Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ)

EBEPIK TAKO

Гергані пророжнор, чиоректор по научной

пвинаванионной ваботе

В.Г. Прокошев

201/5 T.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА»

Направление подготовки 04.06.01 Химические науки

Направленность (профиль) подготовки «Аналитическая химия»

Уровень высшего образования Подготовка кадров высшей квалификации

Квалификация выпускника «Исследователь. Преподаватель»

Форма обучения заочная

Год	Трудоем- кость зач. ед,час.	Лек- ции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРА, час.	Форма промежуточного контроля (экз./зачет)
1						
2	3 (108 ч)	36			72	Зачет
3						
4						
5						
Итого	3 (108 ч)	36			72	Зачет

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является обучение аспирантов теоретическим и практическим основам хроматографических методов количественного анализа и идентификации веществ.

Задача дисциплины состоит в том, что на основании полученных теоретических знаний и практического овладения хроматографическими методами анализа, а также методами расчета результатов эксперимента, аспиранты могли правильно выбирать методы исследования веществ в соответствии с поставленной перед ними проблемой, разработать схему анализа, практически провести его и интерпретировать полученные результаты.

В результате изучения дисциплины обучающийся должен:

- понимать роль хроматографии и областей ее использования в химическом анализе;
- владеть метрологическими основами анализа;
- знать существо реакций и процессов, используемых в хроматографии,
- иметь представление об особенностях объектов хроматографического анализа;
- -владеть методологией выбора хроматографических методов анализа, иметь навыки их применения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Хроматографические методы анализа» относится к вариативной части цикла дисциплин по направлению подготовки аспирантов 04.06.01- Химические науки, направленность (профиль) подготовки - Аналитическая химия:

- -аналитическая химия
- -современные проблемы химико-аналитического контроля
- -масс-спектрометрические методы анализа
- -валидация методик химического анализа

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

готовностью участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);

способностью планировать и решать задачи собственного профессионального и личностного развития (УК-5).

способностью самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);

готовностью организовать работу исследовательского коллектива в области химии и

смежных наук (ОПК-2);

готовностью к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-3).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 зачетные единицы 108 часов.

	Раздел (тема) дисциплины	Год обучения	самосто	учебной ра ятельную р трудоемкос	Формы текущего контроля		
№ п/п			Лекции	Практические занятия	Лабораторные работы	CPA	успеваемости, форма промежуточной аттестации
1	Основы хроматографии, виды и основные закономерност и	2	8			20	Тестирование
2	Хромато-масс- спектрометрия	2	16			40	Тестирование
3	Пробоподготов ка для различных объектов анализа	2	8			10	Тестрирование
4	Современные приборы для анализа	2	4			2	
	ИТОГО:		36			72	Зачет

Разделы дисциплины

Основные понятия и определения

Сущность хроматографического метода. История его возникновения. Современное состояние метода и области применения, значение и место среди других аналитических методов. Режим хроматографических процессов: фронтальный, вытеснительный, элюентный. Классификация хроматографических методов по агрегатному состоянию фаз, механизму взаимодействия сорбат-сорбент, применяемой технике, способу относительного перемещения фаз.

Теоретические основы хроматографии

Основные характеристики хроматографического процесса. Коэффициент распределения. Удерживаемый объем и время удерживания. Коэффициент емкости. Коэффициент удерживания, его физический смысл. Селективность и эффективность хроматографического разделения. Коэффициент разделения. Разрешение.

Теория равновесной хроматографии. Связь скорости перемещения вещества вдоль слоя неподвижной фазы с коэффициентом распределения и изотермой сорбции. Зависимость формы хроматографического пика от вида изотермы сорбции.

Размывание хроматографической зоны и его физические причины. Неравновесная хроматография. Основы концепции теоретических тарелок, связь с противоточным распределением. Число теоретических тарелок и эффективность колонки. Понятие ВЭТТ. Недостатки концепции теоретических тарелок.

Кинетические теории хроматографии. Факторы, влияющие на размывание зон (вихревая диффузия, молекулярная диффузия, сопротивление массопередачи в подвижной и неподвижной фазах). Зависимость ВЭТТ от скорости потока. Уравнение Ван-Деемтера. Принципиальная схема хроматографа. Выбор параметров хроматографического определения. Идентификация веществ. Колическтвенный анализ. Измерение площадей и высот пиков. Методы внутреннего и внешнего стандартов. Источники ошибок, воспроизводимость измерений.

