в каждом случае.
- 7. Геометрические характеристики плоских сечений: статические моменты площади поперечных сечений. Простые и сложные поперечные сечения. Определение центра тяжести сложного поперечного сечения.
- 8. Геометрические характеристики простых плоских сечений: моменты инерции площади поперечных сечений, центробежный момент инерции. Стандартные сечения.
- 9. Геометрические характеристики сложных поперечных сечений. Изменение моментов инерции при параллельном переносе осей.
- 10. Геометрические характеристики сложных поперечных сечений. Изменение моментов инерции при повороте осей.
- 11. Главные центральные оси и главные осевые моменты инерции. Их нахождение для сложного симметричного сечения.
- 12. Главные центральные оси и главные осевые моменты инерции. Их нахождение для сложного несимметричного сечения.
- 13. Осевое (центральное) растяжение и сжатие. Построение эпюры продольной силы.
- 14. Осевое (центральное) растяжение и сжатие. Нормальные напряжения в поперечном сечении.
- 15. Механические характеристики материалов.
- 16. Расчет на прочность при осевом растяжении и сжатии. Виды расчета на прочность.
- 17. Осевое (центральное) растяжение и сжатие. Осевые перемещения и деформации. Закон Гука. Расчет на жесткость.
- 18. Особенности расчета статически неопределимых систем при осевом растяжении и сжатии.
- 19. Сдвиг. Основные расчетные предпосылки и формулы. Чистый сдвиг. Закон Гука при сдвиге.
- 20. Практические расчеты на сдвиг (срез).
- 21. Кручение. Основные понятия. Касательные напряжения при кручении.
- 22. Расчет на прочность и жесткость при кручении.
- 23. Прямой поперечный изгиб. Основные положения технической теории изгиба. Дифференциальные зависимости при изгибе.
- 24. Определение нормальных напряжений при прямом изгибе. Прочностная модель элемента при прямом изгибе.

- 25. Расчет балок на прочность по нормальным напряжениям при прямом изгибе. Виды расчета на прочность.
- 26. Расчет по предельному состоянию. Метод частных коэффициентов.
- 27. Определение касательных напряжений при прямом изгибе. Формула Журавского. Расчет на прочность по касательным напряжениям.
- 28. Дифференциальное уравнение изогнутой оси балки. Определение перемещений методом непосредственного интегрирования.
- 29. Определение перемещений методом начальных параметров. Расчет балок на жесткость.
- 30. Напряженно-деформированное состояние (НДС) в точке. Виды НДС.
- 31. Плоское напряженное состояние. Главные напряжения. Главные деформации.
- 32. Основные гипотезы прочности.
- 33. Основные гипотезы пластичности.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) основная литература:

1. Андреев В. И., Паушкин А. Г., Леонтьев А. Н. Техническая механика: Учебник. Издание 2-е исправл. и дополн. – М.: Издательство АСВ, 2013. - 256 с.

ISBN 978-5-93093-867-8.

http://www.studentlibrary.ru/book/ISBN9785930938678.html

2. Сопротивление материалов : учеб. пособие / С. А. Маврина, И. А. Черноусова ; Владим. гос. ун-т имени Александра Григорьевича и Николая Григорьевича Столетовых. — Владимир: Изд-во ВлГУ, 2012. — 144 с. (Гриф УМО)

ISBN 978-5-9984-0272-2

3. Сборник задач по сопротивлению материалов: Учеб. пособие / П.В. Грес, В.Н. Агуленко, Л.А. Краснов и др. – М.: Издательство АСВ, 2012. – 103 с. ISBN 978-5-4372-0034-6.

http://www.studentlibrary.ru/book/ISBN9785437200346.html

б) дополнительная литература:

- 1. Методические указания к выполнению расчетно-графических работ/ С. А. Маврина. Владим. гос. ун-т. Владимир: Изд-во Владим. гос. ун-та, 2008. 60 с.
- 2. Сопротивление материалов. Том 5: Учебное пособие / Богомаз И.В., Мартынова Т.П., Москвичев В.В. 2-е изд., испр. и доп. М. : Издательство АСВ, 2011. 168 с. ISBN 978-5-93093-829-6

http://www.studentlibrary.ru/book/ISBN9785930938296.html

в) периодические издания: Известия вузов «Строительство»

г) интернет-ресурсы:

http://www.edu.ru/ сайт «Российское образование»;

http://e.lib.vlsu.ru/ сайт электронной библиотеки ВлГУ;

ЭБС «Консультант студента» http://www.studentlibrary.ru

http://www.soprotmat.ru

§. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) мультимедийные средства, наборы компьютерных слайдов;
- б) аудитории, оснащенные проектором, экраном;
- в) ноутбук.

Программа составлена в соответствии с требованиями ФГОС ВО *по направлению* **08.03.01 «Строительство».** *Профили подготовки*: промышленное и гражданское строительство, проектирование зданий, автомобильные дороги, теплогазоснабжение и вентиляция, водоснабжение и водоотведение.

5жение и водоотведение.
Рабочую программу составила доцент кафедры «Сопротивление материалов» С.А. Маврина.
Рецензент А. А. Симкин,
начальник отдела искусственных сооружений ООО «Инстройпроект».
Программа рассмотрена и одобрена на заседании кафедры «Сопротивление материалов»
протокол № <u>6 а</u> от <u>14.04.</u> 2015 года.
Заведующий кафедрой профессор В.В. филантов
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии направления 08.03.01 «Строительство» протокол № _ &от
протокол же _ Вот _ то то то то да.
Председатель комиссии