Газовая хроматография

Принцип метода. Теоретические основы метода. Определяемые вещества. Основные аналитические характеристики. Газо-адсорбционная и газо-жидкостная хроматография.

Аппаратура для газовой хроматографии. Хроматографические колонки, термостаты, детекторы. Классификация детекторов и их важнейшие характеристики (линейность, чувствительность, отношение сигнал/шум, предел обнаружения). Программирование температуры.

Газы-носители, адсорбенты и неподвижные фазы, требования к ним. Модифицирование носителей. Реакционная газовая хроматография. Высокоэффективная капиллярная хроматография. Примеры применения.

Качественный газо-хроматографический анализ. Идентификация веществ на основе величины удерживания. Метод тестеров. Индексы удерживания Ковача. Источники погрешностей при их определении. Методика количественной газовой хроматографии.

Хромато-масс-спектрометрия. Области применения.

Жидкостная хроматография

Принцип метода. Определяемые вещества. Аналитические характеристики современной высокоэффективной хроматографии (ВЭЖХ). Аппаратура для жидкостной хроматографии. Жидкостные хроматографы (колоночные, капиллярные). Насосы. Вводы проб. Колонки. Детекторы и их выбор. Подготовка пробы.

Адсорбционная хроматография. Основные представления о механизме жидкостной адсорбционной хроматографии (ЖАХ): роль химии поверхности адсорбента и природы жидкой подвижной фазы. Силикагель, его структура и химия поверхности. Модифицированные силикагели, принципы их получения и свойства. Оксид алюминия и другие сорбенты в ЖАХ. Требования к ним. Подвижная фаза (элюент) и требования к ней. Элюирующая сила подвижной фазы, элюотропные ряды. Влияние природы и состава элюента на селективность разделения в ЖАХ. Изократическое и градиентное элюирование. Влияние температуры на элюирование.

Нормально-фазовая ЖАХ на силикагеле. Модели удерживания и типы взаимодействия сорбата с поверхностью сорбента. Роль воды. Области применения нормально-фазовой ЖАХ.

Ображенно-фазовая хроматография на модифицированных сорбентах. Механизмы удерживания. Сольвофобная теория удерживания. Влияние структуры сорбатов на удерживание (дипольный момент, поляризуемость, объемы молекул, площадь гидрофобной поверхности). Влияние соотношения полярных и неполярных групп, внутримолекулярных связей и распределения электронной плотности в молекулах сорбата на их удерживание. Применение обращенно-фазовой ВЭЖХ.

Ионообменная хроматография. Сущность метода. Основные представления о механизме ионного обмена. Ионообменное равновесие. Константа равновесия, селективность, фактор разделения. Ряды селективности. Кинетика ионного обмена. Ионный обмен в неводных и смешанных средах.

Неорганические и органические ионообменники, их классификация. Комплексообразующие сорбенты. Физико-химические свойства ионообменников (обменная емкость, набухание, термическая и реакционная устойчивость). Синтез ионообменников.

Ионный обмен в колонках. Применение в анализе. Определение общей солевой концентрации, концентрирование микропримесей из разбавленных растворов. Разделение элементов с близкими химическими свойствами и аминокислот.

Ионная хроматография. Основы ионной хроматографии (ИХ). Сорбенты, требования к ним. Синтез сорбентов. Выбор сорбентов, размер частиц, матрица, функциональные группы. Время удерживания иона, его связь с коэффициентом селективности, обменной емкостью, объемом сорбента. Элюенты. Состав и элюирующая способность. Влияние рН и концентрации элюента на удерживание ионов. Аппаратура для ИХ, способы детектирования. Двухколоночная и одноколоночная ионная хроматография.

Условия определения анионов и катионов. Примеры применения ИХ в анализе смесей неорганических и органических анионов и катионов.

Ион-парная хроматография. Сущность метода. Нормально-фазовая и обращеннофазовая ион-парная хроматография. Применение в анализе органических и неорганических соединений.

Эксклюзионная хроматография. Сущность метода. Особенности механизма удерживания молекул. Области применения.

Лигандобменная хроматография. Сущность метода. Сорбенты и подвижные фазы для разделения аминов и аминокислот.

Жидкость-жидкостная (распределительная) хроматография. Основы метода. Коэффициент распределения, факторы, влияющие на его величину. Носители, подвижные фазы, требования к ним. Подвижные фазы. Противоточная хроматография. Примеры применения.

Тонкослойная и бумажная хроматография. Теоретические основы методов. Величина R_f , ее связь с коэффициентом распределения. Методы определения этой величины. Факторы на нее влияющие. Бумага для хроматографии, подложки, сорбенты для тонкослойной хроматографии (TCX). Растворители для бумажной и тонкослойной хроматографии.

Техника получения хроматограмм: восходящая, нисходящая, одномерная, двумерная и круговая. Электрофоретическая бумажная хроматография. Методы качественного и количественного анализа. Высокоэффективная ТСХ. Области применения.

Сверхкритическая флюидная хроматография

Сущность метода. Сверхкритические флюиды, основные их свойства (плотность, вязкость, коэффициент диффузии). Колонки, области применения. Сравнение методов ВЭЖХ, газовой и сверхкритической флюидной хроматографии.

Электросепарационные методы

Основные принципы электросепарационных разделений. Варианты методов: капиллярный зонный электрофорез, капиллярный изотахофорез, капиллярный гельэлектрофорез, капиллярное изоэлектрофокусирование, мицеллярная электрокинетическая хроматография и капиллярная электрохроматография. Физико-химические основы. Аппаратура. Детекторы. Модифицирование капилляра. Области применения.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении теоретического курса используются методы IT - применение компьютеров для доступа к интернет-ресурсам, использование обучающих программ для расширения информационного поля, обеспечения удобства преобразования и структурирования информации для трансформации её в знание.

Преподнесение теоретического материала осуществляется с помощью электронных средств обучения при непосредственном прочтении данного материала лектором.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

- **1.** В чем преимущества элюентной хроматографии перед фронтальной и вытеснительной?
- **2.** Почему предпочитают использовать величину исправленного объема удерживания, а не удерживаемого объема?
- **3.** Какие величины характеризуют эффективность хроматографической колонки? Как ее повысить?
 - 4. Как оценивают эффективность разделения в хроматографии?
- **5.** Почему выражение $V'_R = DV_s$ считают основным уравнением хроматографии?
- **6.** Какие числовые значения может принимать величина H? Каково теоретически минимальное значение?
- **7.** Объясните, почему при больших объемах элюирования хроматографические пики получаются низкими и широкими?
 - **8.** Найдите длину хроматографической колонки, если H = 0,1 мм, а N = 10000.
- **9.** Как влияет скорость потока на эффективность хроматографической колонки?
- **10.** Постройте график зависимости величины H от скорости потока в газовой и жидкостной хроматографии.
- **11.** Предложите практические рекомендации для успешного разделения двух веществ исходя из теории теоретических тарелок, кинетической теории и основного уравнения хроматографии $V'_R = DV_s$.
- **12.** Почему нежелательны слишком высокие и очень низкие значения коэффициентов распределения?
- **13.** Площадь перекрывания пиков двух веществ с равными концентрациями при $R_S = 1,0$ составляет ~2% от их общей площади: при каком значении R_S перекрывание уменьшится до ~0,1 %?
- **14.** В каких случаях можно добиться удовлетворительного разделения двух веществ, если $a \le 1,1$ или $-a \ge 5$?
- **15.** Какие хроматографические условия надо менять, чтобы уменьшить вклад в величину H трех составляющих уравнения Ван-Деемтера?
- **16.** Какие хроматографические параметры можно использовать для идентификации компонентов смеси?
- **17.** Укажите возможности и ограничения разных количественных методов хроматографического анализа.
- **18.** Назовите источиики систематических погрешностей при хроматографических определениях.
- **19.** Какие вещества обычно служат образцами сравнения при определении индекса Ковача?
- **20.** Почему результаты идентификации веществ более надежны, если использовать индексы удерживания, а не удерживаемый объем?
- **21.** При анализе смеси из трех компонентов методом газожидкостной хроматографии два оператора независимо друг от друга получили хроматограммы. Как подтвердить наличие одинаковых компонентов в смесях по полученным хроматограммам? Как оформляют хроматограммы и какие данные должны быть в подписях к ним?

- 22. Что такое градиентное элюирование, какое оно дает преимущество?
- **23.** Предложите условия разделения *н*-углеводородов и ароматических соединений методом газожидкостной хроматографии. Какие неподвижные фазы и максимальные рабочие температуры нужно рекомендовать?
- **24.** Как вы относитесь к следующему утверждению: газожидкостная хроматография один из лучших хроматографических методов анализа неорганических веществ? Ответ поясните.
- **25.** Какой детектор вы выбрали бы при анализе объектов окружающей среды на содержание пестицидов? Укажите условия приготовления образца и проведения газохроматографического разделения.
- **26.** Какова роль основных узлов в газовом и жидкостном хроматографах высокого давления? Что общего и каковы принципиальные отличия?
- **27.** Сравните роль подвижных фаз в газожидкостнойи жидкостной хроматографии.
- **28.** Какова роль полярности подвижной фазы при разделении органических соединений, например при разделении изомеров бензола?
- **29.** Какой вариант высокоэффективной жидкостной хроматографии вы выбрали бы при разделении аминов, спиртов, *н*-углеводородов; нормально- или обращенно-фазовый? Предложите схему хроматографического разделения.
- **30.** Предложите условия хроматографического разделения смесей: 1) аминокислот; 2) AI^{3+} , Co(II), Fe(III), Cu(II); 3) Na^+ , K^+ и Ca^{2+} методами ионообменной и ионной хроматографии.
- **31.** В чем разница между химически модифицированными и динамически модифицированными сорбентами? Роль модификаторов? Приведите примеры.
- **32.** Какими детекторами надо пользоваться в ионообменной, ионной и ионпарной хроматографии при разделении органических и неорганических веществ?
- **33.** Что такое программирование температуры, почему оно позволяет улучшать разделение?
- **34.** Какова последовательность элюирования C_6H_{14} , $C_{10}H_{22}$ и $C_{14}H_{30}$ с временем удерживания $14,0;\ 12,5;\ 10,8$ с в условиях высокоэффективной жидкостной хроматографии с нормальными и обращенными стационарными фазами?
- **35.** Каковы преимущества двухмерной хроматографии перед простой одномерной бумажной или TCX?
 - 36. Как идентифицировать пятна органических соединений в методе ТСХ?
 - **37.** Как выполнить количественный анализ в методе TCX?

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Литература

- 1. Основы аналитической химии. В 2-х кн. /Под ред. Ю.А. Золотова. М.: Высш. шк., 2005.
- 2. М. Отто. Современные методы аналитической химии. В 2 томах. 2004. Изд-во: Техносфера.
- 3. П. Садек. Растворители для ВЭЖХ. 2006, Изд-во: Бином. Лаборатория знаний
- 4. Дворкин В.И. Метрология и обеспечение качества количественного анализа М.: Химия, 2001. 263 с.

5. Кельнер Р., Мерме Ж. и др. Аналитическая химия. Проблемы и подходы. Том 1

М: Мир, - АСТ, 2004. - 608 с.

Дополнительная

Herbert G., Johnstone A.W. Mass spectrometry basics, CRC PRESS, 2003, -473 p.

Кельнер Р., Мерме Ж. и др. Аналитическая химия. Проблемы и подходы. Том 2 М: Мир, АСТ, 2004. - 768 с.

Бок Р. Методы разложения в аналитической химии. - М.: Химия, 1984. – 320 с.

8. МАТЕРИАЛЬНО ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Использование мультимедийных средств

Программа составлена в соответствии с требованиями ФГОС ВО (уровень подготовки кадров высшей квалификации) по направлению 04.06.01 Химические науки

и направленности (профилю) подготовки Аналитическая химия

Рабочую программу составил д.х.н., проф. Амелин В.Г.
Рецензент, к.х.н. Большаков Д.С.
Программа рассмотрена и одобрена на заседании кафедры химии протокол № 20, 06, 16 № 9года.
Заведующий кафедрой Адажие
Рабочая программа рассмотрена и одобрена на заседании учебно-методическо комиссии направления 04.06.01 Химические науки
Протокол № 10 от 20,06.16 года
Предселатель комиссии Дутину
Предселатель комиссии Дутине (ФИО, подпись)
Программа переутверждена:
на учебный год. Протокол заседания кафедры № от года.
Заведующий кафедрой
Программа переутверждена:
на учебный год. Протокол заседания кафедры № от
года.
Заведующий кафедрой
Программа переутверждена:
на учебный год. Протокол заседания кафедры № от
года.